On the Empirical Bayes Approach
tothe Problem of Multiple Testing

Matgorzata Bngd;.m'- 21, Javanta K. Ghosh?, Aleksandra Ochman' and Surva T. Tokdar?

! tnsgime of Mathematios and Conguier Seience, Wirekow University of Teelmelogy, Wnelav, Peland
= Ihepretmeny of Stogsiies, Punlue Universry, Wesy Lafavene, IN, LLSA
"‘.l'k',lm.l!.'lra'.ll.' of Sraispes, Carnege Melen Cniverssilv, Piisburgh, FPA, USA

We discuss the Empirical Bayes approach to the problem of multiple testing and
compare it with a very popular frequentist method of Benjomini and Hochberg
aimed at controlling the falve discovery rate. Our main focus is the ‘sparse mixture’
case, when only a small proportion of tested hypotheses is expected to be false. The
specific parametric model we consider & motivated by the application to detecting
genes responsible for quantitative traits, but it can be used in a variety of other
applications. We define some Parametric Empirical Bayes procedures for multiple
testing and compare them with the Benjamini and Hochberg me thod using computer
simulations. We explain some similarities between these two approaches by placing
them within the same framework of threshold tests with estimated critical values.
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1. INTRODUCTION

ue o the recent development of technology, scientists and engineers can now collect and store

massive data sets. To analyze such data sets, many statistical hypotheses are often tested at once.

One of the most prominent examples of such multiple testing procedures is the analysis of genetic
microarrays, where the expression of thousands of genes is simultaneously quantified and the hypotheses
concerning the involvement of these genes in the investigated biological process are verified. The microarmay
analysis triggered the development of new statistical methods aimed at controlling some measures of emor
of multiple testing procedures (see, e.g. References' ). In the present paper, we will consider another
important example of multiple testing in statistical genetics, namely the problem of locating genes respon-
sible for cerain quantitative traits (quantitative trait loci (QTL)). Apart from widening the general biological
knowledge, QTL mapping is often used to detect genes influencing economically imporant trails in
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domesticated animals and industrial plants (see, e.g. References’™). In humans, QTL mapping is ofien
applied to locate genes responsible for the development of some medical conditions (see, e.g. Reference!”
as well as examples and references in Reference!'').

In order to locate QTLs, geneticists use molecular markers. These are pieces of DINA that exhibit variation
between individuals. Their charactenstics (i.e. genotypes) can be determined expenmentally. From the
statistical point of view, marker genotypes can be treated as qualitative explanatory variables. If a QTL is
located close (o a given marker, we expect 10 see an association between the marker genotype and the trait
value. In case when there are only two possible marker genotypes, this association can be measured using
the standard ¢ test. The number of markers used in typical genome scans for QTL usually reaches several
hundreds, so the number of tests performed is usually substantally smaller than in the case of microarmays.
However, similarly as in microarrays, usually only a very small proportion of tested markers corresponds
to real QTL.

In the current paper, similarly as in our previous work'?, we compare the frequentist and Bayesian
approach to the related multiple testing problem. Compared with Reference!?, we put more emphasis on
interpretations and explanations of the similanties and differences between the two approaches.

In the frequentist multiple testing, the main emphasis is put on designing efficient methods for adjusting
the significance level of individual tests so as the control of the familywise error rate (FWER) or the false
discovery rate (FDR) is obtained. Bayesian multiple testing procedures that usually aim at minimizing the
Bayesian risk based on a cerain loss function, do not require a specific adjustment for multiple testing.
Bayesian methods are very flexible and can be used in the situation when the cost of missing the true signal
is comparable or even larger than the cost of the false discovery.

The full Bayesian approach, based on minimizing the posteior Bayes risk, usually requires implementation
of some kind of Markov chain Monte Carlo (MCMC) algorithm and may be very much computatonally
involved. In our previous anicle', we investigated the performance of some parametric and non-parametric
Bayes procedures for multiple testing and demonstrated that in the parametne setting full Bayes procedures
can be closely approximated by simple and quick Empircal Bayes methods. We also demonstrated that
the Bayes multiple testing procedures compare favorably to the popular Benjamini and Hochberg (BH)
procedure.

According to our earlier research both BH and Empirical Bayes methods are superior to the well-known
Bonferroni multiple testing procedure, which tests each component hypothesis independently of others. The
reason for the superiority of the Bayes methods comes from modeling by the so-called mixture models.
Leaming about the common hyperparameters in the mixture model provides additional information on each
component test. This provides superior tests as in the Stein estimation through parmmetnc empirical Bayes
(PEB) methods (see Reference!?). In the present paper, we explore similarities of the performance of BH
and PEB methods for muliple testing. In particular we note that, similar to the considered PEB procedures,
the BH procedure is an example of a threshold test with estimated critical values, dependent on the overall
distribution of all test statistics. Compared to our earlier work we also define and investigate a new Empirical
Bayes procedure aimed at contmolling the positive false discovery rate (pFDR ).

The outline of the paper is as follows. In Section 2, we inroduce and interpret our statistical model. In
Section 3, we discuss different notions of error in multiple testing and compare Bayesian and frequentist
approach to this problem. In Section 4, we define the procedures considered in our study and discuss the
problem of non-identifiability of model parameters. Section 3 contains the results of the simulation study,
Section 6 gives the final conclusions and the Appendix contains some technical details on the computations
of the threshold for the BH procedure.

2. STATISTICAL MODEL

Consider the problem of QTL mapping. Let X; be the ¢ statistic measuring the association between the ith
marker and the trait. In typical QTL mapping experiments, the sample size exceeds 200, Therefore, usually



we may safely assume that the test statistics X; have normal distributions N (g, a7). We also assume that
Xi, 1 =i=m, are independent.

In a fully classical setup, w;'s are unknown constants, g, =0 corresponds o the null distribution and
descrbes the situation w hen the marker is not in the QTL neighborhood. In Bayesian and Empirical Bayesian
approach, we treat unknown p;’s as random variables and model them using some probability distribution.
In the context of QTL mapping it is often assumed that under the alternative hypothesis g ~ N(0, t7) (see.
e.g. Reference'®). This assumption is appropriate in the situation when the prior probabilities of a positive
and a negative QTL effect are the same and the QTL effects are comparable with each other. Under this
assumption, the non-null distribution of X; is N(0, #® + %), Additionally, we define a random indicator
variable 7;, which is equal to 1 if X; is generated by the non-null distribution (i.e. it represents the signal) or
(0 in the other case. If p = P{y; = 1) 1s the fracton of markers in the QTL's neighborhood, then the marginal
distribution of X; is the scale mixture of normals, namely,

Xi~(1— pIN(0, 6%) + pN(0, & + ) (1)
For each i, we test whether X; has a null or non-null distribution, 1.e.

ity = 0 wvs Hy: =1 (2)

In practical applications, parameters p and t are wvsually unknown. As far as o is concerned we will
consider two cases: when o= 1 or when it is unknown. Large sample sizes used in typical genome scans
allow one to assume that under the null hypothesis the distribution of the r statistic is approximately N (0, 1).
The case of unknown o comresponds to the situation when the purpose of the study is 1o distinguish strong
QTL from the background of many genes with very small effects, called polygenes. This situation often
oceurs in practice, since the majority of complex traits are influenced by a very large number of polygenes.
In this case, o~ takes into account both the varability of the error term and the unknown variability of the
distribution of polygenic effects and needs to be estimated (or integrated out).

In the mixture model (1), a special role is played by the threshold tests of the form: reject Hy iff | X; 1*-:-:,
where ¢ is the same threshold for all i, This ¢ will typically depend on the (hyper) pﬂ.ramctcn P, u- £
of the mixture model, hence there is a need to estimate it. Typically, one would estimate p, ¢” and > and
choose a plug in estimate of g, &, 7). We may think of this as an adaptive threshold test. PEB tests in this
paper are directly of this form. Moreover, we observe that the BH procedure can also be considered as an
adaptive threshold test.

Remark . One of the aims of QTL mapping is a precise location of ‘strong’ genes influencing a given trait.
In this situation, the number of interesting genes might be very small, usually not exceeding 10. To distinguish
such genes from the background noise their effects j need o be comparable or Iﬂrger than most of the noise
terms. Note that the expected value of the maximum of m independent N (0, o) variables is appnmma[nl;,
equal 1o cr.,;'? log m. Therefore, in our simulations, reported in next sections, we use © = a7/ 2 logm.

Remark 2. The assumption of independence of X;'s can be safely used when the investigated markers are
distant from each other. In the case when markers are tightly spaced, test statistics at neighboring markers
may be strongly correlated. Bayesian approach to multiple testing is flexible enough to take the dependency
between the test statistics into account (see e.g. Reference'?). Developing appropriate, more sophisticated
methods of QTL data analysis is the topic of our current research.

3. BAYESIAN AND FREQUENTIST APPROACH TO MULTIPLE TESTING

Following the notation of Reference!, Table [ defines varables describing counts of possible outcomes of
the multiple testing procedure.
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Table 1. Counts of possible outcomes of m hy pothesis tests

Acoept null Reject null Total
MNull true U Y i
Alternative true T 8 |
W 4 L

The classical measure of error of the multiple testing procedure is the familywise error rate,
FWER = P(V =0). One of the most popular multiple testing procedures providing the control of FWER at
the level z is the Bonferroni correction, which suggesis testing each of the investigated hypotheses at the
significance level =/ m. The control of FWER is also provided by a stepwise multiple testing procedure of
Holm'®, which is uniformly more powerful than the Bonferroni correction.

FWER is a very stringent measure of error. In many practical situations, the costs of not detecting the
true signal may be larger than the cost of the false positive. Therefore, scientists are miterested 10 statistical
procedures that allow for some false discoveres, as long as they consist only a small proportion of all
discoveries, Seeger!” elaborates on the idea of Eklund (unpublished seminar papers) and discusses a stepwise
multiple testing procedure aimed at controlling the proportion of false discoverdes among all discoveries.
The same stepwise multiple testing procedure was later discovered by Simes'® and has been proved 1o
control FWER in a weak sense (when all hypothesis are true). The notion of proportion of false discoveries
appeared again in the seminal paper of Sorié¢!. Following this paper. Benjamini and Hochberg! formally
defined the false discovery rate as FOR = E(V/R), where V /R =0if R =0. Benjamini and Hochberg also
proved that the multiple testing procedure of Seeger and Simes controls FDR at a desired level, for every
combination of true and false hypotheses. The Benjamini and Hochberg article came at about the same tme
as microarrays and triggered a great interest in FDR controlling methods. As a result, Seeger's procedure is
currently known as the Benjamini and Hochberg ( BH) procedure.

Let Py =Pz -+ - = Py be the ordered p-values of m tests. Let

k= max Ii : Pi:‘]EE} (3

BH rejects all hypotheses for which the comesponding p-values are smaller than Py

Remark 3. In Reference™, it is proved that under the classical setup and when test statistics are continuous
and independent, FDR of BH is equal 1o

FDR = E;[(V/ R} (R=0)] = amg/m (4)

where [{£=(0) is the indicator of the set £=0and fi=(g,.....u,). Equation (4) shows that BH is more
conservative than necessary to control FDR at the level 2. Some modifications of BH, based on different
methods of estimating my, are discussed in References'>*!

Asympiotic results proved in Reference™ show that for large values of m BH works like a procedure with
a fixed threshold value. The threshold for | X;| depends on 2 and p as well as on the null and the alternative
distributions of the test statistics according to the formula

Po(|Xi|>x) {1}
(1 — PR (1Xi|=x) + pPa(|X|=x)

cowip. o, T, x)=inf {x: (5)

where Py and P, are the probabilities corresponding o the null N0, #7) and alternative N{(0, && + 77)
distributions, respectively. As shown in Reference” BH is actually equivalent to using threshold (5), with
the denominator estimated by 1 — Fy, (x), where Fy, is the empirical distribution function of | X;), 1=i <m.
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Remark 4. Note that for very small p, the significant effects will usually be situated only in a tail of the
empircal distribution. Since the relative emror of the approximation of the cumulative distribution function
by the empincal distribution function is large in the tails of the distribution, we expect that the asy mpiotic
threshold (3) would not be accurate for very small p's. Our extensive simulations show that threshold (3)
works well when pm= 10, On the other hand, when p =0 the threshold of BH can be well approximated
by the threshold of the Bonferroni correction. Our simulation study showed that in the intermediate range
of pm, BH can be well approximated by the test procedure with the threshold value obtained by a linear
interpolation between the asymptotic threshold (5) and the threshold of the Bonferroni correction (see the
Appendix for more details on this approximation).

Remark 5. A striking result of Reference™ ensures that the BH procedure is an adaptive minimax rule for
many cases of sparse signals with small p, large m and mp — oo, the sort of situation described in this
paper. However, in Reference™ it is shown that BH fails to be optimal in the extremely sparse case, when
po=1/m, so mp does not tend w infinity. In general, ie. for non-sparse problems, the decision theoretic
implications of FOR controlling multiple testing procedures are unclear.

There is a good discussion of FDR and other similar measures in References'?. In the case of mixture
model, Storey? notes that several alternatives to FDR reduce to Storey's pFDR which is defined as
E(V/R|R=0). In Reference*, it is shown that pFDR equals to BFDR (a sort of Bayesian FDR), defined
as BFDR = P{Hy 1s rue | Hy s rejected). For a threshold test with a critical value ¢ this can be readily
evaluated as

1 — p)Py(|X|=c
PFDR(c, p, o, 7) = P lulia o) (6)
(1 —pAlX]|=c) + pPa(|X]|=c)

In case of our testing problem (2) pFDR can be controlled at any given level « if only p=0. The cntical

values of the corresponding test cppl p, 7. 7, 2) can be computed numerically according to the formula

cprlp. ot a)=infle  pFDR(x, p. o, 1)<} (7)

Figure lia) demonstrates criical values of the pFDR controlling rule when o= 1, 1= JE log({200) and
pel0 0.2]

Remark 6. A companson of (6) and (3) demonstrates that under the mixre model BH asymptotically
controls pFDR at the level (1 — p)z However, as illustrated by our simulation study, in case of very small
. pFDR of BH might be much larger than .

Following Reference %, we will now consider the muliiple testing problem from the perspective of decision
theory. Table 11 defines the specific matnx of losses for making the wrong decision.

Let us denote by 1 and t2 the probability of the type [ and type Il errors of a single test. The integrated
Bayes risk related to the above matnx of losses is given by the following equation:

BRg, 5, = do(l — pity +dapiz (8)
For our model (1) the Bayes rule, i.e. the test that minimizes this risk, rejects the null hypothesis if

(X)) " (1—pldo
f.l'-.'u{XJ']' pia

(9

where ¢, and ¢, are density functions of N(0, a* + %) and N(0, ¢%). Simplifying (9), the null hypothesis
is rejected if

| Xil=calp, o, 1, 2) (109
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Figure 1. Characteristics of multiple testing procedures: (a) critical values;
(b} loss ratio; (c) pFDR: (d) power;, and (e) MP
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Table 11. Matrix of losses

."'l.CCE'PT H,:]J' R.E'jt‘Ct H,:]J'
'HU.I' e L] r}i:]
Hyj true a4 0

where

> ¥ ¥ | 4

2 . o+ T . Fiis

C';{P,U,r,}_}:z“ﬂ—_.rjlng Fl II1+H_-,,—P fll}
o ¥R

with 4= fi:]ffi_il.

We refer to 2 as the loss ratio. The bigger the value of 4 the greater the importance given to type | error.
When dy=d.4=1 then the Bayes risk (8) is equal to the misclassification probability, MP. We call the
comresponding Bayesian rule a Baves oracle and compare other tests to this oracle.

Equation (1 1) allows to compute 4 asa function of ¢, p, o and t for any test with a fixed threshold value ¢.
Figure 1 contains graphs epresenting the catical values, loss ratios, pFDR, power and misclassification
probabilities of all considered procedures. The purpose of this figure is o illustrate the potential of the
Bayes oracle and pFDR controlling rule in the most advantageous situation, when all the parameters of the
mixture distribution (1) are known.

Figure 1 demonstrates several interesting phenomena, which we briefly discuss. For the Bayes oracle we
chose 4 =1, which corresponds to assigning the same importance to type 1 and type 1 errors. Interestingly,
the loss mto for pFDR controlling rule, reported in Figure 1(b), is very stable and in the range of p=0.2 it
takes values between 2.1 and 2.5, The loss ratio for BH vades from 0 for p =010 3.2 for p=0.2 and in the
range of p[0.05, 0.2] it is rather stable and can be well described as a linear function of p. The largest
variability of & is observed for the Bonferroni correction, which for large p assigns much larger weight
to the type | error than to the type 1l error. Unless p is very small Bonferroni correction is also the most
conservative and has the largest misclassification probability (MP).

Figure 1({e) shows that in the most interesting range of p=0.2 MPs of Bayes oracle, BH and pFDR
controlling rule are very similar. This suggests that the MP, which is a weighted sum of type | and type
Il errors, is not very sensitive o the choice of 4. This is, however, not true about pFDR, which depends
on the ratio of type | and type 11 errors. The bigger value of 25 2.3 for pFDR contolling rule leads to
decrease in pFDR by half when compared with the oracle (see Figure Lic)). As expected the pFDR of BH
15 substantially larger than 0.05 when p<0.02. On the other hand, for p e [0.04, 0.2] BH is only slightly
more conservative than pFDR controlling rule. Bayes oracle has the largest pFDR and the largest power. As
expected, type | and type Il errors balance in such a way that the MP of the Bayes oracle is smaller than of
any other method.

4. EMPIRICAL BAYES PROCEDURES

The namral way of applying the Bayes oracle (10) or pFDR controlling rule (7) in the situation when
parameters of (1) are unknown is © use some consistent estimates and plug them into (11) and (7). In
particular, MLE estimators could be considered. However, the resulis of extensive computer simulations
repored in Reference'® show that the corresponding Empirical Bayes rules perdorm very poorly in the most
interesting range of very small values of p. In Reference'”, it is argued that this poor behavior is the result
of the problem with identifiability of model parameters. The mixture densities with p very close 1o 0 or 1

are very similar to the nommal density and very difficult to distinguish using only the likelihood function.
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Figure 2. Similarity of different mixture models

An example of this phenomenon is illustrated in Figure 2, which shows that the density function of the
mixture distribution (1) with p=0.01, s =1 and 7 = 3.26 is very similar to the density with p=1, =1
and t=0.326. Note that while these models seem to be equally plausible for describing the data they result
in very different testing procedures. The second model implies that all the hypotheses are false and should
be rejected, while the first model states that 99% of hypotheses are true and one should be very careful with
rejections.

Bayesian statistics allows us to solve problems with identifiability of model parameters by utilizing the
prior information. In Reference!”, a suitable method for estimation of model parameters was proposed. The
method uses the prior knowledge on the expected number of QTL. In Reference'? a corresponding PEB
version of the oracle, PEB2, was proposed and investigated. We now review the estimation technique and
define PEB2 as well as related versions of the pFDR controlling rmile and the BH procedure.

Our method of estimation of model parameters uses the subjective, informative prior on p proposed in
Reference®, with the density

fip) =gl — pf-! (12)

To adjust to the sparsity typical for QTL mapping experiments, we use ff =22.76. Then, the median of (12)
is equal to 0.03, which for m = 200 coresponds 1o six signals on average.
Let

LiXy, ..., Xumlp.t.0) = ]_[ {P¢'_.1{XJ'} + (11— P}f.b:]{XJ']'}'

i=1

where ¢ , is a density of N(0, 2% + &) and ¢, is a density of N(0, o7).

For each given p, we estimate 7( p) and o{p) using the second and the fourth moment of the mixture
distribution. The resulting estimates are denoted by T(p) and &(p). We observed that using the fourth
momenl makes our procedure sensitive to the change in the tail of the mixture distribution and in a very
sparse mixture case gives better results than the maximum likelihood method.
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Then, the estimate of p is obtained by maximizing
log LiXy, ..., Xmlp. 2(p).a(p)) — (f — 1) log(l — p) (13)

and can be interpreted as a mode of the ‘postenor’ density of p. Let us denote this estimate by p.

The Empincal Bayes version of Bayesian oracle, PEB2, is obtained by plugging £ = 1 and the estimates p,
() and &(4) into the formula for the crtical value of the Bayes oracle (11). Similarly, the Empincal Bayes
version of pFDR controlling rule, pFDR2 | is obtained by plugging 2= 0.05 and the parameter estimates
into the formula for the pFDR critical values (7). We also use () to compute p-values needed for the BH
procedure.

When o =1 is known, the PEB2 and pFDR2 procedures are constructed accordingly. In that case 7{ p) is
estimated using the fourth moment of the mixture distribution.

Remark 4. 1n the full Bayes approach the nuisance parameters, like p, o and 7, are integrated out with respect
o a certain prior distribution. This typically requires an implementation of some numerical or stochastic
methods o compute the related integrals. The full Bayes analysis of our testing problem was proposed
and investigated in Reference®. This approach allows us to obiain posterior distributions of parameters of
interest, gy, and so gives more information than our Empirical Bayes methods. However, the results of our
simulations reporied in Reference'” show that in terms of the classifying decisions our relatively simple
methods pedform very similarly to the full Bayes approach.

5. RESULTS

To investigate the properties of our testing rules, we pedformed computer simulations. We considered the
most interesting range of p=<02. Foreach p, we simulated 10000 replicates of the random vector, consisting
of m =200 test statistics generated from the mixture distribution (1), with 0 =1 and 7= /2 log(200) = 3.26.
We used these replicates to estimate pFDR and the ‘efficiency” of all testing procedures as well as o compute
some characteristics of the distribution of the estimates of model parameters. The ‘efficiency” of a testing
procedure is defined with respect to the omacle (9 as gff = MP of the oracle /MP of a given procedure. The
simulation results are presented in Figures 3 and 4.

Figures 3(a) and 4ia) show that the strong prior assumption on p allows for an accurate estimation of
p in the most difficult cases of p=002 and leads w some underestimation of this parameter for larger p.
Interestingly, the bias of the estimate of p is smaller in case when 7 is unknown. However, the standard
deviation of the estimate of p and the corresponding mean square error in case when o is unknown are
substantially larger than when o is known. The estimate of t 15 almost unbiased in the entire range of
pe[0.05,0.2] (see Figures 3(b) and 4(b})). Some bias and a large standard deviation of the estimate of
t for p<0.05 result from setting 7 =0 whenever p= (), which often occurs when the true p s close (o
(0. Due to a relatively good performance of the estimation technique PEB2 pedorms very well and in the
range of p=0.2 its efficiency is at the level close 1w 99% when o is known (Figure 3(c)) and to 95% when
7 is unknown (Figure 4ic)). pFDR seems o be more sensitive to the error of the estimation of p than
the MP and rather difficult to control precisely. As shown in Figures 3(d) and 4(d), for p =0.005 pFDR
of pFDR2 is close to 0.09. This is, however, still much below the corresponding value for BH. When o
is known pFDR2 keeps pFDR at the level close 1o 0.04 for 0.02<p=02. When 7 is unknown pFDR2
is slightly more conservative and keeps pFDR at the level close to 0.03. As expected, for very small p
( p=0.02) pFDR of BH substantially exceeds 00,05, However when p £ [0.04, 0.2] BH performs very similar
to pFDR2 and, in case when o is known, its pFDR is even closer to the nominal value of 0.05. Interestingly,
also PEB2 has very good properties in tenms of pFDR, which keeps it at the level close to 0.0 for
all 0.03<p<02.

It is interesting 10 observe that for p=<0.03 the efficiencies of pFDR2 and BH are slightly larger than the
comresponding efficiency of PEB2. When p == 0.005 BH is almost optimal in terms of MP, with *efficiency’
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Figure 3. Characteristics of multiple testing procedures when « is known: (a) distribution of estimates of p; (b) distribution
of estimates of 1 (c) efficiency: and (d) pFDR

close to 1. However, this characterstic of BH systematically decreases with an increase of p, and at p=0.211
falls to 95% when o is known and 1o 88% when o is unknown. When p=0.03, PEB2 performs systematically

much better than BH and pFDR2 in termms of MP.

6. CONCLUSIONS

In this paper, we present the Empirical Bayes approach to muliple esting and compare some Empirical
Bayes procedures 1o the well-known BH procedure. The main advantage of the presented Bayesian approach
relies on the possibility of taking into account real costs of missing the tue signal or making the false
discovery. Bayesian methods also allow us 0 use the pdor knowledge on the number of signals, which
helps o solve the problem of non-identifiability of pammeters of the mixture distribution. The resulis of
our simulation smdy demonstrate good properties of the proposed methods. Particularly interesting is a
very good pedformance of the Bayes classifier PEB2 both in terms of the MP and pFDR. Our simulations
also demonstrate a very good behavior of the BH procedure, which in the considered range of p turns
outl 1o be very similar to the PEB procedure aimed at controlling pFDR. We explain this phenomenon
by observing that the BH procedure is also an example of a threshold test with estimated critical values,

dependent on the values of all test siatistics. Our observations go along the discussion in Reference™,
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Figure 4. Characteristics of multiple testing procedures when & is unknown: (a) distribution of estimates
of g (b) distribution of estimates of t; (c) efficiency; and (d)} pFDR

where some similarities between BH and the Empirical Bayes approach to multiple testing were pointed
out. Another interesting phenomenon observed in the present paper is a relatively good performance of
pFDR controlling rules in terms of MP. This can be explained by the stable ratios of losses for these
procedures, which in the considered range of p are not much different than the loss ratio of a Bayes
oracle.

Our simple Empirical Bayes methods can be seen as an approximation to the full Bayes approach,
presented in Reference®. Their simplicity allows us to perform large-scale simulation studies. However, the
full Bayes approach has the advantage of providing the posterior distabutions for the parameters of interest,
which allows for a more detailed analysis of the investigated problem.

The simulations presented in this paper were performed under the assumed model (1). Due o large
sample sizes used in QTL mapping, the assumption of normality of X; is often satisfied. According to our
preliminary simulations, partially reported in Reference'?, in the sparse mixiure case our PEB methods are
robust to the deviations from the assumption of normality of p;. However, a detailed analysis of this problem
still needs o be performed. In our simulation study, we did not consider the simation when the statistics
X; are correlated. We believe that weak violations of independence will not lead w strong influence on
the outcome of our procedures. The detailed analysis of this problem as well as the development of PEB
methods that would take int account the correlation stucture typical for QTL mapping ex periments with
densely spaced markers is the topic of our current research.
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APPENDIX. INTERPOLATED CRITICAL VALUES FOR BH PROCEDURE

For o= 1,m =200 and 2 =0.035 the threshold of the Bonferron procedure is equal to
0.05 :
og Z{D_l (1 — ﬁ) 223.6623

where @ is the cdf of N0, 1).

According to our simulations, for m = 200 the asymptotic entical value for BH provided in (5) works well
when p = 005, However, it is easy 1o see that when p— 0 than cgw — o0, This contradicts the fact that
BH is always more liberal than Bonferroni correction. According to our simulations, when p e [0, 0L05],
BH can be well approximated by the threshold est with the critical value obtained by a linear interpolation
between g and cow(0.05, 0, T, 2).

For =1, v =/2log(200) and o= 005, cow(0.05, 7, 7, ) 2= 3.3326. Thus for values of pe [0, 0.05],
we approximate the threshold of BH by

3.6623(0.05 — p) + 3.3326p
SR 005

The graph of these catical values is provided in Figure 1{a).
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