Indian Statistical Institute

Maximum Likelihood Characterization of the von Mises-Fisher Matrix Distribution Author(s): Sumitra Purkayastha and Rahul Mukerjee
Source: Sankhyā: The Indian Journal of Statistics, Series A, Vol. 54, No. 1 (Feb., 1992), pp. 123-127
Published by: Indian Statistical Institute
Stable URL: http://www.jstor.org/stable/25050864
Accessed: 18/11/2010 04:42

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=indstatinst.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

[^0] Indian Journal of Statistics, Series A.

MAXIMUM LIKELIHOOD CHARACTERIZATION OF THE VON MISES-FISHER MATRIX DISTRIBUTION

By SUMITRA PURKAYASTHA
Indian Statistical Institute
and
RAHUL MUKERJEE*
Indian Institute of Management

Abstract

SUMMARY. A characterization of the von Mises-Fisher matrix distribution, extending a result of Bingham and Mardia (1975) for distributions on sphere to distributions on Stiefel manifold, is obtained.

1. Introduotion and main result

Bingham and Mardia (1975)-hereafter, abbreviated to BM-proved that under mild conditions a rotationally symmetric family of distributions on the sphere must be the von Mises-Fisher family if the mean direction is a maximum likelihood estimator (MLE) of the location parameter. In view of Downs' (1972) extension of the von Mises-Fisher distribution to a Stiefel mainfold (for further references, see Jupp and Mardia (1979)), it has been attempted here to extend the result in BM in the direction of Downs' work.

Let $S_{n p}$ be the class of $n \times p(n \leqslant p)$ matrices \boldsymbol{M} satisfying $\boldsymbol{M M}^{\prime}=\boldsymbol{I}_{n}$. For $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{N} \epsilon S_{n p}$ with $\boldsymbol{X}=\sum_{i=1}^{N} \boldsymbol{X}_{\boldsymbol{i}}$ having full row rank, define the polar component of \boldsymbol{X} as the matrix $\left(\boldsymbol{X} \boldsymbol{X}^{\prime}\right)^{-\frac{1}{2}} \boldsymbol{X}$ (cf. Downs, 1972). Then the following result, proved in the next section, holds.

Theorem. Let $\boldsymbol{\mathscr { F }}=\left\{p(\boldsymbol{X} ; \boldsymbol{A})=f\left[t r\left(\boldsymbol{A} \boldsymbol{X}^{\prime}\right)\right] \mid \boldsymbol{A} \in S_{n p}\right\}$ be a class of nonuniform densities on $S_{n p}$. Assume that f is lower semi-continuous at the point n. Furthermore, suppose that for every positive integral N and for all random samples $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{N}$, with $\boldsymbol{X}=\sum_{i=1}^{N} \boldsymbol{X}_{i}$ of full row rank, the polar component of X is a MLE of \boldsymbol{A}. Then

$$
\begin{equation*}
p(\boldsymbol{X} ; \boldsymbol{A})=K \exp \left\{\lambda t r\left(\boldsymbol{A} \boldsymbol{X}^{\prime}\right)\right\}, \boldsymbol{X} \in S_{n p} \tag{1.1}
\end{equation*}
$$

for some constants λ and K, both positive.
Paper received. June 1989 ; revised May 1990.
AMS (1980) subject classification. 62E10, 62H05.
Key words and phrases. Maximum likelihood characterization, orientation statistics, von Mises-Fisher matrix distribution.
*On leave from Indian Statistiosl Institute, Calcutta, India,

Remark 1. The class \mathscr{F} considered above has the following property. $p(\boldsymbol{X} ; \boldsymbol{A})=p(\boldsymbol{X B} ; \boldsymbol{A})$ for all $p \times p$ orthogonal matrix \boldsymbol{B} with $\operatorname{det}(\boldsymbol{B})=1$ that satistics $\boldsymbol{A B}=\boldsymbol{A}$. Because of this geometric consideration the matrix \boldsymbol{A} can be thought of as a location parameter for the class \mathcal{F}. Thus \mathcal{F} is a natural extension of the class considered in BM.

Remark 2. The converse of the theorem is also true, i.e, if \boldsymbol{X} has the density (1.1), then for i.i.d. observations $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{\boldsymbol{N}}$ from $p(\boldsymbol{X} ; \boldsymbol{A})$ the polar component of $\boldsymbol{X}=\sum_{i=1}^{N} \boldsymbol{X}_{i}$ is the MLE of \boldsymbol{A} (cf. Downs (1972)).

2. Proof of the theorem

For $n=1$, our theorem follows from Theorem 2 in BM. Throughout this section, we therefore consider the case $n \geqslant 2$, and it appears that this generalization is non-trivial especially for odd n. Observe that the condition regarding the MLE of \boldsymbol{A} is equivalent to the following : for every positive integral N and every choice of matrices $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{N}, \boldsymbol{A} \in S_{n p}$ with $\boldsymbol{X}=\sum_{i=1}^{N} \boldsymbol{X}_{\boldsymbol{i}}$ of full row rank, the relation

$$
\begin{equation*}
\prod_{i=1}^{N} f\left[\operatorname{tr}\left(\hat{\boldsymbol{A}} \boldsymbol{X}_{i}^{\prime}\right)\right] \geqslant \prod_{i=1}^{N} f\left[\operatorname{tr}\left(\boldsymbol{A} \boldsymbol{X}_{i}^{\prime}\right)\right] \tag{2.1}
\end{equation*}
$$

holds, where $\hat{\boldsymbol{A}}=\left(\boldsymbol{X} \boldsymbol{X}^{\prime}\right)^{-\frac{1}{2}} \boldsymbol{X}$. The following lemmas will be helpful.
Lemma 1. For every positive integral N and every choice of matrices $\boldsymbol{C}_{1}, \ldots, C_{N}, U \epsilon S_{n n}$ with $\boldsymbol{C}=\sum_{i=1}^{N} \boldsymbol{C}_{i}$ positive definite, the relation

$$
\begin{equation*}
\prod_{i=1}^{N} f\left[\operatorname{tr}\left(\boldsymbol{C}_{i}\right)\right] \geqslant \prod_{i=1}^{N} f\left[\operatorname{tr}\left(\boldsymbol{U} \boldsymbol{C}_{i}\right)\right] \tag{2.2}
\end{equation*}
$$

holds.
Proof. Let $\boldsymbol{L}=\left(\boldsymbol{I}_{n}, \mathbf{0}\right) \in S_{n p}$. Then the lemma follows from (2.1) taking $\boldsymbol{X}_{1}=\boldsymbol{C}_{i}^{\prime} \boldsymbol{L}, \quad 1 \leqslant i \leqslant N$, and $\boldsymbol{A}=(\boldsymbol{U}, \mathbf{0}) \in S_{n p}$.

Lemma 2. For each $x \in[-n, n], f(n) \geqslant f(x)$.
Proof. Follows taking $N=1, C_{1}=I_{n}$ in (2.2) and observing that for each $u \in[-n, n]$, there exists $\boldsymbol{U} \in S_{n n}$ satisfying $\operatorname{tr}(U)=u$.

Lemma 3. For each $x \in[-n, n], f(x)<\infty$.
Proof. In consideration of Lemma 2, it is enough to show that

$$
\begin{equation*}
f(n)<\infty \tag{2.3}
\end{equation*}
$$

Taking $N=2, \quad \boldsymbol{U}=\boldsymbol{C}_{1}^{\prime}$ in (2.2), we get $f\left[\operatorname{tr}\left(\boldsymbol{C}_{1}\right)\right] f\left(\operatorname{tr}\left(\boldsymbol{C}_{2}\right)\right] \geqslant f(n) f\left[\operatorname{tr}\left(\boldsymbol{C}_{1}^{\prime} \boldsymbol{C}_{2}\right)\right]$, for every $\boldsymbol{C}_{1}, \boldsymbol{C}_{2} \in S_{n n}$ such that $\boldsymbol{C}_{1}+\boldsymbol{C}_{2}$ is positive definite. Hence if (2.3) does not hold then $f(n)=\infty$, and for every $C_{1}, C_{2} \in S_{n n}$ such that $C_{1}+C_{2}$ is positive definite, one must have either (a) $f\left[\operatorname{tr}\left(\boldsymbol{C}_{1}^{\prime} \boldsymbol{C}_{2}\right)\right]=0$, or (b) $f\left[\operatorname{tr}\left(\boldsymbol{C}_{1}\right)\right]$ $f\left[\operatorname{tr}\left(\boldsymbol{C}_{2}\right)\right]=\infty$.

For real α, u and positive integral m, define the matrices

$$
\boldsymbol{H}_{\alpha}=\left(\begin{array}{rr}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right), \boldsymbol{Q}_{m \alpha}=\boldsymbol{I}_{m} \otimes \boldsymbol{H}_{\alpha}, \quad \boldsymbol{Q}_{m \alpha}^{*}(u)=\left(\begin{array}{ll}
\boldsymbol{Q}_{m \alpha} & \boldsymbol{0} \\
\mathbf{0}^{\prime} & u
\end{array}\right)
$$

Consider first the case of odd n. If $n=2 m+1(m \geqslant 1)$ and (2.3) does not hold, then taking $\boldsymbol{C}_{\mathbf{1}}=\boldsymbol{Q}_{m_{\alpha}}^{*}(1), \boldsymbol{C}_{2}=\boldsymbol{Q}_{m(-\alpha)}^{*}(1),-\pi / 2<\alpha<\pi / 2$ (note that then $\boldsymbol{C}_{1}, \boldsymbol{C}_{2} \in S_{n n}$ and $\boldsymbol{C}_{1}+\boldsymbol{C}_{2}$ is positive definite), it follows from the discussion in the last paragraph that for each $\alpha \epsilon(-\pi / 2), \pi / 2)$, either (a) $f(1+2 m \cos 2 \alpha)$ $=0$, or (b) $f(1+2 m \cos \alpha)=\infty$. The condition (b) cannot hold over a set of positive Lebesgue measure. Hence (a) must hold almost everywhere (a.e.) over $\alpha \epsilon(-\pi / 2, \pi / 2)$, i.e., $f(x)=0$ a.e. over $x \epsilon(-(2 m-1),(2 m+1))$ and a contradiction is reached in consideration of lower semicontinuity of f at the point $n(=2 m+1)$ (cf. (2.4) below). Similarly, for even $n(=2 m, m \geqslant 1)$, if (2.3) does not hold, then taking $\boldsymbol{C}_{1}=\boldsymbol{Q}_{m_{2}}, \boldsymbol{C}_{2}=\boldsymbol{Q}_{m(-a)},-\pi / 2<\alpha<\pi / 2$, it follows as before that for each $\alpha \epsilon(-\pi / 2, \pi / 2)$, either (a) $f(n \cos 2 \alpha)=0$, or (b) $f(n \cos \alpha)=\infty$, and a contradiction is reached again by the lower semicontinuity of f at n.

Lemma 4. For each $x \in[-n, n], f(x)>0$.
Proof. First note that

$$
\begin{equation*}
f(n)>0 \tag{2.4}
\end{equation*}
$$

for otherwise by Lemma 2, $f(x)=0$ for each $x \epsilon[-n, n]$, which is impossible as f is a density. Alsc, observe that for any given $\theta \in[0, \pi]$, there exists η satisfying (cf. BM)
(i) $-\frac{1}{2} \theta \leqslant \eta \leqslant 0$, (ii) $\cos \theta+2 \cos \eta>0$, (iii) $\sin \theta+2 \sin \eta=0, \ldots$

Consider first the case of odd n. For $n=2 m+1(m \geqslant 1)$, define

$$
\mathcal{B}=\{\theta: \theta \epsilon[0, \pi], f(1+2 m \cos \theta)=0\} .
$$

If \mathcal{B} is non-empty, then for each $\theta \in \mathcal{B}$, one can choose η satisfying (2.5) and then employ (2.2) with $N=3, \boldsymbol{C}_{1}=\boldsymbol{Q}_{m \theta}^{*}(1), \boldsymbol{C}_{2}=\boldsymbol{C}_{3}=\boldsymbol{Q}_{m \eta}^{*}(1), U=\boldsymbol{Q}_{m a}^{*}(1)$, where $\alpha=-(\theta+\eta) / 2$, to obtain $f\left[1+2 m \cos \left(\frac{1}{2}(\theta-\eta)\right)\right]=0$; but as in Lemma

2 in BM, because of (2.4) and lower semi-continuity of f at n, this leads to a contradiction. Hence \mathcal{B} is empty and

$$
\begin{equation*}
f(x)>0 \text { for all } x \in[-(2 m-1),(2 m+1)] . \tag{2.6}
\end{equation*}
$$

We shall now show that $f(x)>0$ also for $x \epsilon[-(2 m+1),-(2 m-1))$. If possible, let there exist $x_{0} \epsilon[-(2 m+1),-(2 m-1))$ such that $f\left(x_{0}\right)=0$. Let $\theta(\epsilon[0, \pi])$ be such that $\cos \theta=\left(x_{0}+1\right) /(2 m)$, and corresponding to this θ, find η satisfying (2.5). Taking $N=3, \boldsymbol{C}_{1}=\boldsymbol{Q}_{m \theta}^{*}(-1), \boldsymbol{C}_{2}=\boldsymbol{C}_{3}=\boldsymbol{Q}_{m \eta}^{*}(1)$, $\boldsymbol{U}=\boldsymbol{Q}_{m(-\theta)}^{*}(1)$ in (2.2), and using Lemma 3, one then gets $f(2 m-1)$ $\{f[1+2 m \cos (\eta-\theta)]\}^{2} \equiv 0$, which is impossible by (2.6). This proves the lemma for odd n. The proof for even n is similar.

Lemma 5. For every positive integral N^{\prime} and every choice of matrices $\boldsymbol{C}_{1}, \ldots, \boldsymbol{C}_{\boldsymbol{N}}, \boldsymbol{U} \in S_{n n}$ with $\sum_{i=1}^{\boldsymbol{N}^{\prime}} \boldsymbol{C}_{\boldsymbol{i}}$ non-negative definite, the relation

$$
\prod_{i=1}^{N^{\prime}} f\left[\operatorname{tr}\left(C_{i}\right)\right] \geqslant \prod_{i=1}^{N^{\prime}} f\left[\left(\operatorname{tr}\left(U C_{i}\right)\right]\right.
$$

holds.
Proof. In view of Lemma 1, it is enough to consider the case when C $=\sum_{i=1}^{N^{\prime}} \boldsymbol{C}_{\boldsymbol{i}}$ is positive semidefinite. Obviously, then $\boldsymbol{I}+\nu \boldsymbol{C}$ is positive definite for every positive integral ν. In Lemma 1, now take $N=1+\nu N^{\prime}$, and choose the C_{i} 's such that one of them equals I and the rest are given by ν copies of each of $C_{1} \ldots, C_{\mathbf{N}}$. The rest of the proof follows using agruments similar to those in Lemma 3 in BM.

We now proceed to the final step of our proof. For $n=2 m+1(m \geqslant 1)$, in Lemma 5 taking $N^{\prime}=N, \boldsymbol{C}_{i}=\boldsymbol{Q}_{m \theta_{i}}^{*}(1)(1 \leqslant i \leqslant N), \boldsymbol{U}=\boldsymbol{Q}_{m(-\alpha)}^{*}(1)$, where

$$
\begin{equation*}
\sum_{i=1}^{N} \cos \theta_{i} \geqslant 0, \sum_{i=1}^{N} \sin \theta_{i}=0 \tag{2.7}
\end{equation*}
$$

it follows that for every positive integral N and for every α, $\prod_{i=1}^{N} f\left(1+2 m \cos \theta_{i}\right) \geqslant \prod_{i=1}^{N} f\left(1+2 m \cos \left(\theta_{i}-\alpha\right)\right)$, whenever the θ_{i} 's satisfy (2.7). Writing $h(\theta)=\log f(1+2 m \cos \theta)$, which is well-defined by Lemmas 3.4, it follows that for each positive integral N and each α,

$$
\begin{equation*}
\sum_{i=1}^{N} h\left(\theta_{i}\right) \geqslant \sum_{i=1}^{N} h\left(\theta_{i}-\alpha\right) \tag{2.8}
\end{equation*}
$$

whenever the θ_{i} 's satisfy (2.7). The relation (2.8) is equivalent to the relation (4) in BM and hence as in $\mathrm{BM}, h(\theta)=a \cos \theta+b$, for every θ, where $a(\geqslant 0)$ and b are some constants. By the definition of $h(\theta)$, one obtains

$$
\begin{equation*}
f(x)=K \exp (\lambda x), \text { for } x \epsilon[-(2 m-1),(2 m+1)] \tag{2.9}
\end{equation*}
$$

where $K(>0)$ and $\lambda(\geqslant 0)$ are constants. By Lemma 5 , for every $\boldsymbol{C}, \boldsymbol{U} \in S_{n n}$, $f[\operatorname{tr}(\boldsymbol{C})] f[-\operatorname{tr}(\boldsymbol{C})] \geqslant f[\operatorname{tr}(\boldsymbol{U} \boldsymbol{C})] f[-\operatorname{tr}(\boldsymbol{U} \boldsymbol{C})]$, so that $f(x) f(-x)$ remains constant over $x \in[-n, n]$. This, together with (2.9), implies that $f(x)=K \exp (\lambda x)$, for each $x \epsilon[-n, n]$, where K, λ are constants, both positive, the positiveness of λ being a consequence of the stipulated non-uniformity of f. This proves the theorem for odd n. The proof for even n is similar.

Acknowledgement. The authors are thankful to a referee for very constructive suggestions.

References

Bingham, M. S. and Mardia, K. V. (1975). Maximum likelihood characterization of the von Mises distribution. In : Statistical Distributions in Scientific Work, vol. 3 (G. P. Patil et al. eds.), Reidel, Dordrecht-Holland, 387-398.
\rightarrow Downs, T. D. (1972). Orientation statistics. Biometrika, 59, 665-676.
\rightarrow JUpp, P. E. and Mardia, K. V. (1979). Maximum likelihood estimators for the matrix von Mises-Fisher and Bingham distributions. Ann. Statist, 7, 599-606.

Stat-Math Division
Indian Statistioal Institute
203, B. T. ROAD
Caloutta 700035
India.

Indian Institute of Management, Caloutta Joka, Diamond Harbar Road
Post box no 16757
Caldutita 700027
India.

[^0]: Indian Statistical Institute is collaborating with JSTOR to digitize, preserve and extend access to Sankhy: The

