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SUMMARY
Thiz paper considers, in the multiparameter case, perturbed ellipsoidal and highest pos-
terior density regions with both Bayesian and frequentist validity up to ofa~1).
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1. INTRODUCTION AND PRELIMINARIES

In recent years there has been a revival of interest in the characterization of priors
ensuring approximate frequentist validity of posterior credible sets—see Tibshirani
{1989), Lee (1989), Severini {1991), Ghosh and Mukerjee (1992, 1993) and the
references therein. A related problem of finding, for a given prior, Bayesian credible
sets with both Bayesian and frequentist validity up to o(n~!'), where n is the
sample size, has recently been considered by Severini (1993} in the one-parameter
case. As he discussed, this problem can be of interest if one believes that both the
Bavesian and the frequentist points of view are important. Here we consider the
same problem in the multiparameter case and give two sets of solutions based on
perturbed ellipsoidal and highest posterior density (HPD) regions. Our method of
solution, however, is different from that in Severini (1993). In particular, in the
multiparameter case, an approach based on inversion of approximate posierior
characteristic functions is seen to be helpful; see, for example, Ghosh and Mukerjee
(1993}, Also, unlike Severini (1993), who considered conditional frequentist validity,
we do not require the specification of an ancillary or an approximately ancillary
statistic,

Let {X), { = 1, be a sequence of independent and identically distributed possibly
vector-valued randoem variables each with density f{x; & where & = {&,...,
#,)" € ©, an open subset of #*. We make the assumptions in Johnson {1970},
gection 2, with K = 2 in his notation. Let & have a prior density #( ) which is
positive and thrice continucusly differentiable at all &, If w( ) is not proper, we shall
require that there is an m, (> 0) such that, for all X, ..., X, the posterior of &
given X;,..., X, is proper. Let X = (X,..., X,)', where n is the sample size,
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T
8y =n"' 2 logf(X;; 6)

=1
and & be the maximum likelihood estimator of @ based on X, Define # = w{ﬁ} and,
for 1 </, j,rssp, let

Tr’('ﬂ} = -Dr' T(E]: Tu{'ﬂ} = Di'[}_ﬂ T{H]r ﬂi o '?I',-{é}, 'i{.-' et Tr:'jié}:
i = {DJ'DJI(H]}f?:ﬁ! @y = {D!DjDr ”B}}ﬂ=ﬁ: Rirs = {DJ'DJDPDT”H)}H=§?
Cyp = =8y Vi = Dilog f(X,; 6}, Vr',f = -Dfﬂjlﬂgf(Xl; 2),
I{I‘..ir = DFDJ'Drlﬂgf(XI: E}!
Iy = ELV; V), Ly, =E(V; V), L, = Ef{V;.),

where D, = 3/80;. Note that I;, L, , and L, are functions of ¢ and that the per
observation information matrix at 8 is given by I = I(#) = ([I;) which is assumed
te be positive definite at each &, All formal expansions for the posterior, as usad
here, are valid for sample points in a set 5, which may be defined along the
lines of Bickel and Ghosh {1990}, with Pg-probability 1 + o(# ') uniformly over
compact sets of §. The p X p matrix C = (¢;) is positive definite over 5. Let
C-'= (¢¥y and I = (V).

Throughout, unless otherwise stated, the summation convention will be followed,
i.e. summation will be implied over repeated subscripts or sup_ersc:ripts, For ¢xam-
ple, ay ik, and c¥%; will stand for L; L, g, /A, and L, L, c¥%,; respectively. For
subsequent use, we note from Ghosh and Mukerjee (1993) that the posterior density
of A{#) = h = (h,..., h,)" =n'?(8 — ) under the prior x{ ) is given by

010 = s (1 4 Titr, B 5 T} + ! L Tutar, 1 = G
1
4o (T = Go} + ¢ {Tulm, BTl — Gy(m)

& %{ﬁz(m = Ga}D +o(n™h, (I.1a)

whete & ( ; C') is the p-variate normal density with‘ m_;l! mean vector and dis-
persion matrix C™!, and, with ¢} = e¥¢™ + ¢¥e® + ¢¥c”,

T, By = 77 ha;,

{l.1b)
Taih) = a{.l'rhr'hjhr:
T » h = 'ﬁ'_lhr'h-'ﬁ--,
ZI{T } SR {]_]c}
Tnih) = a{.frshihjﬁrhsr
G[[‘H‘] =7 lfa.'ﬂ{l.',
Gy = e, ]
2 = BijraC iy (1.1d)

= &1 a all)
Giy(m) = & lay #,ell, ]

Gy = a0, (9c¥c™c™ + 6c"cMc™),
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each of the implicit summations being over the range from 1 to p. In what follows,
for positive integral », X,( ) and &,( ) denote respectively the cumulative distri-
bution function and the probability density function of a central x *-variate with »
degrees of freedom. Also, 72 denotes the upper a-point of a central x Z-variate with
p degrees of freedom.

2. PERTURBED ELLIFSOIDAL AND HIGHEST POSTERIOR DENSITY
REGIONS

By equations (1.1a), up to the first order of approximation, A = A{#} has a null
mean vector and a dispersion matrix ! in the posterior set-up. This motivates
us 1o consider a perturbed ellipsoidal region for # of the form

Ry, m, X} = {&: ({0} - ??'mdw{é}}’ﬂﬁ{ﬁ — a7 (8N € A le, T, XD},
(2.1}
where d {0} = (d,(8), ..., d,, (@)} and A, (2, 7, X) are to be so chosen that
the region has both posterior and frequentist coverage probability 1 — o + o(n ™),

and O < e < 1. It should be made explicit here that, for each j, 4, (#) is a smooth
function with a functional form possibly dependent on «{ ) and « but not on ». Let

Fim) = 0. + 5 @Y ) - #dkB12, + 5 dulBraye, |

: 1 1 Lisggs, 5
P;(ﬂ'} - EEGI + EG;J,(T} . Edrwl:g]aﬁrcu!
r(2.2)
1
Fy = ﬁGd-!
Fy(m) = — Fi(x) — Fy(x) — F;. J

Then, as discussed in Appendix A, with
z
Awaler, w, X) = 2% = {nfy(z%)} 1{ 2 Fi(m) Ky 0422 + F, KPH{:Z)I, (2.3)
J=0

the relationships

P {feR e, m, XX} =1—a+on™') (2.4)
and
PifeRe, w, X)}=1-a+2{nx®} 1k, DA fa, x, 4,(0), 8} + o(n 1Y)
(2.5)

hold, where P*{ | X} is the posterior probability measure for & under #{ ) and
A{e, m, 4,08}, 61 = D 1{1 + (p + 7' L w(8) + LD 1" =(8)
= OV DI" — d.(8) w(8)]. (2.6)

By equations {2.4) and (2.5}, the perturbed ellipscidal region (2.1) will have
both frequentist and posterior coverage probability 1 — & + o(n™!) provided that
d. (8) satisfies the partial differential equation



764 GHOSH AND MUEERITEE [No. 4,
Ao, 7, dii8), 6} =0, 2.7

and A;,{a, 7, X) is chosen as in equation (2.3). In particular, by equation (2.6},
d.(8) = d,(#), where d_(#) = (d.(§), ..., dpwtﬁ}}I and
a8 =H1 + (p + 'YLy, + 1@ \DI w(0) - DI, 1<r<p,
(2.8)

satisfies condition (2.7).

Considering now the HPD region, as noted in Ghosh and Mukerjee (1993),
up to o{a”'}), this is approximable as R;(e, =, X) ={6 Wir, X, 2N} <
Am e, 7, X}, where, with h = A(6),

Wiz, X, h(8)} = h'Ch — n“"""[zi’”{w, )+ 1 T +n 1[& el

— o=, &) — Tzz(h] + TFy(x, ﬁ}] (2.9)

and Ay (e, w, X) is such that &,(a, x, X} has posterior coverage probability
1—a+o(n'}. In the present context, the above motivates us to consider a
perturbed HPD region of the form

Ri(ee, 7, X) ={6: W¥{=, X, ()} < M (a, 7, X)}, (2.10)
where
W, X, M®)) = Wix, X, B0 — B'Ch + (h — n~ 2B 8)) Ch — n~ "2 b AB))
2.1
is obtained by perturbing the leading term in equation (2.9) in a manner similar to
equation (2.1), Here b {#) = (&,,.(8), ..., b,.() and, for each f, b, (8} is a
smooth function with a functional form that is possibly dependent on x{ ) and «

but not on #; actually, as we shall see later, the appropriate choice of &, (#) does
not depend even on a.

Let
1 1 = i
Fim) = EG TZ {-'5:{3}1 b0 - brr{’ﬁ}aa;frcu+
Then with
Muler, ®, Xy = 28 — {nk (2} FOK, 2z%) — K@) - 207 b, (D)7, / 1,
(2.12)
as indicated in Appendix A, we obtain
PleRNe, = X)|X}=1—a+o{n ), {2.13)
Pﬁ{EER;{EE, Ty X}} =1-a- z{ﬂﬂ'ﬂ'{m}_lzz kp(zllﬁl{“—: b-;r(H]! H} 2 G{ﬂ_1]!
(2.14)

where

Ardw, BB, B} = ]:b,,{fi'] () + I *Dr(#) + I‘FF’L,E _.«11'{6}] {2.15)
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By equations (2.13) and (2.14), the perturbed HPD region (2.10) will have both
frequentist and posterior coverage probability 1 — w + o(s ) provided that
b, (#) satisties

A fw, b (0), 6} =0, {2.16)

and Al {e, m, X) is chosen as in equation (2,12). Note that the partial differential
equation (2.16) does not involve e. In particular, by equation (2.15), b, (f) =
b (&), where

ET{H] = [Elr(ﬁ]? +a Epr(H” !

and
b (8) = —%I""P*"L;,r_,- — ;W{H]“I"rﬂ,-r(fi‘], I1sr<p, .17

satisfies condition {2.16).

Hemark . The margins of error in equations (2.4), {2.13) and also in the
approximations for the posterior characteristic functions used in Appendix A are
at most of the order O({n~*?); see theorem 2,1 in JTohnson (1970), The same holds
for the frequentist approximations {2.5) and {2.14) as well under appropriate
Edgeworth assumptions {see Bhattacharya and Ghosh (1978}). In fact, if we work
under the assumptions of Johnson (1970} (with X = 3 in his notation) together with
suitable Edgeworth assumptions, then it should be possible to show that these
errors are of the order O(n~?%); see Barndorff-Nielsen and Hall {1988).

Remark 2. The solutions lor & (8} and &.{#), as shown in equations {2.8) and
{2.17) respectively, can be interpreted in terms of the first-order biases of estimators
given by

{a) the maximum Iikelihood estimator,
{b} the posterior mean of & under w( } and
{c) the posterior mode of # under w( ],

Denoting the first-order biases of these estimators by n ! 3,{8), i = 1, 2, 3 respec-
tively, these solutions can be expressed as

d.(8) = § B2 — J(0) + {2/ (p + 2)}{B:(0) — 5:(6)}, (2.18)
b (8) = 1 5:(8) — B1(6).

Remark 3. To make a choice between rival solutions of equation (2.7) or (2.186),
we propose a principle of minimal perturbation which seems to be sensible from
a Bayesian point of view. This is discussed with reference to equation (2.16). Thus,
given w{ }, we should first check whether b (8 = 0 satisfies equation (2.16). If
not, then using f = f(#) as a Riemannian metric a sclution with a smaller value of

] (6,(0)) {@)b.(6)) n(6)do
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will be preferred to another with a larger value of the same quantity. For p > 1,
it is difficult to characterize all the solutions of equation (2.16) and we suggest the
use of a solution which at least satisfies

j (B.,(0)) KO (€)) #(8)d8 < c. {2.19)

3. EXAMPLES AND DISCUSSION

31. Exgmple 1

Congsider the multiparameter location model with £ (x; #) of the form fix; ) =
At =6, o, X~ 8,), where 8= (61, ..., G,)'e #° and x = (¥, ..,
x#y Here f{:}l‘ 1<i, 4,5 g p, 4, T4, L, ; and L, are all constants, independent
of 6, provided that they exist. Hence, it T{@ = Const&nt, then &.{ =0 and
b (6} = 0 satisfy equations (2.7) and (2.16) respectively, i.e. no perturbation is
required at all to achieve our aim with ellipsoidal and HPL regions. However, this
does not happen onder a p-variate normal prior but then, by equations (2.17) and
(2.8), both the solutions #,(8) and d,(#) are linear in § and satisfy respectively
condition {2.19) and the analogous condition for &,{#). In fact, most of the
location models arising in practice {e.g. the multivariate normal or Cauch:f location
models) are sufficiently symmetric to ensure that L, ;= L, =0,1 < i, /,5 < p. For
such models, equations (2.18) can be simplified further to d,(0) =-b.(8) =
’.61{9] = ’EJ{H} and, specifically, under a p-variate normal prior w:th mean
vector u an_d a positive definite dispersion matrix £, equations (2.8) and (2.17) yield
d (8) = =B, (6) = 32 ~'(F — p).

1.2. Example 2
Consider the location-scale model with f{x; &) of the form f{x; @) =
7' M (x = 8/}, with 8, > 0 and &, ¢ . Here p = 2 and, for each J, jand s,
I; is proportional to 8% whereas L; and Ly are proportional to #; ? provided
that they exist. Hence the 50111!;10[15 shnwn 111 equations {2.8) and (2.17) are of
the forms

a0} = 1,8 + 3 Ir{f?} ‘618" D;w(8),

5o} = 7260, — 3 7(0) 83" D, w(6),

where I™! = (81g") and g", 7|, and 7, are constants {f, r = 1, 2). These solutions
satisfy condition {2.19) and the analogous condition for ,{6'] under commonly
used priors like that given by the product of a gamma density in #; and a univar-
iate normal density in &;.

Combining our techniques with those in Mukerjee and Dey (1993), the present
results can, in principle, be extended to models involving nuisance parameters. This
is because then the marginal posterior density of A'V = A1 (g11) = n'2(g'" -
E?*”} where 8" = (#,, ..., 8,)" is the parameter of interest (1 < g < p) and
#V is the maximum likelihood estimator of #, is expressible in a | form similar
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to eguation (1.1a). For example, analogously to equation (2.1), we may consider
a perturbed ellipsoidal region

10 (NG — i Y2 (B (CMY KRN — 24 (0)) € Aka, 7, X,

where C! is the principal submatrix of ! given by its first g rows and columns
and d,(8) = (d (), ..., d,(0)), the functional form of d,(#) being inde-
pendent of 1 (1 < 7 £ g). After considerable algebra, it can be shown that to meet
the twin objectives regarding correct posterior and frequentist coverage, up to
o(n1y, d,(#) must satisfy the partial differential equation

MDD, (6 + 2e,D.D,7(8) + eye, DD, w6} — n(@XD,DI + 2D,D e, J¢
+ D, Deqe 00 + DM x(6} + DM e, w{(6) + D JYQ,, n(6)
+ +{1 + (g + 2) \* Y DI By, w(8) + ﬂ,,fill Be,w(0)}

— 2{D;d, () 7(F) + D,d(B)e, m(E)} = 0, (3.1}
where w” is the upper e-point of a central y -variate with g degrees of freedom,
I = JUps 4 Prps 4 pspe,

M} = 0ulLjun + L€y,
Qin = GuulLyyy + 2L 8yr; + Loy 201800 1),
By, = L, + 3L;.e, + 3L e ey + Loy eyeqe,

and the implicit sums range over 1 to g for i, §, rand s and over g + 1 to p for
w, v, " and v”. [n the above, with the submatrix of F = {8} given by its last P-4
rows partitioned as qun {3} where [, is square of order p f, o, is the
{w, 0)th element of Im, and e, ig the (v, f)th element of Im,fﬂ., It iz not
difficult to see that equation (3.1) is in agreement with equations (2.6} and {2.7).
To illustrate an application of equation (3.1), we consider the univariate normal
or Canchy location-scale model where the scale parameter #, is of interest and
the location parameier &, is the nuisance parameter. Then g =1, d.(?) is a
sealar and it can be shown that equation (3.1) admits a solution of the form
d.(8) =30, + ;0% {r(@))}'D, v{8), where y, and y, are suitable constants.
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APPENDIX A: PROOFS OF CERTAIN RELATIONSHIPS

A.l. Proofs of Equations (2.4) and (2. 13}
Let

W {m, X, W)} = *{x, X, KO} + 2n~ L b (D7, /7.

From equations {1.1} it can be shown that the approximate posterior characteristic functions
of (h—n""2d () Clh — n~ " d,(#)) and W**{x, X, h(#)}, under ={ ), are
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z
(- 25)-”'1[1 + n-‘[ SIFmI(1 - 28 + Fi(l - 251-3” +oln™y (A
=t

and
(1 =252 1+ 2~ "{(1 - 28)" = 1}RM] + o(n™!) (A.2)

respectively, where £ = [——1}”%*, F{m}y (i =10, 1, 2) and F; are as in equations {2.2) and
F{x) is as in the context of equation (2.12); see Ghosh and Mukerjee {1993) for more details
on similar results. Inversion of equations {A.1} and (A.2), which can be jostified as in
Chandra and Ghosh (1979), yvields equations (2.4) and {2.13}. Incidentally, equation [(A.2)
implies posterior Bartlett adjustability of #W** =, X, #{8)} (sce DiCiccio and Stern (1993})
and, in & sense, explains why equation (2.16) does not involve a.

A2, Proof of Eguation (2.5)

Proceeding as in Ghosh and Mukeriee {1993), we take an auxiliary prior %( ) satisfying
the reguiarity conditions in Bickel and Ghosh (1990}, section 2, with m = 3, which are slightly
stronger than those in Johnson (197)), and make Edgeworth assumptions as in Bicke! and
Ghosh (1990), p. 1078, Then, as in the derivation of equation {2.4), inverting the approx-
imate posterior characteristic function of (A = #7772 d_(8))' C(h - 72 d, (0)) under 7( )
and using equations (2.13-{2.3),

‘ |
PoeR e, m, X}|X}=1-a+ n'E[E (K3 — K, 4 sz H{G(m) = Ga(}
1 1 a {3
+ {Kz") — Ky, 1(32}}{5 Gi(7) — 5 Gim) — dodB) (%

-f_.)” ¥ on), (A.3)

T

where ¥ = 7(#) and r, = x.(¥), with 7 {8) =D . x{f}, 1l £r<p.

We now choose «{ ) such that 7 ) and its first-order partial derivatives vanish on
the boundaries of a rectangle containing & as an interior point. We then integrate
E P8R (o, v, X}| X}, which can be obtained from equations (1.1d) and {A.3) up
to o{n~ '), with respect to such a 7{ } and finslly allow ¥( ) to converge weakly to the
degenerate measure at £, After some simplification, this yields equation {2.5); see Ghosh
and Mukerjes {1991) for more details on this technique.

The proof of equation (2,14} is similar,
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