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We discuss a method of weighting likelihood equations with the aim of obtaining fully efficient and robust estimators. We discuss the 
case of continuous probability models using unimodal weighting functions. These weighting functions downweight observations 
that are inconsistent with the assumed model. At the true model, therefore, the proposed estimating equations behave like the 
ordinary likelihood equations. We investigate the number of solutions of the estimating equations via a bootstrap root search; the 
estimators obtained are consistent and asymptotically normal and have desirable robustness properties. An extensive simulation 
study and real data examples illustrate the operating characteristics of the proposed methodology. 
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1. INTRODUCTION 

We propose a simple method for modifying maximum 
likelihood that is designed to be used for diagnostics, or 
possibly inference, in situations where the model is in 
doubt. The method is based on reweighted likelihood equa- 
tions. It provides 100% efficient estimators when the model 
is correct, robust estimators under mild failures of the 
model as well as diagnostics for identifying data points that 
are discrepant with the model, and a set of exploratory tools 
for gross model failure. The method has a 50% breakdown 
property. 

Suppose that X1,X2,...,Xn is a random sample from 
the density m: (x) corresponding to probability measure 
Mo. Let u(x; 3) = V ln[mn8 (x)] be the score function, where 
V denotes differentiation with respect to fi. Under regu- 
larity, the maximum likelihood estimator (MLE) of d is a 
solution of the likelihood equation E u(Xi; 3) = 0. 

Given any point t in the sample space, we construct a 
weight function w(t; Mf8, F) that depends on t, the cho- 
sen model distribution M:, and the sample empirical dis- 
tribution F. By our construction, the weight function will 
take values in [0, 1]. We then consider solutions A, to the 
weighted likelihood equations (WLEs), 

Zwiu(Xi;3) = 0, (1) 

where wi w(Xi; M,3, F). The weight function will be 1 or 
nearly so if in a neighborhood of the data point Xi, the data 
F is concordant with the model Mfl, and will decline to 0 
depending on the degree of their discordance. The solutions 
are called WLE estimators (WLEEs). The simple form of 
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(1) provides an important motivation for this approach, as 
it suggests a natural algorithm based on iterative reweight- 
ing. In addition, when we are done, the final fitted weights 
indicate which of those data points were downweighted in 
the final solution, relative to the MLE. 

Such an approach is not new, having been introduced by 
Green (1984). But the methods that we develop here are 
based on new weight functions designed to achieve both 
optimal model efficiency and strong robustness features. In 
addition, we provide a thorough approach to the problem 
of multiple solutions, and introduce an algorithm that in- 
corporates a bootstrap root search. Some further discussion 
of earlier weighted likelihood methods is in the concluding 
remarks. 

The article is organized as follows. Section 2 presents a 
multivariate normal example that displays the general na- 
ture of the methodology. Section 3 describes construction of 
the weight functions, which are based on ideas that arise in 
the theory of minimum disparity estimation (Lindsay 1994). 
Sections 4 and 5 describes the algorithmic methods that we 
use to find all of the roots to the WLEs. With the descrip- 
tion of methods completed, Section 6 presents a simulation 
study that illustrates how the method works. Section 7 and 
8 follow with the mathematical theory that describes the 
efficiency and robustness properties. The theoretical results 
are then substantiated by a simulation study. 

2. A MULTIVARIATE EXAMPLE 

We examined data provided by Lubischew (1962) that 
concern two species of beetles, Chaetocnema concinna and 
Chaetocnema heptapotamica. The data consist of two mea- 
surements per beetle: the maximal width and front angle 
of the aedeagus (male copulative organ). The two species 
are difficult to distinguish visually, but a careful look at the 
distribution of these measurements shows a relatively clear 
pattern of separation. Figure 1 shows the data for 21 mea- 
surements from C. concinna and 22 measurements from C. 
heptapotamica. 
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Figure 1. Plot of the Different Roots of the Flea Beetle Dataset (1, 

Ch. concinna; 2, Ch. heptapotamica). C and H are the sample means 
of group I and 2; G is the MVE location estimate. ~, MLE-like root, 
* ,MLE estimate; - --, rootl; - --, root2; - , MVE estimate. 

We treat the pooled data as a single sample from a mul- 
tivariate normal distribution, with parameters it and E, to 
demonstrate the use of our methodology as a diagnostic of 
important data structures. We selected tuning parameters 
so that for true multivariate normal data, the mean down- 
weighting would be 23% of the sample size. When we ap- 
plied our root search procedure with our WLE method, we 
found three important roots. One root gave location esti- 
mates of (142.395, 12.052), which was very similar to what 
would be obtained from- the MLE, which gave location esti- 
mates of (142.139, 12.046). The data points all had weights 
greater than .5 except for two: the point near (I134, 15), with 
a final weight of .1I1, and the one near (I145, 8), with a weight 
of .30. The 50% contour ellipsoids of. the two parameter fits 
are also plotted. 

Each of the other two roots agreed closely with one of 
the two species in the sense that the weights were nearly 
0 for one or the other species. The corresponding mean 
estimators are plotted together with the fitted density con- 
tours. These location estimates are (139.064, 10.154) and 
(146.215, 14.057). Additionally, the actual sample means 
for the two species are (138.272, 10.091) for the hep- 
tapotamica group and (146.190, 14.095) for the concinna 
group. When heptapotamica was used mixed with three 
data points from concinna, so as to introduce a 12.5% con- 
tamination, the observation from concinna received an ap- 
proximate weight of 0, and the only root obtained was that 
corresponding to heptopotamica. 

As an alternative, one might consider the minimum 
volume ellipsoid (MVE) methodology, which is designed 
to determine-robustly multivariate location and scale 
(Rousseeuw and Leroy 1987). These estimators are calcu- 

ofocai 130r (13285, 14077) 145s 150maor 155en 

tially match those of the MLE-like root. The MVE and 
MLE-like estimates were qualitatively the same in describ- 
ing the parameters and the outliers, but we found evidence 
for data substructures through secondary roots. However, 
we did not perfectly recapture the original parameters of 
the two species, as can be seen from the ellipsoid associ- 
ated with the concinna group. 

3. THE WEIGHT FUNCTIONS 

The particular weighting functions that we propose are 
based on the existing theory for the robustness and effi- 
ciency of minimum disparity estimation, as presented by 
Basu and Lindsay (1994) and Lindsay (1994). Indeed, if 
the sample space is discrete, then the methodology offered 
here has already been proposed and investigated by Lind- 
say (1994) and Markatou, Basu, and Lindsay (1997). But 
the method for weight construction for the continuous case 
that we propose here is new, and it can be motivated by 
the results for robust minimum disparity estimation pro- 
vided by Basu and Lindsay (1994). We compare the WLE 
method to the latter in Section 3.3. 

3.1 The Residuals 

The downweighting scheme that we propose is based 
on a special system of residuals. We start with the dis- 
crete case. Suppose that the sample space X is countable 
and, without loss of generality, let X = {O,1, 2, .. .}. Let 
mrn be a family of probability mass functions on X. Given 
X1, . ... , Xn, a random sample from mrn, let d(t) be the 
proportion of observations with value t. Define the Pear- 
son residual 3(t) to be 3(t) = d(t)/mf(t) - 1, so named 
because p2 = n>Et mnl(t)62(t) iS the Pearson chi-squared 
statistic for the goodness of fit when the model mrn(t) is 
multinomial. 

The Pearson residuals range in the interval [-1, oo), with 
3(t) = -1 only when d(t) = 0; that is, cell t is empty. The 
residual 3(t) equals 0 when the observed proportion equals 
the probability of observing t under the model. When the 
model is correctly specified, the residuals converge to 0 with 
probability 1. 

The foregoing residuals are not suitable in the case where 
the model is continuous, as the empirical distribution and 
the model have incompatible densities. To overcome this 
problem, Basu and Lindsay (1994) proposed the following 
extension of the discrete methodology. First, construct a 
nonparametric kernel density estimate f*, say 

d *(x) =/k(x; t, h) dFP(t), 

where k is a smooth family of kernel functions with parame- 
ter h, such as the normal densities with mean t and standard 
deviation h. The window parameter h controls the smooth- 
ness of the resulting density, with increasing h correspond- 
ing to greater smoothness. Next, apply the same smoothing 
to the model to get the smoothed density 

m/3(x) = J k(x; t, h) dMfl(t). 
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As in the discrete case, one can then construct the Pear- 
son residual J*(x) = f*(x)/m* (x) - 1. The advantage of 
smoothing both data and model, as opposed to the usual 
tactic of smoothing the data only, is that the residual J* at 
any fixed x will converge with probability 1 to 0, when the 
model is correctly specified, even if the window h is kept 
fixed. 

3.2 The Weight Functions 

The weight wi given to observation Xi has the form 
w(J(Xi)) in the discrete case and w(J*(Xi)) in the con- 
tinuous case, where w(S) is a prespecified weight function. 
For the sake of simple interpretation of the final weights, 
it is natural that the maximal weight be 1, occurring when 
the residual is 0, and that the w(S) decline smoothly to 0 
as d -X -1 or d -X +oo, so that larger residuals are down- 
weighted more. For brevity, we call such a weight function 
w unimodal. A unimodal weight function that arises from 
a minimum chi-squared problem that we discuss later is 

w(i) = 1 - V,+ ) (2) 

If a weight is unimodal, then one can perform exploratory 
data analyses with increasing degrees of outlier down- 
weighting. simply by taking powers wP of the original 
weight function. 

We now turn to our motivation for using this method of 
weight construction. 

3.3 Minimum Disparity Estimation 

In the discrete case, following Lindsay (1994), given any 
convex function G(.), a measure of the disparity between 
the model mrn and the data d is given by the expression 

pG(d, m,) = Zmfl(t)GG((t)). (3) 
t 

For strictly convex G, the disparity measure is nonnegative, 
by Jensen's inequality, equaling 0 only when the densities 
d and mrn are equal. Through appropriate selection of G, a 
large class of important divergences and distances can be 
developed in this manner, including Kullback-Leibler and 
Hellinger distances. Later in the article, we focus on the 
disparity generated by G(S) = 232/(3 + 2); in the discrete 
case, this corresponds to the symmetric chi-squared dis- 
tance, 

Zmfl(t)G(d(t)) = E T[m(t) -d(t) 2 E "MO~~ m/(t) + d (t) 

It defines a metric as it satisfies the triangle inequality 
(LeCam 1986) and lies numerically between the total vari- 
ation distance and the squared Hellinger distance. It is also 
bounded between 0 and 4. 

The value of f that minimizes the disparity is called the 
minimum disparity estimator corresponding to C. Full ef- 
ficiency of the estimator at the model is automatic in this 
setting, whereas the robustness properties of the resulting 
estimator arise from the choice of the C function. Basu and 

Lindsay (1994) extended this notion to the continuous case 
via construction of the kernel-smoothed disparity measure 

p*(FMl) J G(a*(x))m73(x) dx. (4) 

This construction preserves many of the desirable robust- 
ness features for the corresponding point estimator, but does 
not in general guarantee full efficiency at the model. The 
methodology designed here for the continuous case recov- 
ers full efficiency and is computationally much simpler. 

3.4 The Minimum Disparity Weight Functions 

In the discrete case, the minimization of the disparity 
function leads, under suitable differentiability, to the equa- 
tion 

-Vp= ZA(S(t))Vm0(t) = 0, (5) 
t 

where A(S) = (1 + S)G'(S) - G(S). It follows that the dis- 
crete case minimum disparity equations are the same as the 
WLE equations in (1), with weight functions defined by 

AQ5(t)) - A(-I) 
w(t; MO, F) = w(J(t)) = A(()-(1 (6) 

S(t)?+1 . (6 

Thus by defining the weights as in (6), the WLE estima- 
tor is a root of the minimum disparity estimating equation 
(5). Also, A(S) = S gives w() =1, as anticipated. We call 
weight functions generated in this manner minimum dispar- 
ity weights. 

If we apply a minimum disparity weight function in the 
continuous case, the WLEs do not correspond to minimiz- 
ing (4) or any other distance measure. This raises the ques- 
tion of root selection when there are multiple roots. Our 
strategy is to select that root that minimizes the correspond- 
ing disparity function; in our case this is the continuous 
form of symmetric chi-square. We show that the contamina- 
tion robustness of this selection functional gives breakdown 
robustness to the point estimator. 

We restrict our attention to minimum disparity weights 
that are also unimodal, twice differentiable at 5 = 0, with 
w'(0) = 0 and w"(0) < 0. Lindsay (1994) showed that the 
curvature parameter A2, defined as A"(0), was a critical 
determinant of the second-order efficiency and robustness 
trade-offs for discrete minimum disparity estimation, with 
larger negative values corresponding to increased robust- 
ness and decreased efficiency. For our unimodal weights, 
we have A2 = w"(0), which as we show continues to play 
an important role in the robustness and efficiency properties 
of WLE estimators. 

4. ISSUES IN THE CONSTRUCTION 
OF RESIDUALS AND WEIGHTS 

One unfortunate difference between the discrete and the 
continuous cases is the need for kernel smoothing. In the 
discrete case, the second-order statistical properties of the 
method at the model, and robustness near the model, de- 
pend only on the choice of weight function w(.). In the 
continuous case, these properties depend in a complicated 
way on the choices of kernel k, smoothing parameter h, and 
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weight function w. We offer some simple analyses that can 
provide guidance on their selection. 

For any fixed method of constructing residuals, the role of 
the unimodal weight function w is clear intuitively, and sub- 
stantiated by the discrete case analysis. More severe down- 
weighting leads to more robustness and less efficiency. The 
exact choice of the kernel function k does not seem criti- 
cal; thus we recommend choosing it based on convenience, 
whether to make the weights easy to calculate or to optimize 
the efficiency of the parallel minimum disparity estimator. 

On the other hand, the selection of the smoothing pa- 
rameter h is difficult, because it has a direct bearing on the 
efficiency/robustness tradeoff. Our goal of efficiency dic- 
tates that the residuals d* be close to 0 when the model 
is correct (so the weights are close to 1), which mandates 
reasonable bandwidths, so that f* is stochastically close 
to m73. On the other hand, the goal of identifying unusual 
observations suggests using smaller bandwidths for greater 
sensitivity. 

We have found that the sum of the final fitted weights is 
a useful diagnostic statistic for the comparison of solutions 
to the WLEE, as it tells us roughly how many observations 
were deleted from the sample. Correspondingly, we find it 
insightful to compare weighting methods based on the mean 
downweighting that occurs. 

4.1 The Mean Downweighting Parameter 

We consider the mean downweighting that occurs when 
the model is correct. We let v* = n-1 E w(Xi; M8, F) be 
the average of the weights at true value 3. For an unimodal 
weight function, and under suitable regularity conditions, 
the asymptotic distributions will satisfy 

n(l -wC*) A2 - j2*2 (X,) A2 Z*2x)~~~~~~~~ 

2 ~~m*(t) 
(tI 

where, as before, A2 w"(0). A simple calculation then 
shows that the asymptotic mean of n(l - w*). is 

At -A2 [Ik2(x;t,h) dM$(x) dMp(t)i1. (7) 

The mean downweighting A serves as a simple measure 
of the interplay of the various parameters in the degree of 
downweighting that will occur when the model is correct. 
It can be interpreted simply as the number of observations 
on average that will be deleted from the sample when the 
model is correct. 

The weight function w appears in the mean downweight- 
ing formula (7) separately from the other factors, and only 
through the curvature parameter A2 = w"(0). For the sym- 
metric chi-squared distance, A2 - I, and so the lead- 
ing term in (7) is ?.25. The term in the brackets shows 
that the model mzp and the smoothing parameter h inter- 
act in a complicated way to determine downweighting. To 
obtain roughly equal downweighting throughout a param- 

eter space, the smoothing parameter h might well have to 
depend on 3 in such a way as to hold the bracketed term 
constant. 

To illustrate this formula, suppose that the model mn8 
is normal, with mean 0 and variance a2, and the smooth- 
ing kernel is normal with variance h2. A simple calculation 
shows that the bracketed downweighting factor in (7) is 

(a-2 ? h2)3/2 
(32+ h2)1/2 h2-1. (8) 

From this, we can see that increasing h pushes the mean 
of (1 - wv*) toward 0, and hence the weights to 1, which 
corresponds to becoming more like maximum likelihood 
(and correspondingly less robust). Also note that the mean 
downweighting depends on the model parameter a2, which 
implies that if h2 is held fixed, then the robustness proper- 
ties will vary with the true value of a2. 

For this reason, we recommend selecting a constant i 

and letting h2 = Kc2, so that expression (8) becomes the 
constant [(1 + K)3/2]/ [n(3 + K)1/2] - 1; the parameter i can 
then be selected to determine the degree of downweighting. 
(Choosing the smoothing parameter for the normal model 
in this parameter-dependent way has the bonus of making 
the WLEEs location and scale equivariant.) For i = 1, we 
get the downweighting factor of V'_ - 1, which when mul- 
tiplied by .25 for the chi-squared distance, gives a mean 
downweighting of only about .1 observations. But for i 
near 0, the mean downweighting for the chi-squared dis- 
tance is approximately .25[N - 1], where N = 1/3. 

5. COMPUTATIONAL ISSUES 

One of the main advantages of the WLE approach to ro- 
bustness is that a simple and highly efficient algorithm is 
automatically available. Given an interim value of the pa- 
rameter, say b, let wi = w(Xi; Mb, F) and solve the equa- 
tions 

EIwiu(Xi;30) = ? (9) 

for 3, with the weights fixed at the interim value. As we 
show in the simulations in Section 6, this gives rise to a very 
quick algorithm when (9) has an explicit solution, typically 
needing but 5-20 iterations. We show in the Appendix that 
there is a theoretical justification for its speed, as it has 
superlinear convergence when the data distribution is the 
same as the model distribution. 

5.1 A Bootstrap Root Search 

The proposed estimating equations need not have unique 
solutions (although our empirical evidence is that they do so 
in datasets that do not deviate too greatly from the model). 
Our strategy for tackling the multiple-root problem is to 
search the parameter space in such a manner that all rea- 
sonable solutions are found with some high "probability." 
Our approach is motivated by the work of Finch, Mendel, 
and Thode (1989) in which a "prior" was put on the param- 
eter space to generate the start values. It was argued that a 
bonus of this approach is that one can then construct esti- 
mates of the probability that a root not yet found will be 
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found with further searching. Our particular extension here 
is the use of data-driven starting values, designed to con- 
struct automatically a reasonable search region. Hawkins 
(1993, 1994) and Ruppert (1992) have provided other ex- 
amples on the use of data-driven starting values. 

For our purposes, a reasonable parameter set consists of 
those values that could plausibly have been used to generate 
some subset of the data. Let m be the minimum number of 
observations needed for the MLE of 3 to exist. For each 
b from 1 to B, select a bootstrap data set of rn distinct 
elements of the dataset. For each bootstrap data set, let 0* 
be the corresponding MLE. Each value of /3 then becomes 
a starting value for the iterative reweighting algorithm, and 
we keep track of the roots that are found. In our simulation 
studies we used B = 100. (This rule consistently provided 
very small estimates of the probability of finding a further 
root with further searching.) 

In a small fraction of such bootstrap searches, always 
where the bootstrap sample points were close together, we 
arrived at what we call a degenerate solution whose param- 
eters seemed to describe just that small dataset, as was rec- 
ognizable by the weights being near 1 for those points and 
near 0 otherwise. But we always found at least one nonde- 
generate root, with the total of the weights being over half 
of the sample size, so that the degenerate roots could be 
safely ignored. 

6. A SIMULATION STUDY 

The simulation study targeted many of the key issues that 
surround this method, which is numerically simple but an- 
alytically quite complicated. The goal was to try out the 
method with various weight options, extremely contami- 
nated models, and sample sizes. Within that context, we 
wished to find out information about the problem of select- 

Table 1. MSE of Huber's M Estimate, ti 1, With No Iteration on the Scale, 
Huber's Proposal 2 Estimate, ['2, c = 1.345, and WLEE Estimate, ,t 

Percentage of 
contamination E MSE(ItMLE) MSE(ft1) MSE([t2) 

0% .011 .012 .016 
5% .039 .011 .028 

10% .040 .014 .045 
20% .073 .020 .070 
30% .101 .027 .101 
40% .130 .040 .130 
50% .174 .063 .174 

h2 0 15&2 h2 = .005&2 
MSE([') MSE([') 

p= 1 p = 1.5 p =1 p = 1.5 

.013 .013 .013 .015 

.014 .014 .014 .016 

.015 .015 .015 .015 

.018 .017 .017 .017 

.025 .022 .023 .022 

.058 .034 .037 .030 

.1 07 .070 .090 .049 

NOTE: Data are from (1 - E)N(O, 1 ) + EN(O, 25) with sample size 100. The number of Monte 
Carlo replications is 100; the residual adjustment function used for the WLEE estimates is chi- 
squared. 

ing roots, as well as how well the estimator compared with 
other standard robust methods. 

In every case, the nominal model was N(,u, 2). We 
also considered 18 different options for construction of the 
weights. The design was a factorial, with two weight func- 
tions corresponding to symmetric chi-squared and a modi- 
fied Hellinger distance; three powers, p = .5, 1, or 1.5; and 
three levels of i used in the relationship h2 - Uc2, either 
.025, .015, or .005. We also considered sample sizes n = 20 
and 100. At each sample size, we simulated 100 datasets. 
For each dataset, we carried out a bootstrap root search. 
Given a sample, we took 100 bootstrap samples of size 2 
(no repeats), and used them to construct starting values. We 
also used the MLE as a starting value, as well as the robust 
estimators (medi (Xi), 1.48 medj jXj - medi (Xi)J). 

6.1 Symmetric Errors 
The symmetric sampling models, labelled S (E), were (1- 

c)N(0, 1) + cN(0, 25), with ? =, .1, .2, .3, .4, and .5. This 
being a symmetric error model, we felt that the meaning 
of robustness would be most clear if we focused on the 
location problem rather than the scale. When we simulated 
from the various sampling models, we controlled for the 
variation in the true contamination by fixing the fractions 
of observations from the two components at exactly 1 - E 
and E. 

When the contaminations were symmetric, there was just 
one nondegenerate root, regardless of the degree of contam- 
ination, sample size, or weighting option. Moreover, all of 
the weighting options led to roots that were qualitatively 
the same. 

Because there was always one root to the equations in the 
symmetric case, there was no issue with root selection, and 
we can easily compare the WLE methodology with other 
methods defined for the location model under symmetric 
errors. 

Table 1 compares the mean squared error (MSE) of the 
location estimates under the above described normal gross 
error model, where the candidates are a standard Huber 
estimator, the MLE under the normal model, and various 
WLE candidates. The Huber estimator was calculated us- 
ing the S-PLUS code rreg with fixed scale selected as 1.48 
medjlXj- medi(Xi)J. The value of the tuning constant is 
taken to be 1.345 as it guarantees 95% efficiency of the lo- 
cation estimate at the normal model. The initial value for lo- 
cation used was medi (Xi). Hampel, Ronchetti, Rousseeuw, 
and Stahel (1986, p. 105) noted that the scale parameter is 
often a nuisance parameter. Also, simulations have shown 
the superiority of the location M estimates with initial scale 
estimate given as earlier. Thus Hampel et al. (1986, p. 105) 
recommended using initial median absolute deviation scal- 
ing for M estimates. Additionally, the MSE of the Huber 
proposal 2 location estimate is included (Huber 1981, p. 
137). Here we used the same tuning constant and starting 
values as previously. It is clear that there are only minor 
differences among the various WLEEs, that they compare 
favorably with the Huber estimators, and that all perform 
better under contamination than the MLE. 
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6.2 Asymmetric Errors 
The asymmetric models, labelled A(E), were (1 - 

c)N(0, 1) + EN(8, 1), with E = 0, .1, .2, .3, .4, and .5. As 
in Section 6.1, solutions near (0, 1) will be considered ro- 
bust, with those near (8, 1) also being informative, as they 
indicate the presence of data substructure. In the case of 
asymmetric errors, the equations had multiple nondegener- 
ate roots, with the frequency increasing as the contamina- 
tion proportion increased. This is exemplified in Table 2, 
which identifies the frequency of various patterns of roots 
as found with B = 100 bootstrap starting values. Thus, for 
example, out of 100 data samples of size 100 with contam- 
ination level 10%, in 63 the bootstrap search found only a 
single nondegenerate root, whereas in 37 two roots were 
found, roughly equaling (0, 1) and (8, 1). The table is ex- 
haustive, in that in no case were more than three nondegen- 
erate roots found. Although classification of roots would 
generally be a difficult task, the roots usually were quite 
separated, as we make clear shortly, and classification could 
be made by ordering the ,u values. 

Table 3 presents a summary of the properties of the roots 
organized by type. From the last two columns, it is clear 
that the individual root types were appropriately estimat- 
ing the parameters that generated the data subsets, and that 
the sum of the weights gave a relatively clear indication 
of the size of the subgroup. On the other hand, the root 
corresponding to the MLE behaved rather more like Huber 
estimator, as can be seen from Table 4, where the estimators 
were calculated as described in Section 6.1. 

We note that the Huber estimators were not designed for 
asymmetric errors, so the comparison is for insight only. 
We also note that the sum of the weights for this root was 
quite high relative to the other two roots, substantiating that 
this sum is not so useful for assessing the quality of the root 
in fitting the data. 

6.3 Other Issues 

We examined the properties of the iterative reweighting 
algorithm across our simulations. Our finding was that the 
mean (and median) number of iterations increases with the 
contamination level up to 30%, and then levels out. Thus, 

Table 2. Frequency of Identified Roots 

Possible roots % Contamination, E 

(0, 1) MLE-like (8, 1) 10% 20% 30% 40% 50% 

+ - - 63 4 0 0 0 
- + - 0 0 0 0 0 
- - + 0 0 0 0 0 
+ + - 0 0 0 0 0 
+ - + 37 86 33 1 0 
- + + 0 0 0 0 0 
+ + + 0 10 67 99 100 

Maximum number of 3 2 4 3 4 
degenerate roots in any 
single bootstrap search 

NOTE: The model is (1 - e)N(O, 1) + eN(8, 1), h2 = .015 a2 and p = 1. The chi-squared 
residual adjustment function was used. The number of Monte Carlo replications is 100; the + 
sign indicates the presence of the root, -indicates the absence of it. The sample size is 100. 

Table 3. WLEE's for the Model (1 - 6)N(O, 1) + EN(8, 1) 

h2 0.015&2 

% of contamination MLE-like root (0, 1)-root (8, 1)-root 

0% -.0133 
.9240 

97.2600 
10% .0177 7.5558 

.9172 .8347 
86.4083 8.4613 

20% .1429 -.0543 7.9486 
1.5851 .9719 1.0560 

77.4850 77.0251 15.8251 
30% 1.1187 -.0024 7.9657 

6.8555 .9129 1.0263 
74.4631 65.1803 24.9576 

40% 2.9533 -.0158 7.9874 
14.7835 .9306 1.0063 
79.9801 55.7490 35.3065 

50% 3.9628 -.0143 7.9830 
16.2783 .9537 .9728 
81.1892 45.7100 45.8647 

NOTE: The first line corresponds to the location estimate, the second to the scale estimate, the 
third presents the sum of weights. The results are over 100 replications and 100 random starting 
points. The chi-squared residual adjustment function is used and the power of weights is 1. The 
sample size is 100. 

for example, at 40% contamination, the mean number of 
iterations required to find the (0, 1) root was 14.62, with a 
standard deviation of 9.36, whereas at 50% contamination, 
the numbers were 14.24 and 11.22. Thus in no case were the 
calculations onerous. We found that in our large simulation 
runs, each individual B = 100 search averaged about 2 
minutes in real time. The programs were written in Fortran 
and were run on a DEC 5000/50 workstation. 

We also examined using the parallel minimum disparity 
measure to select roots. At 40% contamination, the mea- 
sure was not completely reliable at picking the (0, 1) root, 
doing so only 78% of the time. But, as Table 5 suggests, 
this might be a function of the separation of the normals. 
We thus carried out a further simulation from the model 
.60N(0, 1) + .40N(15, 1). As anticipated, in this case the 
measure chose the (0, 1) root 100 times out of 100. Indeed, 
when the contamination level was pushed to 50%, the mea- 
sure chose the (0, 1) root or the (15, 1) root in every case 
out of 100 samples. (It should be noted that an alternative 
strategy, based on using the robust starting values, fails in 
this extreme case, as the symmetry of the data leads one to 
the MLE-like root.) 

To give some idea of how the various weighting options 
affected downweighting at the model as well as robustness 
characteristics, Table 6 provides some summary statistics 
for the average values of the WLEEs in the unambiguous 
cases (i.e., when there is a single root only) at low levels of 
contamination. 

7. INFERENTIAL PROPERTIES 

In this section we derive the influence function of the 
WLEE and show in particular that it equals that of the MLE 
when the model is correct, so the method is fully efficient. 
We also present some limit theorems that show that the in- 
fluence function analysis gives the correct efficiency results. 



746 Journal of the American Statistical Association, June 1998 

Table 4. Fixed-Scale and Proposal 2 (c = 1.345) Huber Estimates 
of Location and Scale for the Model (1 - E)N(O, 1) + eN(8, 1) 

Proposal 2 estimates 
Percentage of Fixed-scale 

contamination, E estimate of ft ft I2 

0% -.012 -.009 .735 
5% .072 .215 3.043 

10% .185 .748 8.901 
20% .525 1.595 15.570 
30% 1.205 2.402 20.074 
40% 2.586 3.196 22.858 
50% 3.985 3.973 23.736 

NOTE: The sample size is 100 and the number of Monte Carlo replications is 100. 

7.1 Efficiency 

Suppose that the weight function satisfies, for all x and F, 

lw(x; M ,F) < 1(10) 

with equality for all x when F = M8, as is true for our 
unimodal weight functions. Under some further regularity, 
this structure will generally suffice to imply that the influ- 
ence function of the WLE functional 0, assuming that the 
model is correct, is exactly that of the MLE, and so the 
method potentially has full asymptotic efficiency under the 
model. 

We start by writing the WLEE in its functional form. 
Given a distribution F, the functional /3, (F) will be a cho- 
sen element of the solution set to the equation 

I w(x; M8, F)u(x; 3) dF(x) = 0. (11) 

We note that if F = M0, then /0 is among the solutions 
to this equation, and so the method is Fisher consistent for 
Q if the root is chosen appropriately. 

For a fixed distribution F, let /o = /w(F). Let F.(x) be 
the E-contaminated distribution (1 - E)F(x) + EAy(x), 0 < 
E < 1, where Ay (x) is the distribution that assigns mass 1 
to the point y. The influence function for the estimator is 
. (y) = (d/dc)3w (F). We can find the influence function 

at an arbitrary distribution F by taking the derivative of 
both sides of the equation 

Jw(x, M8W(F), F)u(x, 3w(F,)) dF(x) = 0 

with respect to E, evaluating at E = 0, and solving for /3W (Y). 
From this, one obtains Q{ (y) = A(F)-1B(y), with 

A(F) {J w' ((x)) ((x) + 1)u* (x; !3o)UT (x; Qo) dF(x) 

- Jw(a(x)) Vu(x;13o) dF(x)} 

and 

B(y) = w(J(y))u(y;,3o) 

+ Jw'Q5(x)) k(;,h') u(x;ho)dF(x) 

- w'(6(x))&5(x) A- 1)u(x;/3o) dF(x). (12) 

Table 5. Chi-squared Distances Between (1 - E)N(O, 1) + eN(A, 1) 
and N(fii1, &2 ), N(fi2, 82) and N(fi3, &2) Where ,ii1 and &2 are the 
Roots Close to (0, 1), it2 and &2 are Those Close to (A, 1), and [t3 

and &2 are the MLE-Like Roots for the Beran (1997) Example 

Percentage Distance Distinct roots 
of contamination A (0, 1) (A, 1) MLE-like 

40% A = 6 1.105 2.017 .853 
A = 8 1.106 2.017 1.230 
A = 10 1.106 2.017 1.325 

50% A= 6 1.537 1.481 .915 
A = 8 1.538 1.490 1.251 
A = 10 1.538 1.490 1.492 

Here u*(x;/3) = Vln[m7(t)]. 
If the model is correct, then w(6(x)) = 1 and w'(Q(x)) 

O (w' now being the derivative with respect to d), in which 
case the influence function is the same as that of maximum 
likelihood, namely 

)B' (y) = - F [)ws(F)]e=o 

- [J v-u(x; 3o) dM80 (x)] u(y; 3o). (13) 

The foregoing analysis also indicates that the asymptotic 
variance iw of the estimator can be estimated in the "sand- 
wich" fashion as 

= A(F) [IS {B(X~;F)BT"(X~;F)}1 AT(F). 

7.2 Limit Theorems 

If we proceed from the simple influence analysis to a de- 
tailed proof of asymptotic properties, then matters become 
considerably more difficult but shed little new statistical 
light. Here we offer two theorems that indicate that when 
the model is correct, asymptotically the methods work as 
they should. The conditions are given in the Appendix, and 
the proofs are available in technical report form from the 
first author. 

Table 6. WLEEs of Location and Scale for the Model (1-s)N(o, 1) + 
eN(8, 1) With Starting Values the MLE Estimates of ,u and c2 

and (medoxr , 1.48 med lxit-smed1x l) 

h2 =015&2 

% Contamination p = 1/2 p = 1 p = 1.5 

0% -.014 -.013 -.012 
.959 .924 .889 

98.662 97.260 95.782 

5% -.014 -.013 -.011 
.958 .924 .891 

94.057 92.748 91.343 

10% -.001 -.013 -.011 
1.044 .924 .896 

89.036 87.715 86.452 

NOTE: The RAF is chi-squared. 
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The first result indicates that the WLEs eventually have 
a root in the neighborhood of the true value 30. 

Theorem 1. Under the assumptions A1-A7, with prob- 
ability tending to 1 as n X oo, there exists a root /3 satis- 
fying I % - j3o1 < r. 

As a secondary consequence, we can show the following 
theorem. 

Theorem 2. Under the assumptions A1-A7, there is a 
root to the WLEs that is consistent and asymptotically nor- 
mal with mean 0 and asymptotic variance 1-1(Qo), where 
11 (Qo) is the Fisher information number. 

We return later to the question of root selection. 

8. ROBUSTNESS 

Establishing the robustness properties of the WLE 
methodology is considerably more difficult than establish- 
ing efficiency. We demonstrate this robustness in a number 
of different theoretical ways that will give an underpinning 
to our simulation results. 

We start by considering the response of the WLEEs to 
small amounts of contamination to the model. We note that 
one cannot use an influence curve analysis to compare the 
robustness of first-order-efficient estimators, as the influ- 
ence curve at the model is always just that of the MLE. 
Nonetheless, we did examine the second-order expansion of 
the WLE functional at the model, as was done by Lindsay 
(1994), and found a dampened influence of outliers. Details 
are given in the technical report. 

8.1 Equation Breakdown 

When one has an equation with multiple roots, deter- 
mining the estimator's theoretical breakdown properties is 
obviously tied to the method of root selection. If, however, 
the statistician is using the methodology in an exploratory 
fashion, he might wish to know whether the presence of a 
root represents some underlying structure. As was seen in 
the simulation, the WLEs tend to have roots corresponding 
to any outlying portion of the dataset that is in itself consis- 
tent with the model, even when those data subsets contain 
less than half the observations. 

This empirical property corresponds to a stability of the 
estimating equation and its roots under contamination that 
can be investigated using an approach similar to that of 
Lindsay (1994). To do this, consider a fixed model mQ0, 
and let F represent the empirical distribution function. The 
empirical property is that a large contamination is ignored, 
provided that it is at sufficient distance from the probabil- 
ities specified by 13o. To do this theoretically, we specify 
exactly what an outlying contamination is via the construc- 
tion of an outlier sequence. 

Let {(j: j = 1, 2, ... .} be a sequence of elements of the 
sample space, let Fj(x) = (1 - c)F(x) + -Asj (x) be the 
contaminated distribution, and let f *(x) f k(x; t, h) 
dF (x) be the corresponding kernel-smoothed data. We 
say that {(a} is an outlier sequence for- the model mQ (x) 
and data F provided that the residuals of the contami- 

nated distribution evaluated at the outlying point, namely 
6*((j) = fj*((j)IT ((y) - 1, converge to infinity as j X oo 
at the same time the smoothed model probabilities at those 
points, m* ((j), go to 0. (If (j is a single observation among 
n - 1 other fixed data points, then if the latter limit holds, 
so will the former. The key is that any observation at an 
extremely unlikely point causes the delta residual to be- 
come large in inverse proportion to the model density at 
that point.) 

The WLE score along this sequence is 

tw(x; Fj, M,8)u(x; 43) dFj. 

We can make precise the idea that the estimating equa- 
tions ignore the outliers by showing that the limit of this 
sequence does not depend on the outliers. To do so, de- 
fine the subdistribution function FP(x) = (1 - c)F(x) that 
corresponds to discarding the contamination portion from 
the distribution. Correspondingly, let f* (x) = (1 - c)f* (x). 
The corresponding Pearson residual function is denoted by 
6a (x) - f (x)/mn(x) - 1. The score function 

J w(x; FE, MQ)u(x; 3) dFE 

corresponds to "subtracting" the epsilon contamination 
from the data. As E converges to 0, note that this estimating 
function converges to f w(x; F, M)u(x; /) dF, the WLE 
for the original, uncontaminated data. With this motivation, 
we say that the WLEEs ignore the contamination sequence 
if 

w w(x; Fj, M8) u(x; 0) dFj 

w(x; F(, MM)u(x; )) dF. (14) 

The following theorem indicates that under appropriate as- 
sumptions, the WLEEs exhibit this stability property. Let 
iL(x; 0) = ln[m,n (x)] 

Theorem 3. Assume that (a) Em* [i(X; 3) 1] is finite for 
all /3; (b) for some I > 1,Em,[*i2(X; 3) Ij is finite for all 
3 and A(6) = O(6(1-1)/i) as 6 - oc; (c) ju((j; 3)/li(2j; 3)I 
remains bounded as j -+ oc; (d) the kernel function k is 
bounded, and (d) A(-1) is finite. Then the WLEEs satisfy 
relation (14). 

The proof of this theorem is a generalization of proposi- 
tion 14 of Lindsay (1994). Except for (c) and (d), the condi- 
tions of Theorem 3 are similar to those of Lindsay. Condi- 
tion (c) is generally satisfied in the exponential family under 
bounded kernels. Condition (d) is satisfied by, for example, 
the normal family of kernels. 

With further regularity conditions, the convergence in 
(14) will be uniform on compact sets of ,B, and will lead 
to convergence of the corresponding roots. 

8.2 Breakdown Properties 
The simulation study demonstrated that if one selects a 
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root based on using the parallel minimum disparity mea- 
sure, then a 50% breakdown result is entirely plausible. 
Because Lindsay (1994) gave a detailed argument for the 
50% breakdown of the WLEE in. the discrete case, in the 
Appendix'we simply outline the main ideas in the proof 
to indicate the line of reasoning and the modifications nec- 
essary for similar results to apply in the continuous case. 
We note that a key feature of this type of argument is that, 
just as in the preceding section, breakdown must be con- 
sidered in light of the residuals being used, which here are 
based on local model fit, not distance from the center of the 
distribution. 

9. CONCLUDING REMARKS 

We note that there are a number of precedents for us- 
ing WLE methodology. Our line of descent follows from 
Lindsay (1994), with an emphasis on distance measures 
and full efficiency. Green (1984) and Lenth and Green- 
(1987) considered weight functions in the generalized linear 
model based on deviance residuals (see also Besag 1981 and 
Pregibon 1982). Field and Smith (1995) investigated two 
possible downweighting schemes based essentially on 
downweighting observations that were large or small in 
magnitude. These methods should be contrasted with our 
approach, in which the magnitude of the local lack of fit de- 
termines downweighting. One particular advantage of our 
method of construction, in addition to its asymptotic effi- 
ciency, is that the WLEs are intrinsically Fisher consistent. 
Compare this to Field and Smith's methods, which require 
calculation by numerical integration of an adjustment term 
to the WLEs. 

Although we have derived a general theory, we have 
focused our simulations on the univariate normal model. 
Our extensive investigation of this model provides a proper 
foundation for the use of WLE in such a setting. In this 
section we discuss some of the issues involved in extend- 
ing this methodology to other models. 

As we noted in the discussion of the weight functions, our 
primary obstacle in the independent, identically distributed 
models is in the creation of appropriate kernel smoothing so 
that the robustness properties are homogeneous throughout 
the space of model parameters. A sensible global method- 
ology may be based on the mean downweighting function, 
but properly investigating the operating characteristics of 
this approach in a wide range of models is necessarily the 
subject of a separate and substantial investigation. 

The development of the WLE methodology in regression- 
type settings provides further challenges. It is clear that 
Pearson residuals are not directly applicable, depending as 
they do on the independent, identically distributed assump- 
tion through the empirical distribution function. One could 
certainly use the empirical distribution of the regression 
residuals in a normal error model; however, this approach 
does not apply to the generalized linear model. The regres- 
sion model also entails several additional statistical issues, 
including the role of leverage and the distinctions between 
the lack of fit of the regression and its link versus the lack 
of fit of the error model. 

APPENDIX: CONDITIONS AND 
BREAKDOWN RESULTS 

A.1 Algorithmic Efficiency 
For simplicity, we derive our results for a single scalar parame- 

ter. Let F be the data distribution. We may write the reweighting 
algorithm in the following functional form: for fixed v, solve for 
j3 in J w(x; Mv, F)u(x; 3) dF(x) = 0. (A.1) 

This algorithm will be linearly convergent, and we can determine 
its rate as follows. Suppose that /3pw(F) = 1o, and let the solu- 
tion to (A.1), given initial value v = 3o + T, be /3aig(T). We can 
differentiate in r at r 0 and obtain 

jB' (o)' w P(x; M,3,F) u(x;,3) dF (x)(A2 
f w(x; Ma, F)Vu(x, 3) dF(x) 

Because 3' lg(O) (j3a1g(T)-/3o)/(v -j3o), this derivative deter- 
mines the linear rate of convergence. In particular, if this derivative 
is 0, then the algorithm is superlinear in convergence. This occurs 
in our case if the data distribution F exactly equals a model value 
Moog because for an unimodal weight we have w'(0) = 0. 

A.2 Regularity Conditions 
In this section we present and discuss the conditions needed 

for the existence of solutions and asymptotic normality of the 
estimators. For simplicity of presentation, we discuss the results 
in the context of a scalar parameter /3, but the results are true for 
a vector j3 as well. Assume the following: 

Al. The weight function w(6) is a nonnegative bounded and 
differentiable function with respect to 6. 

A2. The weight function w(6) is regular; that is, w'(6)(6 + 1) 
is bounded, with w'(6) being the derivative of w with respect to 
6. Let ut(x; 3) = Vm* (x)/m* (x) and u(x; /3) = Vm,8(x)/m,8(x), 
where m3 (x) is the smoothed version of the model and m8 (x) is 
the true model. 

A3. For every 3o c Q, there is a neighborhood N(/3o) such that 
for /3 c N(/3o), the quantities Ii(x; /3)u'(x; /3) , I 2(x; '3)u(x; /3) , 
jfz'(x;/3))u(x;/3) l, and lu" (x;/3)1 are bounded by Ml (x), M2(x), 
M3(x), and M4(x), where E80[Mi(X)] < oo,i = 1,2,3,4. 

A4. Eo [,u2 (X; 3)U2 (X; 3)] < 00. 
A5. I(3) = Ee [u2(X; 0)] < oo; that is, the Fisher information 

is finite. 
A6. 

a. f IVmT (x)/mT (x) I dx f ju(x; )mT (x)/mm (x) dx < 
00. 

b. f LJ2(x; /3)u(x; 3) I [ma (x)/mp (x)] dx < oo. 
c. f Iu'(x; l[mo (x)/m (x)] dx < oo. 

A7. The kernel k(X; t, h) is bounded for all x by a finite con- 
stant M(h) that may depend on h but not on t or x. 

Note that conditions Al and A2 are similar to those previously 
used in the robust literature. Dollinger and Staudte (1991) have 
used the exact same condition as Al in the context of linear re- 
gression, whereas A2 holds, for example, for weights that use the 
Hellinger distance RAF, among others. The approach taken here, 
as in robust estimation, is to increase the restrictions on w(6) so as 
to expand the range of true distributions for which the results hold. 
Note that Al and A2 imply that lw(6) - i < BI(I + 1)1/2 -_ 
with B some finite constant. 

A.3 Breakdown Argument 
We consider the "asymptotic" setting in which the data F is 
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replaced by a model value Moo, so that the contaminated distri- 
bution is Mj = [1 - E]M,0 + EA/j. In this case the right side of 
(14) has a root at /3o, and so under reasonable assumptions, the 
terms on the left side have a sequence of roots 3jB that approach 
3o. Because our goal is to establish that the selection functional 
will choose a root in the neighborhood of Qo, we have made the 
first step of establishing that such a root exists, and that it can be 
made arbitrarily close to i3o. 

From this point, the analysis shifts from the WLEs to the prop- 
erties of the parallel disparity measure p* QI - E]Meo + EA\j, 
M,a). The basic strategy is to show that for j sufficiently large, 
the value of this disparity measure is larger for all /3 outside some 
bounded neighborhood N of 3o than it is for the sequence of 
roots /3j. If this is established, then even if we do not select 3j, 
we cannot select a root outside N, and so the selected roots will 
eventually be in N as j - oo. But we can obtain a stronger prop- 
erty, provided that the disparity measures converge uniformly in 
d3 in N to a function with global minimum at /0, as then the se- 
lection functional must eventually choose 3j over other roots in 
N. Because these roots converge to 13o, we then have what might 
be described as breakdown consistency. Suppose that the disparity 
measure displays contamination robustness in the sense that 

PG ( [1-?]MeO + ?-z j, M) -4 pG ([1 -?]MsO, Ma) 

uniformly in a bounded neighborhood N of Qo. Because the right 
side has the necessary quality of having a global minimum at 3o 
(by Jensen's inequality), with value G(-E), we know that within 
N, we will eventually select /j, and that we next need to show 
that outside N, the disparity is always greater than G(-E). To de- 
termine conditions on G that give contamination robustness, we 
need to modify the results of Lindsay (1994, prop. 12) to account 
for the change from sample-space summation to kernel-based in- 
tegration. This can be easily done by modifying the definition of 
outlier sequence to require that /\*, (X)/m* (X) -+ a.s. when X 
is distributed as M, as j -? oo. (This certainly holds in the nor- 
mal model-normal kernel setup if j -+ oo.) With this adjustment, 
contamination robustness for G follows from the basic assump- 
tions of Lindsay (1994), the key one being that of G(6)/6 -+ c as 
6 -+ o0, for c < o0, so that G is not too large in the right tail. 
(This is true of the symmetric chi-squared disparity.) With this 
assumption, we can modify G to the function G(6) - c6, which 
generates the same disparity measure and is simpler to work with, 
as it is a decreasing function. It is also assumed that this modified 
G is thrice differentiable and strictly convex. 

To establish that the values of / outside some neighborhood N 
fail to fit as well as /o, we then need to make some assumptions 
about the relationship between the kernel-smoothed model and the 
parameter. In particular, we must make an assumption that roughly 
requires that if M*o puts most of its mass on a sample space set 
A, then for all / sufficiently far from /0, say outside a bounded 
neighborhood N', M, puts very little mass on the set A, and so the 
M$o portion of the distribution [1 - s]M,O + E/\*. becomes, in 
some sense, a contamination when viewed from the model M, 
(see Lindsay (1994, assumption 19). With this assumption and 
some regularity conditions, we can mimic Lindsay's lemma 20 
and show that for every ae, there exists a neighborhood N,, of /o 
such that 

inf {p* QI - ]MpO + E/\ej, MO):3 N,,} > G( - 1) - a 

for j sufficiently large, which thereby bounds below the disparity 
values outside the neighborhood Ng. 

The argument for 50% breakdown Lindsay (1994, prop. 22) con- 
cludes by noting that because G is strictly decreasing, G(-s) < 

G(e- 1) holds for all E < .5, and so for any E arbitrarily close to .5 
we can find a sufficiently small ae such that G(-E) < G(1-e) -a. 
Hence the selection method eventually chooses roots in the set NQ, 
as j -4 oo. The uniformity of convergence of the disparities on 
NQ, then establishes that we will choose 3jB eventually. 

[Received June 1995. Revised October 1997.] 
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