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SUMMARY 

A minimum divergence estimation method is developed for robust parameter estimation. 
The proposed approach uses new density-based divergences which, unlike existing methods 
of this type such as minimum Hellinger distance estimation, avoid the use of nonparametric 
density estimation and associated complications such as bandwidth selection. The pro- 
posed class of 'density power divergences' is indexed by a single parameter oc which controls 
the trade-off between robustness and efficiency. The methodology affords a robust exten- 
sion of maximum likelihood estimation for which oc = 0. Choices of oc near zero afford 
considerable robustness while retaining efficiency close to that of maximum likelihood. 

Some key words: Asymptotic efficiency: Influence function; M-estimation; Maximum likelihood; Minimum 
distance estimation; Robustness. 

1. INTRODUCTION 

In parametric estimation, density-based minimum divergence methods, i.e. methods 
which estimate the parameter through minimising a data-based estimate of some appro- 
priate divergence between the assumed model density and the true density underlying the 
data, have a long history. These procedures include the classical maximum likelihood 
method as well as minimum chi-squared methods based on families of chi-squared dis- 
tances (Neyman, 1949; Rao, 1963; Cressie & Read, 1984; Lindsay, 1994; Victoria-Feser & 
Ronchetti, 1997). Beran (1977), using Hellinger distance, was the first to use density-based 
minimum divergence estimation in continuous models to develop parameter estimators 
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with good robustness properties relative to maximum likelihood. Among others, Tamura 
& Boos (1986) and Simpson (1987) have followed up on this line of research. Under some 
regularity conditions, these methods have full asymptotic efficiency at the model. However, 
in continuous models the methods suffer from the drawback that it is necessary to use 
some nonparametric smoothing technique such as kernel density estimation to produce 
a continuous estimate of the true density. They therefore involve all the associated compli- 
cations such as bandwidth selection. See also Cao, Cuevas & Fraiman (1995). Basu & 
Lindsay (1994) considered another modification of this approach where the model is 
smoothed with the same kernel as the data to reduce the dependence of the procedure on 
the smoothing method. 

The present paper introduces a new family of density-based divergence measures, to be 
called density power divergences. Note that these measures are not closely related to the 
'power divergences' of Cressie & Read (1984). The family is indexed by a single parameter 
oc which controls the trade-off between robustness and asymptotic efficiency of the param- 
eter estimators which are the minimisers of this family of divergences. When oc = 0, the 
density power divergence is the Kullback-Leibler divergence (Kullback & Leibler, 1951) 
and the method is maximum likelihood estimation; when oc = 1, the divergence is the mean 
squared error, and a robust but inefficient minimum mean squared error estimator ensues. 
For any oc, the estimation procedure has the considerable advantage of not requiring any 
nonparametric smoothing. Various examples are explored to investigate the interplay 
between robustness and efficiency. It is found that the estimators with small ac have strong 
robustness properties with little loss in asymptotic efficiency relative to maximum likeli- 
hood under model conditions. It should be noted that the minimum density power diver- 
gence estimators are a particular case of M-estimators, but they are a novel case motivated 
by other attractive considerations. 

The rest of the paper is organised as follows. In ? 2 we develop the new class of estimation 
procedures. Some of their properties are described in ? 3 by appealing to the M-estimation 
interpretation of the methodology. In ? 4, we investigate the performance of the estimators 
in several common parametric families, look at the breakdown of the methods in the 
normal model, and illustrate the performance of the method in two examples. Brief remarks 
on selecting oc are presented in ? 5. 

2. THE DENSITY POWER DIVERGENCE 

Consider a parametric family of models {Fj}, indexed by the unknown parameter 
t E Q c Rs, possessing densities {f, } with respect to Lebesgue measure, and let i be the 
class of all distributions G having densities g with respect to Lebesgue measure. The latter 
is for the sake of keeping a clear focus in our presentation, but results hold for discrete 
models as well. 

Define the divergence da(g, f) between density functions g and f to be 

da(g,f)= {{l+ -(1 ? t ) g(z)ft(z)+?g + (z)} dz (oc>0). (21) 

When oc = 0, the integrand in expression (2 1) is undefined, and we define the divergence 
do(g, f) as 

d(g, f)= lim d(g,f)= J'g(z) log{g(z)/f(z)} dz. 
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Note that do(g, f) is the Kullback-Leibler divergence. The estimation procedure that we 
discuss in this paper consists of choosing parameter values to minimise an estimate of 
d.(g, fl) 

We are most interested in smaller values of oc > 0, say between zero and one, although 
values greater than one can be considered too. The procedure typically becomes less and 
less efficient as a increases as we will see later. 

THEOREM 1. The quantity d (g, f) is a divergence in that it is nonnegative for all g, f E- 
and is equal to zero if and only if f _ g almost everywhere. 

Proof. For oc > 0, it is straightforward to show that the integrand is nonnegative for 
any fixed value of z, and takes the value zero if and only if g = f identically. When a = 0, 
the result is well known. G 

The family of divergences d, as a function of oc, will be called the class of density power 
divergences. The following is a simple consequence of Theorem 1: for any given oc the 
minimum density power divergence functional at G, defined by the requirement 
d.(g, fT,(G)) = mint E Q dj(g, fI), is Fisher consistent (Rao, 1965, ? 5c. 1). In addition, given a 
random sample X1,.. ., Xn from G, the minimum density power divergence estimator 0, 
generated by minimising 

J f1+(z) dz- ? +) n'1 Zf(X) (22) 

with respect to t, is weakly consistent for 0 = Tx(G); see Theorem 2. We assume here that 
T17(G) exists and is unique, as will normally be the case. Verifying this is perhaps most 
easily done on a case by case basis, and would depend on the parameter space and the 
complexity of the { ft } family as well as on the true density g. 

Given the data, TO(Gn) maximises f logft(z) dGn(z), where Gn is the empirical distribution 
function, and is therefore the maximum likelihood estimate of the parameter if it exists. 
On the other hand, for the value oc = 1, d(g, f) = {If(z) - g(z)}2dz, and the estimator 
minimises the L2 distance between the densities. Notice that this L2 minimisation does 
not require a smooth nonparametric estimate of g, in contrast to work of Cao et al. (1995). 
Thus, for 0 <oa < 1, the class of density power divergences provides a smooth bridge 
between the L2 distance and the Kullback-Leibler divergence. For general families it can 
be checked easily that the estimating equations have the form 

n 

Un (t)=n E ut (Xi)f x(Xi)j- 'ut(z)fN?+'(z)dz=0 (2.3) 
i=1 

where ut(z) = a logft(z)/at is the maximum likelihood score function. Note that this estimat- 
ing equation is unbiased when g = ft. 

Some motivation for the form of the divergence (241) can be obtained by looking at the 
location model, where ff t +a(z) dz is independent of t. In this case, the proposed estimators 
maximise Lf(Xj), with the corresponding estimating equations having the form 

n 

EUt(Xi)f't (Xi)= ?- (2.4) 

This can be viewed as a weighted version of the efficient maximum likelihood score 
equation. When > 0, (24) provides a relative-to-the-model downweighting for outlying 
observations; observations that are wildly discrepant with respect to the model will get 
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nearly zero weights. In the fully efficient case oc = 0, all observations, including very severe 
outliers, get weights equal to one. 

A few examples of the robustness of some variants of the minimum L2 distance estimator, 
oc = 1, in the normal model have been presented by Brown & Hwang (1993), while minimis- 
ing the L2 distance between a normal density and a histogram estimating g. Consideration 
of the small contribution of outliers to L2 distance based on histograms or kernel density 
estimates makes this robustness intuitively apparent; see also Terrell (1993), Hjort (1994) 
and Jones & Hjort (1994). Unfortunately, the robustness of the minimum L2 distance 
estimator is achieved at a fairly stiff price in asymptotic efficiency, as we will see later. By 
choosing a value of oc close to zero, one makes all the weights closer to 1 compared to 
the minimum L2 method, improving the asymptotic efficiency of the procedure. The pro- 
posed estimators, therefore, represent compromises between efficiency and robustness, 
with the degree of compromise controlled by the tuning parameter oc. 

The idea of downweighting with respect to the model rather than the data is also the 
motivating principle of Field & Smith (1994) and Windham (1995). Field & Smith's 
weights involve the model distribution function. Windham describes a fixed point algor- 
ithm that also uses density power weighting. A version of Windham's procedure is equiv- 
alent to choosing t such that 

MY UtX)to,(Xi) _f, ut (z)f 0+2(z) dz. 25 
Eitta(Xi)~~~ afl(z) dz 

If ft is a location family then (2-5) reduces to (2-4), but in general (2-5) does not reduce 
to (2-3). The relationship between the methods is the subject of a paper currently in 
preparation. Estimating equations that are weighted sums of ut(Xi) also appear elsewhere, 
for instance in the general theory of M-estimation (Hampel et al., 1986). 

Note that the divergence given by (2 1) is close to a weighted L2 distance (Hjort, 1994) 
in the sense that, for fixed oc, and f close to g, da(g, f) becomes close to 

{gGC 1(z){If(Z)_g(Z)}12dz 1 ( 1+Lx) g2-(){()gZ} dz. (2 6) 2 

Observe how minimum L2 corresponds exactly to a unit weighting, maximum likelihood 
corresponds to a l/g weighting, and minimum density power divergence for 0 < oc < 1 
corresponds to an intermediate l/gl for 0 <y < 1 weighting. Unlike (2 6), however, the 
beauty of (2 1) is that, if we ignore the last term because it does not depend on f, g appears 
only as a multiplier of terms in f. Thus, while f will be replaced by ft, g can appropriately 
be replaced by its empirical version rather than a smooth estimate of g, which is necessary 
in other robust density-based minimum divergence approaches (Beran, 1977; Cao et al., 
1995). The same holds, of course, for maximum likelihood estimation. Formula (2 6) also 
gives insight into the properties of minimum divergence estimation described in ? 3. 

3. PROPERTIES 

3 1. Link with M-estimation 
Properties of minimum divergence estimators follow immediately from existing theory 

once i is recognised that minimum divergence estimators are M-estimators, i.e. they solve 
an equation of the form L1i/,(X1, t) = 0 (Huber, 1981; Hampel et al., 1986). Our i/ function 
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is 

+(x, t) = u (x)ft(x) - {utz)fl+(x) dx 

As a result of this, further theoretical development can be presented in outline form only. 
A technical report with the same title and authors as this paper, Statistical Research 
Report No. 7, Department of Mathematics, University of Oslo, henceforth referred to as 
'our report', fills in many of the details. 

3 2. Asymptotic properties 
Suppose the data are generated from the true distribution G, not necessarily in the 

model. In the following, 0 represents the best fitting value of the parameter, in the sense 
of minimising the discrepancy da(g, ft), whereas t denotes a generic element of Q. Let 
X1 .. ., Xn be independent and identically distributed with distribution G and density g, 
and let 0 be the minimiser of (2-2). Define it(x) = - O {ut(x)}/at, the so-called information 
function of the model, which is positive definite for all required t. 

THEOREM 2. Under certain regularity conditions, given in our report, there exists 0 such 
that, as n -- oo, 

(i) 0 is consistent for 0, and 
(ii) n2(O - 0) is asymptotically multivariate normal with vector mean zero and covariance 

matrix J'- KJ- 1, where J = J(0) and K = K(0) are given by 

J = fuO(z)uT(z)f I`(z) dz ? {io(z)-) _uo(z)uT(z)}j{g(z) -f0(z)}f'(z) dz, (3-1) 

K = u0(z)uT (z)f ̀(z)g(z) dz -CdT (3 2) 

with f = J uo(z)f (z)g(z) dz. 

The essential M-estimation formulae underlying the above are in Hampel et al. (1986, 
? 4.2c). 

3 3. Influencefunction and standard error 
From M-estimation theory, the influence function of the density power divergence func- 

tional is immediately 

IF(Y; Ta, G) = J '{u0(y)f '(y) - } 

where 0 = T1(G) and J and 4 are as in (3-1) and (3 2). If we assume that J and 4 are finite, 
this is a bounded function of y whenever uo(y)f'(y) is bounded. This is true, for example, 
for any oc > 0 in the normal location-scale problem, unlike other density based minimum 
divergence procedures such as those based on the Hellinger distance. The influence func- 
tions for the estimation of the normal mean when a = 1 are plotted in Fig. 1 for several 
values of oc; note their redescending nature for all oc > 0. 

The asymptotic variance of In times the minimum density power divergence estimator 
can be consistently estimated in a sandwich fashion by using the above influence function, 
e.g. Huber (1981). Let K = u0(Xi)f~(Xi) - , and let 1< be the corresponding quantity 
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3 

2 - c=0-25 

2 - 05 

Fig.l. Influence functions for estimation of a normal mean, with 
known variance, for various choices of oc. 

a ~ ~~~~~~~~~~~ -I <K>' 

evaluated at 0, with Gn in place of G. Let K = (n -1) Y, Ei(Ki Ki). Then the asymptotic 
variance of /n times the parameter estimators can be consistently estimated by J` KJ"- ' 

where J is obtained from J by replacing 0 with 0, with Gn in place of G. Consistent 
estimators of the asymptotic variance of the method can also be obtained by the jackknife 
and bootstrap techniques. 

3 4. Equivariance 
The maximum likelihood method has two important equivariance properties; estimates 

are equivariant with respect to both reparameterisations and transformation of the data. 
Our minimum density power divergence method shares the first general property: if the 
model is reparameterised to pac o() with a one-one transformation, then the density 
power divergence estimate of p is simply at(O), in terms of the density power divergence 
estimate 0 of 0, using the same oc. 

The second maximum likelihood property does not generally hold for the new esti- 
mation method, however. If data are transformed from Xi to Yi = h(Xi), then the minimum 
density power divergence estimator, 0*, say, is defined as the minimiser of 

{ [ftt{,i(y)} 1'(y) ]' a dy - (1 ?!O) n'1 E [ft(Xi))1d {h(Xi)} I] n 

where Xi = 1(Yi) is the inverse transformation. We see by comparison with (2-3) that 0* 
is equal to 0 if r'(y) is a nonzero constant. Thus the estimation method is equivariant 
under a transformation of the form Y = aXi + b, but not in general under other transform- 
ations, unless a = 0. 

3*5. Hypothesis testing, model choice and regression 
Further aspects of ordinary statistical likelihood inference can also be robustified by 

the use of minimum divergence estimation, paralleling similar work carried out in the 
literature for other M-estimators. One can develop robust hypothesis testing as in Heritier 
& Ronchetti (1994) and robust model choice criteria as in Ronchetti (1997); versions of 
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these, including a robustified Akaike information criterion for model choice, are detailed 
in our report. Finally, the important generalisation to robust inference in general regression 
models can be carried out; see Hampel et al. (1986, Ch. 6) for some general suggestions. 
In our report, in the context of a model ffi(y x) for data pairs (xi, Yi), we analyse the 
behaviour of estimators formed by minimising 

n-tL,t f+ 2(ylxI )dy-( l+ :)n E, f a(i I xi); 

again the limiting case a -- 0 corresponds to ordinary likelihood analysis. 

4. SPECIAL PARAMETRIC FAMILIES: EFFICIENCY, BREAKDOWN AND EXAMPLES 
441. Introduction to ? 4 2 

Suppose that the true distribution g belongs to the parametric family {ft}, 0 being the 
true value of the parameter. Then the formulae for J, K and 4 simplify to 

J= uo(z)uTz)f 1 + (z) dz, 

K = u0(Z)U (Z)f + ?2(z) dz - uTo 4 = U0(z)f l +(z) dz. 

Note that, in the limit oc - 0, J and K both become equal to the Fisher information. These 
formulae can be used to investigate the asymptotic efficiency of the estimators, and in 
particular to judge how much is lost relative to the maximum likelihood estimator under 
model conditions. In ? 4 2, some examples for particular parametric families are considered. 
We will define the asymptotic relative efficiency of an estimator to be the ratio of the 
asymptotic variance of the maximum likelihood estimator to that of the estimator in 
question. 

4 2. Efficiencies for particularfamilies 
(a) Mean of univariate normal. For a location family 4 = 0. If we let fo be the N(y, a 2) 

density with known U2 and uo the score function with respect to the mean parameter i, 
elementary integration gives 

K = (2X) -'a (1 + 2)- 32 J = (2n) - /2o- 2 +)(1 + cx) -312 

The asymptotic variance of n' times the estimator of ,u is then given by 

(i?1cx2 )3/2 

072 

Since the asymptotic variance of n' times the maximum likelihood estimator is q2, the 
asymptotic relative efficiency of the density divergence estimator is immediate. For 
0x = 0 25 it is 0 941, for example, already quite close to one. Results for different values 
of oc are given in the first row of Table 1. 

(b) Standard deviation of univariate normal. Again let fo be the N(y, a2) density but treat 
both parameters as unknown. Calculations for the two 2 X 2 matrices J and K show that 
both have zeros off the diagonals, that is, the estimators ,u and a are asymptotically 
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Table 1. Asymptotic relative efficiencies of the density power 
divergence estimators 

Model 0 00 0 02 0 05 0 10 0 25 0 50 1 00 

Normal ,u 1000 0999 0997 0988 0941 0838 0-650 
Normal a 1 000 0.999 0.993 0 976 0 888 0 731 0 541 
Exponential (0) 1 000 0.998 0.991 0 968 0-858 0 684 0 509 
Poisson ({ = 3) 1 000 0.999 0.997 0 988 0 944 0 850 0 679 
Poisson ({ = 10) 1 000 0 999 0 997 0 988 0 941 0 840 0-656 

independent. The limiting distribution for n2( /u-,) is therefore as found in case (a) even 
when a is unknown. 

Here, we concentrate on estimation of a. Lengthy calculations show that the asymptotic 
variance of n' times the estimator is 

(1 ++ o)'(1 +22) 2 22 2 

(2 + OC2)2t (1 + 20)5/2 J 
Efficiency calculations, in comparison with a2/2, are presented in the second row of Table 1. 
Small oc density power divergence estimation continues to retain high efficiency. The values 
in Table 1 clearly show that the minimum L2 distance estimators of ju and a are quite 
inefficient; see also Hjort (1994). 

(c) Exponential distribution. For the density f(x) = 0-' exp(-x/0) (x > O), the quantities 
K and J in the asymptotic variance of n' times the minimum density power divergence 
estimator of 0 are given by 

K = {(I 2 )- 4} 0 -(2+22) 1 + }2 0 -(2+7) 
The asymptotic variance is then given by 

(1 ? C)2 ft 1 ?)4(1 ?4O2) _ 2 02 

(+ OC) T (1 +20C)3 Jc 

The asymptotic relative efficiencies are given for certain oc in the third row of Table 1. 
Again, efficiencies remain high for small oc. 

(d) Mean of multivariate normal. The family is Np(y, 2). The limiting covariance matrix 
of n' times the minimum density power divergence estimator of ,u, whether or not E is 
known, can be shown to be 

22 \p~/2+1 

(1?1 ?+20c) EP 

Thus one loses efficiency for increasing p if oc is kept fixed. 

(e) Poisson distribution. Calculation of the asymptotic variance of the estimator can be 
carried out numerically, although not via a closed-form formula. It involves an infinite 
but rapidly convergent sum. In Table 1 we also provide the asymptotic relative efficiencies 
of the estimators for two different values of the mean parameter Sl and several choices of 
oc. Note that the Poisson results are very similar to those for normal ,u for Sl = 10. 
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43. Breakdown in the normal distribution 
The breakdown point of an estimator, crudely described as the proportion of bad 

observations that an estimator can tolerate before it becomes completely uninformative, 
is one of the descriptors of the robustness of the method. The gross-error breakdown 
point (Hampel et al., 1986, p. 97) of the minimum density power divergence estimator of 
the parameters of the normal distribution can be determined when the data come from 
the contaminated model q(z) = (1 - e)g(z) + ebx(z), where 6 is the Dirac delta function and 
x -? oo. This is done in our report, where the derivation proceeds from first principles 
because we have not found a general result which covers this situation. 

Simultaneous location and scale breakdown, in the sense that location 'explodes' and 
scale 'implodes' (Hampel et al., 1986, p. 98), is found to occur if 

8 > L/(1 + L)3I2. 

The breakdown point increases monotonically from zero when c 0, in line with the zero 
breakdown of the maximum likelihood estimator which can easily be shown separately, 
to 1/(21/2) = 0354 when a = 1. In fact, the breakdown continues to increase until its 
maximal value of 2/(31,/3) = 0385 at oc = 2, but by then the efficiency of the estimator is 
unacceptably low. 

44. Examples 
In our first example we consider Newcomb's light speed data, e.g. Moore & McCabe 

(1993). The data were also analysed by Brown & Hwang (1993), who were trying to fit 
the 'best approximating normal distribution' to the corresponding histogram. The limiting 
case of their approach generates the normal distribution whose mean and standard devi- 
ation are the minimum L2 distance estimates of ,u and a under a normal model. This 
estimator, it was observed, quite successfully downweighted the extreme outliers in the 
Newcomb data. 

For the dataset, Table 2 gives the values of the minimum density power divergence 
estimates of ,u and a for various values of oc under the normal model. These estimators 
exhibit strong outlier resistance properties even for quite small values of oc. When a is as 
small as 0-1, for which the minimum density power divergence estimator of a has an 
efficiency loss of only 24% under the model, the estimate of a is 539, fairly close to the 
estimate obtained for oc = 1. A visual representation of this is provided in Fig. 2, where 
the normal densities N(Yf, a2), for oc = 0, 041, 025, 05 and 1, are superimposed on a histo- 
gram of the Newcomb data. Except when the maximum likelihood estimate is used, all 
the normal densities fit the main body of the histogram quite well, even the one with oc = 0 1. 

Table 2. Estimated parameters for the Newcomb 
data under the normal model 

0-00 002 0-05 0-10 0-25 0-50 1-00 

a 26-21 26-74 27-44 27-60 27-64 27-52 27-29 
a 10-66 8-92 5-99 5-39 5-04 4-90 4-67 

In the second example our estimation method is applied to chemical mutagenicity data 
previously analysed by Simpson (1987) in the context of minimum Hellinger distance 
estimation. In the sex-linked recessive lethal test in drosophila, male flies are exposed to 
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Fig. 2. A histogram of the Newcomb data with superimposed normal 
densities fitted using density power divergence parameter estimation 

with various values of a. 

different doses of a chemical to be screened. They are then mated with unexposed females 
and for each male the number of daughter flies carrying a recessive lethal mutation on 
the X chromosome is noted. One such experiment with 34 males resulted in 23, 7, 3 and 1 
males having 0, 1, 2 and 91 such daughters respectively. Note that the last value is a very 
large outlier. Simpson considered a Poisson fit for these data, and found that the minimum 
Hellinger distance estimate of the mean parameter X successfully downweights the large 
outlier, unlike the maximum likelihood method. 

Here we compute the minimum density power divergence estimates for these data under 
the Poisson(A) model. The results are presented in Table 3. As expected the more robust 
members of the family downweight the large outlier successfully. However, what is more 
interesting is that this downweighting can be observed even for very small values of a. 
The procedure apparently loses robustness for some a between 0-01 and 0-001. For com- 
parison, the maximum likelihood estimate of A after deleting this outlier is 0394, and the 
minimum Hellinger distance estimate of A for these data, with and without the outlier, 
is 0364. 

Table 3. Estimated parameters for the drosophila data under Poisson model 

a 
0 00 0.001 0-01 0-02 005 0-10 0 25 0 50 1P00 

A (all observations) 3 059 2 056 0.447 0394 0-393 0-392 0-386 0 374 0-365 
A (outlier deleted) 0 394 0.394 0.394 0393 0-392 0.390 0382 0366 0-349 

In the above examples, we successfully used a simple bisection method for the one- 
parameter case and Newton-Raphson in the two-parameter case, with fast results. 
Computational questions for larger and more difficult problems are left for future research. 

5. REMARKS ON SELECTING a 

There can be no universal way of selecting an appropriate a parameter when applying 
our estimation methods. It specifies the underlying distance measure and typically dictates 
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to what extent the resulting methods become statistically more robust than the maximum 
likelihood methods, and should be thought of as an algorithmic parameter. One way of 
selecting it is to fix the efficiency loss, at the ideal parametric model employed, at some 
low level, like five or ten percent. A related idea is to fix the maximum level of the influence 
curve at some acceptable level. Other ways could in some practical applications involve 
prior motions of the extent of contamination of the model. 
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