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MAXIMUM LIKELIHOOD CHARACTERIZATION OF THE 
VON MISES-FISHER MATRIX DISTRIBUTION 

By SUMITRA PURKAYASTHA 

Indian Statistical Institute 

and 

RAHUL MUKERJEE* 

Indian Institute of Management 

SUMMARY. A characterization of the von Mises-Fisher matrix distribution, extending 
a result of Bingham and Mardia (1975) for distributions on sphere to distributions on Stiefel 

manifold, is obtained. 

1. Introduction and main ebstjlt 

Bingham and Mardia (1975)?hereafter, abbreviated to BM?proved 
that under mild conditions a rotat?onally symmetric family of distributions 

on the sphere must be the von Mises-Fisher family if the mean direction is 

a maximum likelihood estimator (MLE) of the location parameter. In view 

of Downs' (1972) extension of the von Mises-Fisher distribution to a Stiefel 

mainfold (for further references, see Jupp and Mardia (1979)), it has been 

attempted here to extend the result in BM in the direction of Downs' work. 

Let Snp be the class of nXp (n < p) matrices M satisfying MM' = ln, 
N 

For Xl9 ...,XneSnp with ?= S?( having full row rank, define the polar 
t-i 

com.pon.ent of X as the matrix (XX#)"*X(cf. Downs, 1972). Then the follow 

ing result, proved in the next section, holds. 

Theorem. Let & = 
{p (X; A) ? f[tr(AX')] \A e SnP} be a class of non 

uniform densities on Sttp> Assume that f is lower semi-continuous at the point 
n. Furthermore, suppose that for every positive integral N and for all random 

N 

samples Xv ..., XN, withX = 2 Xi of full row rank, the polar component of 

X is a MLE of A. Then 

p(X ;A) = K exp{Xtr(AX% X e Snp, ... (1.1) 

for some constants A and K, both positive._ 
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Bemark 1. The class & considered above has the following property. 

p(X; A) 
= p(XB; A) for eAlpXp orthogonal matrix B with det (JB) = 1 that 

satistics AB = A. Because of this geometric consideration the matrix A can 

be thought of as a location parameter for the class &. Thus <?is a 

natural extension of the class considered in BM. 

Bemark 2. The converse of the theorem is also true, i.e, if X has the 

density (1.1), then for i.i.d. observations Xv ..., XN from p(X ; A) the polar 
N 

component of X = 2 Xi is the MLE of A (cf. Downs (1972)). 
*-i 

2. Proof of the theorem 

For n = 1, our theorem follows from Theorem 2 in BM. Throughout 

this section, we therefore consider the case n > 2, and it appears that this 

generalization is non-trivial especially for odd n. Observe that the condition 

regarding the MLE of A is equivalent to the following : for every positive 
N 

integral N and every choice of matrices Xv ..., Xn, A e SnP with X= S ?< = i . 

of full row rank, the relation 

n fMAx?)]> n fMAx\)] ... (2.1) 

holds, where A ? 
(XX')^X. The following lemmas will be helpful. 

Lemma 1. For every positive integral N and every choice of matrices 
N 

Cv ..., CN, UeSnn with C = Ht Ci positive definite, the relation 
% = i 

n f[tr(Ci)] > fi f[tr(Ud)] ... (2.2) 

holds. 

Proof. Let L 
? 

(In, 0) e 8np. Then the lemma follows from (2.1) taking 

Xx = C?L, 1 < i < N9 and A = (U, 0) e Snp. 

Lemma 2. For each x e [?n, n], f(n) > f(x). 

Proof. Follows taking N == 1, Cx 
= 

In in (2.2) and observing that for 

each ue[?n,n], there exists U e 8nn satisfying itr(U) 
= u. 

Lemma 3. For each x e \?n, n], f(x) < oo. 

Proof. In consideration of Lemma 2, it is enough to show that 

f(n)<oo, . ... (2.3) 



VON MISES-FTSHER MATRIX DISTRIBUTION 125 

Taking N = 2, U = C[in (2.2), we get f?tr(Cx)]f(tv(C2)] > f(n)f[tv(C[C2)l 
for every Cx, C2 e 8nn such that Cx+C2 is positive definite. Hence if (2.3) 
does not hold then f(n) 

= oo, and for every Cx, C2 e 8nn such that Cx+C2 is 

positive definite, one must have either (a) /[tr(C?Ca)] = 0, or (b) /[tr(Cj)] 
/[tr(C2)] = oo. 

For real a, u and positive integral m, define the matrices 

(cos a sin a \ / Qma 0 

,0?. = !*??., o;?w= ( ?sin a cosa/ \0' u 

Consider first the case of odd n. If n = 
2m+l(m > 1) and (2.3) does not 

hold, then taking Cx 
= 

Q*ma(\), C2 
= 

0?<-a)(l),?w/2 <oc<n/2 (note that 

then Cx, C2 e 8nn and C1-\-C2 is positive definite), it follows from the discussion 

in the last paragraph that for each a e (?it?2), n?2), either (a) /(1-f 2m cos 2a) 
= 0, or (b) /(l+2m cosa) =oo. The condition (b) cannot hold over a 

set of positive Lebesgue measure. Hence (a) must hold almost everywhere 

(a.e.) over a e(?n/2, n\2), i.e., f(x) 
= 0 a.e. over x e (?(2m? 1), (2m+l)) and 

a contradiction is reached in consideration of lower semicontinuity of/ at the 

point n( 
= 

2m+l) (ef. (2.4) below). Similarly, for even n( 
= 2m, m > 1), if 

(2.3) does not hold, then taking Cx 
= 

Qmt, C2 
= 

0w(_fl),?n/2 < a < n/2, 
it follows as before that for each a e (?n/2, zr/2), either (a) /(w cos 2a) 

= 0, or 

(b) f(n cos a) 
= oo, and a contradiction is reached again by the lower semi 

continuity of / at n. 

Lemma 4. For each x e \?n, n], f(x) > 0. 

Proof. First note that 

f(n)>0, ... (2.4) 

for otherwise by Lemma 2, f(x) 
? 0 for each xe[?n, n], which is impossible as 

/is a density. Also, observe that for any given 0e[0, n], there exists q satisfy 

ing (cf. BM) 

(i) ?\d < V < ?> (ii) COS0+2COS 7? > 0, (iii) sin0+2 sin r? = 0. ... (2.5) 

Consider first the case of odd n. For n = 
2m+l(m > 1), define 

? = 
{0 : 0 e [0,7r],/(l+2m cos 6) = 

0}. 

If ?5 is non-empty, then for each 6 e ?, one can choose r? satisfying (2.5) and 

then employ (2. 2) with N = 3, Cx = 
Ql* (1), C2=C3 = 

Q*m(l), U = Q*ma(l), 
where a = ? 

(6+y)?2, to obtain f[l-\-2m cos(|(0?7?))] 
= 0 ; but as in Lemma 
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2 in BM, because of (2.4) and lower semi-continuity of/ at n, this leads to a 

contradiction. Hence & is empty and 

f(x)> 0for alloue[-(2m-l), (2m+l)]. 
... (2.6) 

We shall now show that f(x) > 0 also for xe[?(2m+l), 
? 

(2m?1)). If 

possible, let there exist xQe[?(2m+l), 
? 

(2m?1)) such that/(#0) 
= 0. Let 

d(e[0, n]) be such that cos 0 = (x0+l)l(2m), and corresponding to this 6, 
find V satisfying (2.5). Taking N = 3, Ct = 

^(-l), C2 = C3 = Q*m(l), 
U = 

Q*m{-e)(l) 
in (2.2), and using Lemma 3, one then gets /(2m?1) 

{/[l+2m cos (y?d)]}2 =z 0, which is impossible by (2.6). This proves the 

lemma for odd n. The proof for even n is similar. 

Lemma 5. For every positive integral N' and every choice of matrices 

N' 

Cv ..., Cjv, ?7 e 8nn with 2 C< non-negative definite, the relation 

nf[tr(d)]> Uf[(tr(UCi)] 

holds. 

Proof. In view of Lemma 1, it is enough to consider the case when C 

N' 
= S C( is positive semidefinite. Obviously, then I+vC is positive definite 

for every positive integral v. In Lemma 1, now take N = 1+vN', and choose 

the C<5s such that one of them equals I and the rest are given by v copies of 

each of Ct ..., Cn. The rest of the proof follows using agruments similar to 

those in Lemma 3 in BM. 

We now proceed to the final step of our proof. For n ? 2m+l (m > 1), 

in Lemma 5 taking N' = #,?,== Q*m0 (1) (1 < i < N), V = 
Q*m(-a)(l)> where 

i 

N N 
2 cos dt > 0, S sin di = 0, ... (2.7) 

it follows that for every positive integral N and for every a, 
* N 

II/(l-f2moos0*) > II /(l+2m cos(0<?a)), whenever the 0|'s satisfy 
-i t?i 

(2.7). Writing h(6) = log/(l+2m cos?), which is well-defined by Lemmas 3.4, 

it follows that for each positive integral N and each a, 

S h(0{) > S H?i-oi), ?. (2.8) 
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whenever the 0?'s satisfy (2.7). The relation (2.8) is equivalent to the relation 

(4) in BM and hence as in BM, h(6) = a cosd+b, for every 0, where a( > 0) 
and b are some constants. By the definition of h(6), one obtains 

f(x) 
= K exp(Az), for x e [-(2m-1), (2m+l)] ... (2.9) 

where K(>0) and A( >0 ) are constants. By Lemma 5, for every C,U e Snn, 

/[tr(C)]/[-tr(C)] >/[tr(I7C)]/[-tr(LrC)], so that f(x)f(-x) remains constant 
over x e [?n, n]. This, together with (2.9), implies that f(x) 

= K exp(A#), 

for each xe[?n, n], where K, ? are constants, both positive, the positiveness 

of ? being a consequence of the stipulated non-uniformity of /. This proves 

the theorem for odd n. The proof for even n is similar. 
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