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SUMMARY

Genomic studies and data have revolutionized genetic studies. Two kinds of studies, namely, microarrays for gene
expression and SNP's for possible association with various diseases, have become very popular. We survey briefly both of
these areas, highlighting some recent theoretical and methodological work in Statistics.
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1. INTRODUCTION

This review is a tribute to Professor Prem Narain
for his illustrous career as one of India’s leading
geneticists and Director of IASRIL. In view of Professor
Prem Narain’s interest in Genetics and important
current trends in Statistics and our own work, we focus
on inference relating to Microarrays and SNP’s, both
of which have attracted a lot of interest of geneticists
in recent years.

The microarray may be modeled as consisting of
m independent normal mixtures, the model for the
expression of the i-th gene being,

X~ (1= pN(O, &)+ pNt, &) (1)

where p is the probability that the gene was expressed
(corresponding to the i-th alternative hypothesis) and
(1-p) is the probability that the gene is not expressed
(corresponding to the i-th null hypothesis H). We
remind the reader that expression is essentialy measured
by the amount of mRNA produced in the cell with that
gene. Typically p is small while m is large and, to be
detectable, the magnitude of the expressed genes. often
referred to as signals, has to be rather large. Further
simplication occurs if we assume under H |, g, itself is
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also normal N(0, ) where 7~ is typically rather large
and a measure of the magnitude of 4. Such models are
regarded as Parametric Empirical Bayes (PEB) and
have become quite popular, see for example Bogdan
et al. (2011) for references to papers based on PEB
models. Nonparametric Empirical Bayes models have
also been introduced by Efron (2008) but identifiability
issues need to be settled. A reasonably complete theory
of inference based on PEB and the Benjamini Hochberg
multiple test is now available. We will survey this
briefly in Section 2.

We now turn to SNP’s. We quote from (Thain
et al. 2004) single nucleotide polymorphisms are
“single DNA base alterations between human
individuals”, which *are being analysed” as part of
association studies between genes (or markers) and
diseases.

The statistical problem for identifving significant
SNP’s from among a huge number, easily a few
thousands, is like choosing a few markers in
Quantitative Trait Loci (QTL) studies from among
many, see for example, Bogdan et al. (2004). This is a
regression problem involving variable selection. If the
design matrix were orthogonal, so that the least squares
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estimates based on the full model are basically
independent of model (i.e.. of all models that include
the particular variable under study), the methods that
have been successful for microarrays can be used.
Without orthogonality, the high dimensional regression
problem is much more difficult. Theoretical study has
just begun. We discuss this a bit below.

We illustrate the difficulties by explaining why the
theory of optimality of the Benjamini-Hochberg rule
will not apply at all. Without independence the notion
of the Baves oracle of Bogdan et al. (2011) is not
available. Even more fundamentally, without
independence, the Benjamini-Hochberg multiple test
isn’t easy to define, nor is the theorem of Benjamini
and Hochberg (1995) applicable. On the other hand in
new work on multiple regression, Bickel er al. (2009)
study optimality of popular procedures like Lasso or its
relatively recent competitor, the Dantzig selector of
Candes and Tao (2007), by studying suitable oracle
attaining properties in the sparse case. Oracles are lower
bounds to measure of risk of a decision rule.

In the case of SNP’s the present study owes a lot
to Frommlet et al. (2010, to appear) for several basic
ideas. Like them we study the following variable
selection procedures for a simulated example, namely
mBIC of Bogdan et al. (2004, 2008) and Lasso due to
Tibshirani (1996).

However, we also study Lasso with a different
penalty that is suggested in Bickel et al. (2009) as
suitable in the context of their Oracle, ie., a lower
bound that Lasso attains in the sparse case.

Finally we evaluate each procedure by its
predictive performance as given by the ratio of Residual
Sum of Squares and Total Sum of Squares from the
ANOVA table and the accuracy of estimating the
number of SNP’s in the data. Associating significant s
and true non-zero s which represent significant SNP’s
is much more tricky and requires some form of
bootstrap sampling and clustering of covariates. It
appears one can associate significant SNP's only with
such clusters of covariates, which are our proxy clusters
of markers in real experiments. Our evalution of Lasso
and mBIC is quite different from Frommlet et al.
(2010). We are indebted to Frommlet et al. (2010) for
all these insights about SNP’s and in the way we
generate simulated data. We strongly advise interested
readers to read their paper carefully. Two additional

remarks explaining possible extensions are collected
together in Section 4. They were in response to several
constructive suggestions and comments of the editor
and referee.

2. INFERENCE ABOUT MICROARRAYS

We discuss and survey very briefly the rich, current
literature on this topic from the point of view of three
paradigms, classical statistics, PEB and Full Bayes.

The most important multiple test that is often
applied to microarrays is the BH test based on the
mixture model. X;’s are independent My, a) ;=0
under H; and g, # 0 under H,;, i = 1..., m. The error
variance o may be estimated well and hence assumed
known if there are replicates for each i. Often the
normality assumption is due to normalizing
transformation of a t-statistics, in which case also the
variance is assumed known approximately. Some basic
references are given in Bogdan er al. (2011).

Let p, be the P-value for the test that rejects H; if

| X;| is large, ie.
pi = By, {| X;| > observed value of |X][} (2)
Order p’s as p;y) < Py < - < Py Suppose we
wish to control False Discovery Rate (FDR), i.e.

V , ;

wrongly rejected (i.e. true but rejected). R = total
number of H,'s rejected.

Fix a small o, we want

v
max E, | —1 = 3
P 'U{R R:-ﬂ] (3)

Benjamini and Hochberg (1995) proved that their
multiple test described below satisfies the above
condition. This is a remarkable theorem. A relatively
simple proof is given in Ewens and Grant (2005, pp
460-462).

We now describe the BH test. Order P-values as
Py <« < Py Let i be the last i such that

g
Pa S — o (4)
m

(i.e. after iy, the inequality is violated ¥V i=i,+ 1, ..., m).

Think of (4) as indicating p,;, is significantly small.
The py;; is the biggest significant value.
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The BH test rejects all the null hypotheses
corresponding o gy, oo Py -

This is the famous Benjamini-Hochberg (BH)
multiple test which attains the classical requirement. It
is known that the test was proposed earlier by others
(Seeger 1968 and Simes 1986) but the test was
thoroughly discussed and made popular by Benjamini
and Hochberg. It was they who proved the beautiful
result.

This is a classical multiple test and valid under the
high dimensional classical model. We next turn to the
PEB model in which g's are themselves iid with
distribution

(1= p)d, +pNO, 7) )
where 4, is the probability distribution which has total
mass at zero (indicating H,, is true). The second
component gives the conditional distribution of 4, under
H,,. namely M0, 7).

The original high-dimensional problem has now
reduced to a two-dimensional problem with p and T
as unknown parameters. In the PEB approach p and 7
are estimated from the full data (Y|, .. ., X). and p
is treated as the data based prior probability of Hy,,
One can use the Bayes test. For details see Bogdan
et al. (2008). Since p — 0 as m — ==, estimating p well
isn’t easy, see the discussion of this in Bogdan et al.
(2008) and Scott and Berger (2010). In the full Bayes
approach, p and 7 are not estimated from data but
given a hierarchical prior distribution. This is discussed
in Scott and Berger (2006, 2010).

Bogdan et al. (2011) provide a theoretical
justification of the BH test in the PEB model. It is
shown in Bogdan et al. (2011) that the BH test behaves
like the PEB test and asymptotically does as well as the
lower bound to misclassification probabil ‘;[1?' provided
by the full Baves test with known p and 7. It is also
shown there unless 7~ is sufficiently large, as in
Assumption A in Bogdan et al. (2011), even the best
test is quite poor. In high dimensional analysis good
inference is possible only under two strong
assumptions, sparsity of signal, i.e. small p, and
sufficiently large signal, ie. large 7, and these two have
to be related as in the Assumption A of Bogdan ef al.
(2011).

To sum up there is a well developed, useful theory
in each paradigm for inference on microarray.

3. INFERENCE ABOUT SNP's
31 Model assumptions

The SNP based Genome Wise Association Study
(GWAS), can be easily seen as a multiple linear
regression problem with variable selection as the key
issue. Ideally each SNP corresponds to a covariate, so
identifying SNP’s is equivalent to identifying
signifficant regression coefficients.

Actually, the problem is much more delicate
because of correlation between covariates. We discuss
the more realistic version towards the end of this paper.
Let us treat the quantitative trait of » observations as

the response varible y; : i € {1, ..., n} and the
corresponding genotype of person i and SNP j as x; €
-1,0,1}: 1efl,...n}ljefl, ... pl. Now if the

subset j* of the p SNPs, having k << p SNPs 1 £ j
<...< j, <p,are causal for the trait y, then we can
assume the additive true model as
L] k %
M;:y= ;bﬁ-_rm- + & when £~ N0, &)  (6)
=1
But we can also create 2" similar models using all
7 SNPs. A model not having any SNP will be denoted
as M, or the null model and all other models will be
denoted by M, where is an ordered subset of elements
of the set {1, ..., p}. Following the standard
conventions, we write ¢ = g, for the number of SNPs
in a model. We define for each model M, the matrix X/
containing the genotype of the SNPs in the model. Then
the model becomes
M:y=X g +¢ (7)

Now as in multiple regression problem with
variable selection, we want to choose the best model
containing all the causal variables here. So we will
discuss some variable selection methods in the next
subsection under sparsity assumption, as our kK << p.

3.2 Lasso, Lars and Stepwise selection

For variable selection in linear regression problems
different skrinkage estimators like ridge regression are
very common in use. Following the idea of shrinkage
as in ridge regression, the Lasso method introduced by
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Tibshirani ( 1996), tries to minimize the least square
error of the regression with an upperbound on the L,
norm of the parameter vector. So the estimate is defined

by
2
N i)
B = argming Y| v, - B - i-rfjﬂj (8)
i=l Jj=1

subject to i |B;| =t
=

Here the upper bound ¢ for the L -penalty of the
parameter-vector controls the amount of shrinkage.
Lasso chooses subsets of variables depending on the
tuning-parameter £. When ¢ is very small, then almost
all the parameters are zero, similarly for large enough
t value, the parameter estimate B is same as the least
square estimate. The shrinkage constraint makes the
solution nonlinear in y, needing a quadratic
programming algorithm to compute the estimate. Efron
et al. (2004) have shown that Lasso is closely related
to another novel shrinkage estimation scheme Lars,
introduced by them. In a general setup. they show that
the subset selected by Lars, Lasso and Stepwise
Selection are similar. Here we will concentrate on the
most popular of them, namely, Lasso, its solution path
obtained from Lars algorithm for fast variable selection.
This has become the standard method for Lasso. The
tuning parameter ¢ is chosen by minimizing the cross-
validation error.

Suppose we have a statistical inference problem,
e.g., testing or estimation. An oracle depending on
unkown parameters, is a lower bound for the risk or loss
function of all decision functions we consider, and
which is asymptotically attained by our chosen rule. If
one can construct such an oracle for a particular
decision rule, it immediately proves the asymptotic
optimal ity of the chosen decision function. Such oracles
were first proposed for AIC, Shibata (1984), Li (1987)
and Shao (1997). An early oracle (not stated as such)
is the Cramer-Rao inequality, which is an oracle for the
mle. The results in Bogdan et al. (2008, 2011) are based
on a Bayes oracle for all multiple tests.

Recently Bickel ef al. (2009) have derived an
Oracle property for Lasso under sparsity assumption.

The Lasso constraint E“S;l <t is equivalent to the
addition of a penalty term rZ|,BJ| to the residual sum

of squares [Murray et al. (1981)]. While an explicit
mathematical relation between ¢ and » isn’t available,
the basic idea of convex optimization makes it easy to
move from the one to the other. We will use both
versions of Lasso. This can be written as following,

N

i . . I P
‘S‘a_:.'.ﬂ = argming Z »- ﬁ] - ir{IﬁJ’ +r Zlﬂ;l
im] i=l i
(9)

According to Bickel et al. (2009), when the errors
& are independent N(0, &) random variables with o
= 0, all the diagonal elements of the matrix X'X/n be
equal to 1. then under some additional conditions on

the Gram matrix, with » = A log(p) and 4> 242,
) n
.
with probability 1 — M 1=, we have
S 164 lo
|‘6{a5.w -ﬁ‘] |E < oS gl{p) { |ﬂ}

el 5) ) "
2

p 164~ ,
IX(F* - Bk < —— oslog(p)  (11)

cl5)

64
. 12
ols) 4 (12)

# { ﬁj.l'ﬂ.'.'.m =1 ] <

when s is the no. of non-zero components in 4, and
(%), ¢;(5) are constants depending on s and the Gram
matrix.

33 Modified Bayesian Information Criterion
For linear regression under assumption of normal
error term £~ N0, 0‘2} the likelihood function of each
model M, is given by
(y-X/8,Y(y-X'8))
20

L1 B o) = ——exp |-
(V2ro)

(13)

The maximum likelihood estimator of f is same

as the least square estimate f . S0 we know for fixed

o using BIC is then equivalent to minimizing a

standardized residual sum of squares RS.':-_‘JJJI under

model M; with penalty g, log(n) for model dimension
4j-

RSS;
5 g, log() (14)

But it is known (Bogdan er al. 2004) that under
sparsity, BIC chooses too many regressors. As a remedy,




Ritabrata Dutta er af / Journal of the Indian Society of Agricultural Statistics 63(2) 2011 205-212 209

Bogdan et al. (2004) introduced a modification of BIC,
as

mBIC : —2logl { B i)+ glog(n) — 2log(w))  (15)
where, w can be interpreted as a probability of a
particular covariate being relevant. When such prior
information isn’t available there is also a default choice
of w. In recent unpublished work, following a similar
idea, Frommlet et al. (2010) introduced a different
criterion, namely

mBIC2 : —logL{ ,3 i)+ g {log(n) - 2log(w)) — 2log(g,!)

(16)
which is suitable for multiple regression and works
similarly to the Benjamini-Hochberg correction for
multiple testing. We study the performance of this new
criterion with Lasso for a simulation based GWAS
study. In a GWAS study, the number of parameters is
too big, so to apply mBIC2, they used a pre-screening
scheme, which picks a smaller but more relevant subset
of parameters to explore further. They conducted
I-variable S-significance test for each variables and
then created a subset consisting only of the variables
having a p-value below a pre-specified threshold. They
chose the threshold by using their (assumed) rough prior
knowledge about the expected number of significant
variables. Following Frommlet et al. (2010), we also
take the threshold here as 1.5. After the first stage of
screening, we choose the final model minimizing
mBIC2 criterion with a forward selection procedure.
This prior information is used only for mBIC2 but not
for Lasso.

34 Simulation Study

Like Frommlet et af. (2010) we generated a dataset
to mimic a SNP dataset in real life, but still having
control over the parameters. We assumed the sample
size # = 100, and the total number of SNP’s under study
to be p = 30,000. Each covariate has been set to be a
f—1. 0, 1} valued r.v. as in the case of SNP, with the
minor allele frequency always lying below 0.5. For our

Table 1.

s

study the minor allele was taken as *17. We also
checked the covariance between any two covariates in
most of the cases to be in between —.1 to .1, signifying
weak but not negligible covariance between the
covariates. Our data set is somewhat smaller than the
simulated data set of Frommlet et al. (2010). We denote
the covariate matrix as X, which is an # x p matrix.
Forty causal SNP’s have been selected randomly from
the set of all “p™ SNPs. Then we have chosen a vector
A, having non-zero coefficient value lying between .5-
| for those 40 SNPs and we simulate the response as
following

y= ﬁ‘;x + £, when £ ~ .n'"'l'r{u-u JII} {I?}

Three variable selection procudres, namely Lasso
with Cross validation, Lasso with Oracle-penalty and
mBIC2, have been compared in this setup. The Lasso
with Oracle property is new, not considered in
Frommlet et al. (2010). Since detection of non-zero f's
is a much more tricky task, we compare their predictive
performance by the ratio of Residual Sum of Squares
(R55) and Total Sum of Squares (TS55) in Table 1. when
we define RSS and TSS as following

RSS = Z(};—X’,&Jz (18)

ss= Y. -F).

Also in the definition of mBIC2, we have used the
prior knowledge w about the sparsity. So to compare it
with Lasso, where we don’t use any prior information,
we consider mBIC2 for 3 different values of w =

30 &0
30000 30000 " 30000
chooses more variables depending on the information
of the sparsity. It chooses 15, 56 and 99 variables

; ‘ 30 60 120
correspondingly for w = ; ; . But
30000 30000 30000

both the versions of Lasso choose much smaller number

. mBIC2 does best but also

for different methods

Lasso-CV Lasso-Oracle

BIC2|w=
m [ 3

0 ] mBicz[w= 5_“__]

120
BIC2f w=—-
o

RSS
TSS

227 52 A2

18 033
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of variables, 23 and 31 in Lasso-CV and Lasso-Oracle
correspondingly, i.e., they were much more
parsimonious. Lasso-Oracle comes nearest to estimating
the correct number of SNP’s. Unfortunately our
simulation would need to be strengthened with
Bootstrap before we can identify clusters of co-variates
as causal variables, as mentioned in Introduction.

To check if the estimate of RES/TSS will increase
substantially under cross-validation, we simulated
another data set and calculated R8S/TSS with the same
estimates obtained earlier. We get this time the value
in a £01 interval of the value found earlier. So our
earlier conclusions do not change substantially, as we
expected since the total data size is much bigger than
the number of unknown parameters.

4. POSSIBLE EXTENSIONS

R1. The editor and referee have suggested we consider
different locations for the experiment. Suppose the
experiment is done at &k locations, i.e.. with
different }’s coming from one of these locations.
We introduce & indicator covariates /., j =1, ...,
k. For the i-th sampling unit the j-th covariate [ is
equal to | if the unit is from the j-th location and
zero otherwise. This will not change our linear
model but we now have p+k covariates, with the
regression coefficients for the & location-covariates
taking on the role of k intercepts. The formal
equation (6) for the model remains same. We may
still apply Lasso or modify it by targetting
shrinkage for the non-locational regression
coefficients only. These two versions will lead to
the following versions of Lasso.

(a) Usual Lasso
(b} Modied Lasso

We do not know which one will be better. Many
simulations would be needed to get a clear picture.

R2. Another suggestion from the editor and the referee
is that we take note of the recent work on mixed
directional (mdFDR). Based on the pioneering
work of Peddada et al. (2003) and Benjamini
et al. (1995), there is now an extended notion of
FDR, called mdFDR and its control. In Guo ef al.

(2010) a new multiple test controlling mdFDR is
proposed, extending earlier work. We decribe this
briefly since it is very useful when the microarray
provides a time series for each gene. The time-
series may show the response to increasing doses
over time. Guo et al. (2010) present some
simulation comparing their method with both the
BH multiple test and the multiple test of Benjamini
et al. (1995). We will return to this topic in our
concluding remarks.

In this case each component test is about |
parameters and in case of rejection, we wish to get
the sign of each &,, ..., &, right. A correct
rejection of the j-th null along with a wrong sign
is treated as false discovery. The corresponding
random number of false discoveries is denoted by

5
Rwvl

& and mdFDR = E[ ] The total FDR =

[1""r £y ] where V" = # usual false discoveries and
Rwvl

S is as explained earlier and R = the total number
of rejections of nulls. The basic papers are
Benjamini and Yekutieli (2005) and Guo et al.
(2010).

5. CONCLUDING DISCUSSION

Even under sparsity there may be approximate
colinearity between covariates, as in our simulated
example. In this case the correct model may not be
identifiable. This will often be the case for studies
involving SNP’s. Such problems require a thorough
simulation and theoretical study. It appears that the
forthcoming lecture by Bickel and Ritov at the Joint
Statistical Meeting of ASA this year will provide major
insights and new modications of Lasso to cope with
these problems.

Other heuristic options would be to use cross-
validation to choose one of several good estimators, or
use clusters of covariates like Frommlet et al. (2010).
It is evident from the abstract of an invited talk at the
J5M (Florida, Summer 2011) by Bickel and Ritov that
a major new modification of Lasso for the sparse,
colinear case will be offered. A second problem is to
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explore how large the signals should be fora given level
of sparsity in the used regression setting. As mentioned
before this problem is thoroughly discussed for micro-
arrays in Bogdan ef al. (2011). In the regression setting
one can prove the necessity of such scaling by
considering the case of orthogonal covariates (with each
covariate normalized to have /»-norm equal to one). It
appears a sufficient condition can also be proved when
there is no colinearity, the conditions for Theorem 7.2

log(M} _,

n

of Bickel er al. (2009) hold and

We would also like to suggest some future work
on controlling FDR and mdFDR, as invited by the editor
and referee. In Bogdan ef al. (2007) it is shown via
simulations that many multiple tests, not just BH
multiple test. attain a Bayes oracle approximately. They
include Parametric Bayes and Parametric Empirical
Bayes multiple tests as well as multiple test based on
Bayesian Nonparametrics. Further studies of these other
tests in the context of mdFDR should be useful.

Finally, we note that one of us, Jyotishka Datta and
Ghosh, have successfully used State Space models and
multiple testing to identify gene pathways when a time
series for each gene is provided by a microarray. This
part is Jyotishka Datta’s ongoing doctoral work.
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