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Extraction of the skeletal shape of an elongated 
object is often required in object recognition and 
classification problems. Various techniques have so 
far been developed for this purpose. A comprehen- 
sive comparative study is carried out here between 
neural network-based and conventional techniques. 
The main problems with the conventional methods 
are noise sensitivity and rotation dependency. Most 
of the existing algorithms are sensitive to boundary 
noise and interior noise. Also, they are mostly 
rotation dependent, particularly if the angle of 
rotation is not a multiple of 90 ~ On the other hand, 
the neural network based technique discussed here 
is found to be highly robust in terms of boundary 
noise as well as interior noise. The neural method 
produces satisfactory results even for a very low 
(close to 1) Signal to Noise Ratio (SNR). The algor- 
ithm is also found to be efficient in terms of invari- 
ance under arbitrary rotations and data reduction. 
Moreover, unlike the conventional algorithms, it is 
grid independent. Finally, the neural technique is 
easily extendible to dot patterns and grey-level pat- 
terns also. 
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image; Medial axis; Neural network; Noise; Robust- 
ness; Rotation; Self organisation; Skeleton 

1. I n t r o d u c t i o n  

Shape description of objects is often necessary in 
image and document processing. This can be achi- 
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eved by transforming the object to its skeleton which 
provides a representation of a pattern by a collection 
of lines, arcs or curves. The skeleton contains the 
essential structure of the object. This transformation 
process is called thinning or skeletonisation. Thus, 
thinning is the process of reducing the width of a 
pattern to just a single pixel. In processing binary 
patterns, thinning has been of continuous interest 
for the past three decades, and many algorithms 
have so far been suggested [1,2]. Skeletons are 
useful for topological analysis and classification of 
the shape of patterns containing elongated or linelike 
parts (for example, printed or handwritten characters, 
chromosomes, etc.). Character recognition systems 
often require thinning for extracting the basic fea- 
tures of the characters. Other advantages of thinning 
or skeletonisation are to reduce the memory space 
required to store the essential structural information 
of the pattern, and to simplify the data structure 
required in processing the pattern. Shape represen- 
tation and data compression are the main objectives 
of skeletonisation, which plays an important role in 
image and document processing. 

For digital binary objects, there are numerous 
definitions of a skeleton, and hence thinning algor- 
ithms differ from each other in performance and in 
implementation. But the main objective is to achieve 
a close approximation of the Medial Axis Trans- 
formation (MAT) of the object. The existing skel- 
etonisation algorithms can be broadly classified into 
two categories - iterative algorithms and noniterative 
algorithms. The iterative algorithms remove outer 
layer pixels iteratively until a one-pixel thick-skel- 
eton is achieved. According to the mode of removal 
of pixels, the iterative algorithms can be further 
classified into two classes - sequential and parallel 
algorithms. The sequential algorithms operate by 
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processing the object pixels in a sequential manner, 
while in parallel algorithms all or a subset of the 
pixels are processed in parallel. The parallel algor- 
ithms are of two types - multi-pass and single-pass. 
In the noniterative class, various techniques are used 
(for example, distance transform, polygonal approxi- 
mation, contour following, etc.). This class of algor- 
ithms produces a certain skeleton of the pattern 
directly in one pass without examining all the indi- 
vidual pixels. The output skeleton here may not be 
in the form of a raster image. It may be in the 
form of a planar graph providing a line-segment 
approximation of the input pattern. Henceforth, we 
shall call these two types of skeleton a raster skel- 
eton and a vector skeleton, repectively. 

In the present article, we focus on the perform- 
ance evaluation of a new approach to skeletonisation 
that satisfies all the above properties. The new 
approach is an improvement upon a self-organising 
neural network model [3] for the purpose of skel- 
etonisation. The earlier algorithm was sensitive to 
the choice of parameter values, and the results 
obtained were often unsatisfactory for skeletonis- 
ation. The present algorithm based on the new 
concepts of 'activation level' and 'activation region', 
which are data dependent, is sufficiently adaptive 
and is more efficient in skeletonisafion. Also, it has 
been examined, in a comprehensive manner, how 
the improved algorithm performs in terms of several 
important aspects which are relevant to skeletonis- 
ation. 

Self-organisation is a learning phenomenon that 
has been observed in the human neural system. It 
is simulated with an artificial neural network model 
by Kohonen [4]. Kohonen's Self-Organising Neural 
Network (KSONN) model is essentially a feature 
mapping which has some interesting properties. For 
example, it preserves the topological properties of 
the input, and can select the dimensionality auto- 
matically. The present skeletonisation algorithm uses 
the fundamental rules and properties of KSONN 
model, but does not use it in its original form. The 
model has been modified to make it dynamic to fit 
it into the skeletonisation task. Different dynamic 
versions of the KSONN model have been reported 
by several authors in different contexts [5-7]. Our 
model produces a vector skeleton in the form of a 
planar graph. 

The performance of an algorithm should be 
judged not only by measuring how well it works 
on perfect input data, but also by measuring how it 
works on noisy data. An algorithm may give good 
results with noise-free input, but very poor results 
in the presence of even a little amount of noise. 
Such algorithms are not of much use. Since noise 

is almost unavoidable in practice, more robust algor- 
ithms are needed. Here, we first describe our model 
and algorithm for skeletonisation of a noise-free 
binary image. The image consists of two levels - 
black for object pixels and white for background 
pixels. We then add random noise (black noise in 
background and white noise in object) to the image 
with different SNR values, and study the difference 
among the resulting skeletons. The proposed algor- 
ithm is qualitatively different from the conventional 
skeletonisation algorithms in terms of noise sensi- 
tivity. In conventional algorithms, the noise type 
that is usually considered is boundary noise only. 
In the present study, both the boundary and object 
noise types are taken care of. It can be seen that 
the proposed algorithm is highly robust in terms of 
both these types, while the conventional algorithms 
are not designed to tackle object noise. 

We describe in brief, before going into the actual 
comparisons, our neural network model for skel- 
etonisation [3] in Section 2. Section 3 presents the 
comparative studies, with the help of some 
examples, between the neural algorithm and some 
conventional thinning algorithms. The comparative 
studies are done on the basis of the following 
properties of a good skeletonisation algorithm: (a) 
noise immunity or robustness; (b) rotation invari- 
ance; (c) close approximation of the medial axis; 
(d) high data reduction efficiency; (e) extendibility 
to other input types - dot patterns and grey-level 
patterns. These properties are dealt with in different 
subsections. Conclusions are given in Section 4. 

2. Network Model and Algorithm 

There are a few shortcomings of Kohonen's SONN 
model in view of the skeletal shape extraction of a 
pattern. In Kohonen's SONN model, a network hav- 
ing either a linear topology or a planar topology is 
used. In general, such rigid neighbourhood top- 
ologies are found unsuitable in some situations and, 
in particular, it poses problems in skeletal shape 
extraction of a pattern. When the input pattern has 
a prominent shape such neighbourhood definitions 
are found unsuitable [8]. This is due to the fact 
that, during the update process, the weight vectors 
lying in zero-density areas may be affected by input 
vectors from the surrounding parts of the nonzero 
distribution. As the neighbourhoods are shrunk, the 
fluctuation vanishes and, as a result, some processors 
may remain outlier due to the residual effect from 
the rigid neighbourhood. For example, if the input 
vectors have a circular distribution, the processors 
near the centre are not representative of the input. 
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Another problem with the SONN model is that it 
assumes a predefined fixed topology of the network 
which is maintained throughout. But in skeletonis- 
ation tasks, at different localities of the input pattern, 
we require a varying topology of the network. For 
example, at different portions of the pattern, it may 
have different structures namely, an arc, a fork, a 
crossing, etc. Thus, a linear chain of processors fails 
to adapt the skeletal shape of circular and fork 
structures. For a circular pattern, in the SONN 
model, the topology of the pattern is no longer 
preserved by the output network (the pattern is a 
closed loop while the output network is open). The 
fork structure cannot be adapted by a linear network 
structure. To adapt the fork structure, the network 
requires one processor to have three neighbours. To 
overcome the limitations of Kohonen's model, we 
suggest some modifications [3] of it in which the 
set of processors and their neighbourhoods change 
adaptively during learning, in order to extract the 
skeleton of a binary image. 

Kohonen's feature mapping net is composed of 
an array A (1- or 2-dimensional) of processors 
(neurons) receiving input signals from a feature 
space V to be mapped onto A. Each input vector is 
presented to the net on m input lines, where m is 
the dimension of the space V. Each processor in 
the array is connected to one or more surrounding 
processors. Every processor is also connected to all 
input lines. The map is adapted on the basis of a 
set of input vectors from the feature space. 

Denote the set of processors by {Trl,Tr2,...,%}. 
The neighbourhood N~ of a processor 7r~ is {TrplTr p 
is connected to 7r~}, which includes 7r~. Let the 
weight vector for the processor 7r~ be W/(t) = 
(Wil(t),Wiz(t),...,Wim(t)) at the time instance t. The 
starting weight vectors W/(0) are chosen at random. 
Suppose the set of input vectors is S = {PI,P2,...,PN}, 
where the dimension of each Pj is m. The weight 
vectors are updated according to the following rule. 

At time instance t, Pj is presented to the net. All 
the processors compete and let Wk(t) be the nearest 
weight vector to Pj. That is, 

Iw,(t) - P ; I - -  m i n l w ~ ( t )  - Pjl  (1) 
i 

Then, the weight vectors of the processors within 
the neighbourhood of 7r~ are updated as [4]: 

Wp(t + 1) = Wp(t) + c~(t)[Pj - Wp(t)], (2) 
for 7rp E N~, 0 < c~(t) < 1 

where ~(t) is the gain term which decreases with t. 
We have classified the input binary patterns into 

three categories: (1) Arc patterns like character pat- 
terns 'C',  'L' ,  'S', 'M',  etc. which have a linear 

structure; (2) tree patterns like 'T' ,  'X',  'Y',  etc. 
which have forks and branchings; (3) loop patterns 
like 'A',  'B',  'O', etc. which contain a loop struc- 
ture. These categories are dealt with separately. 

2.1. Arc Patterns 

The structure of these patterns can be represented 
by a linear structure. The initial net having a linear 
structure is represented by a list of processors 
[rrl,~r2,...,%], where 7ri is connected to exactly two 
processors ~ri_i and ~'~+1 (the two end processors are 
connected to exactly one processor each). Here, the 
input feature vectors are the co-ordinates of the 
object (black) pixels of the image, and hence m = 2. 
S={PI,P2,...,PN} is a set of N pixels, where 
Pj = (xj,yj). The weight vectors of the processors ~ri 
are updated iteratively on the basis of the pixels in 
S. The initial weight vectors of 7r~ are, say, 
(wil(0),w~2(0)). Suppose, the pixel P~ is presented at 
the tth iteration. Let 

dist(P;,Wk(t)) = min [dist(P;,WM))]. 

P~ updates the weight vectors according to Eq. (2). 
If this updating process continues, the weights 

tend to approximate the distribution of input vectors 
in an orderly fashion. The limiting weight vectors 
define the ordering. One presentation each of all the 
pixels in S makes on sweep consisting of N iter- 
ations. After one sweep is completed, the iterative 
process for the next sweep starts again from Pl 
through PN. Several sweeps make one phase. One 
phase is completed when the weight vectors of the 
current set of processors converge, i.e. when 

]Wi(t) - Wi(t') I < e Vi (3) 

where t and t' are the iteration numbers at the end 
of two consecutive sweeps and s is a predetermined 
small positive quantity. Only after a phase is com- 
pleted are processors inserted or deleted. Suppose, 
at the end of the sth phase, the weight vectors of 
the processors are Wl(ts),...,Wn(,) (ts), where n(s) is 
the number of processors during the sth phase and 
ts is the total number of iterations needed to reach 
the end of the sth phase. If the weight vectors of two 
neighbouring processors now become very close, the 
processors are merged. If their weight vectors are 
far apart, a processor is inserted between them. 
More formally, if 

]Wk(t~)-W~,(ts)l= min min IW~(ts) (4) 
i=l,...,n(s) ~i,~Ni-{Tri} 

- w~ , ( t , ) l  < ~ 

then the two processors 7rk and ~'k' are merged, and 
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the new processor has the weight vector as [Wk(ts) 
+ Wk,(t,)]/2. If, on the other hand, 

[W1(t ,)-Wr(t , )  = max max IWi(ts) 
i=l,...,n(s) rri, eNi  {rri} 

-wi,(t,)l  > 8~ (5) 

then one processor is inserted between 7rl and 7rr 
and the new processor has the weight vector as 
[W~(ts) + Wr(t~)]/2. Note that 81 and 8a are two prede- 
termined positive 
the insertion and 
phase starts with 
process continues 

for all i, 8 2 

> 8 1 ,  V'TT i, 

quantities such that 81 < 8 2. After 
merging of processors, the next 
the new set of processors. The 

until, at the end of a phase, 

> [w,(t)- ~,(t)l (6) 
e Ni - {~'i} 

The condition (6) means that the weight vectors of 
no two neighbouring processors are either two close 
or too far apart. The distance between two neigh- 
bouring processors (after convergence) is controlled 
by 81 and 62. The processors (on the basis of their 
weight vectors) at this stage give an approximate 
skeletal shape of the input pattern. It should be 
noted that the quality of the skeleton depends on 
the choice of 81 and 62. This issue is discussed in 
more detail in Section 2.4. 

2.2. Tree-like Pat terns  

For tree-like patterns, it is required that some pro- 
cessors in the net have more than two neighbours. 
The degree of a processor is defined as the number 
of its neighbours. Unlike in the case of arc patterns, 
the degree for each processor should be learned here. 

Let us consider a pattern with a fork. Since 
initially there is no topological information about 
the pattern, we start with a linear net with five 
processors (Fig. la). After a number of iterations, 
some processor forms a significantly small acute 
angle (decided on the basis of some threshold) with 
its two neighbours (Fig. lc) to indicate a fork in 
the pattern. Such a spike is formed because, by a 
property of Kohonen's feature map, the net tries to 
span the entire range of input pattern space, and 
also the topologic~ relationship of the pattern is 
preserved in the net. In Fig. l(c), processor X forms 
a spike with its neighbouring processors Y and Z, 
indicating a juncture lying between Y and Z. There- 
fore, the following actions are taken to adapt the 
degree (Fig. ld) when processor X forms a spike: 

(a) Create a new processor say, U (denoted by a 
solid circle) halfway between Y and Z. 

(b) Delete the link between X, Y and the link 
between X, Z. 

Fig. 1. Different steps of convergence of the net for pattern 'A'  
without noise. (a) initial net, (b) after 12 sweeps, (c) formation 
of an acute angle after 94 sweeps, (d) after 105 sweeps with a 
new processor (solid circle) created with degree = 3, (e) after 394 
sweeps immediately before loop formation, (f) final net after 518 
sweeps. (61 =6,  62= 12 and s=0.01. ) .  

(c) Establish links between U, X; between U, Y 
and between U, Z. 

The same actions are taken for all the processors 
forming a spike. These actions are taken after a 
phase is complete, and then the subsequent phases of 
learning are continued to enable the net to approach 
towards a closer approximation of the shape of the 
pattern. Similar principles used in the case of arc 
patterns are followed for insertion and deletion of 
processors, and for convergence of the algorithm. 

2.3. Loop Pat terns  

The techniques discussed above work for patterns 
excepting those containing loops. Consider the pat- 
tern 'A'. Our algorithm can generate, on the basis 
of the principles discussed in Section 2.2, an incom- 
plete skeleton, as shown in Fig. l(e). It is now 
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necessary to complete the loop by means of bridging 
the gap (between processors E and F in Fig. le). 

The asymptotic values of the weight vectors con- 
stitute some kind of vector quantisation [4]. In 
particular, the distance measure and the update rules 
as considered in our algorithm, induce a partition 
of the input pattern space specified as 

Si = {Pj E Sdist(Pi, W 0 <- dist(Pj, Wr) Vr} 

The above partition is a Voronoi tessellation 
which, in the present situation, means partitioning 
of the input pattern space into regions within each 
of which all input vectors have the same weight 
vector as their nearest one. Therefore, each set S, 
is associated with a single processor. Hence the 
input pattern vectors can easily be labelled according 
to the S~ to which it belongs. In other words, each 
input vector is given a label according to its nearest 
processor. Such input labelling has earlier been used 
by Sabourin and Mitiche [5]. 

Definition. When the input pattern is a binary image, 
two processors rr~ and 7rj (i#=j) are said to be 
adjacent if there exists at least one pair of object 
pixels P ~ Si and Q ~ Sj such that P and Q are 8- 
neighbours of each other. 

After convergence (let us call it initial 
convergence) as mentioned in Sections 2.1 and 2.2, 
label the input vectors as mentioned above and then 
for each processor, check whether it is adjacent to 
any processor other than its neighbours. If it is, 
introduce a link between these two processors. In 
Fig. l(e), processor E is adjacent to processor F, 
and they are not neighbours to each other. So, they 
are connected and become neighbours. After this we 
continue the algorithm until the final convergence is 
reached (Fig. lf), i.e. when condition (6) is satisfied. 
The algorithm can now be stated briefly as: 

The Algorithm 

Step 1: 

Step 2: 

Step 3: 

Step 4: 

Step 5: 

[Initialisation] 
Initialise t = 0; 
Initialise the weight vectors Wi(t), 
(i = 1,2,...,n) with random values. 
[Sweep] 
For all input patterns Pj, j = 1,2,...,N 
Update weight vectors according to rule 
(2). 
[Phase] 
If condition (3) is not true then go to 
Step 2. 
Merge or insert according to condition (4) 
or (5). 
If condition (6) is not true go to Step 2. 

Step 6: 
Step 7: 

Step 8: 
Step 9: 

Step 10: 

Step 11: 
Step 12: 

If no processor forms a spike go to Step 9. 
Create a new processor U, as mentioned 
in Section 2.2. 
If condition (6) is not true go to Step 2. 
Label the input vectors as mentioned 
above. 
If no processor is adjacent to any processor 
other than its neighbour then Stop. 
Join the processor and the processor adjac- 
ent to it. 
If condition (6) is not true go to Step 2. 
Go to Step 6. 

The final network obtained by the above algorithm 
gives a vector skeleton for the given input pattern. 
The raster skeleton can easily be derived from the 
network. For each link, the line segment connecting 
the weight vectors of the two corresponding pro- 
cessors is considered. The set of all pixels lying 
closest to such a line segment gives the raster skel- 
eton. 

The above algorithm has been tested on a number 
of input patterns. The final results along with a few 
intermediate stages are shown in Fig. 2 for character 
patterns 'S', 'X',  'a' and 'y' .  The initial nets for 
all of them are the same as shown in Fig. l(a). 

For arc patterns, it can easily be seen that the 
resulting net, after convergence, gives a skeletal 
shape of the pattern. Here the array of processors 
is linear, and the inputs are from a two-dimensional 
distribution (see [4, p.153]). In the present model, 
we start with a given number of processors and, at 
the end of a phase, we obtain an output similar to 
the Kohonen's model. After each phase, either a 
processor is deleted or two consecutive processors 
are merged into a single one. In the process of 
insertion and merging, the existing global ordering 
of the processors is never disturbed. Note that each 
phase here can be looked upon as a full execution 
of Kohonen's algorithm, because each phase starts 
with a given number of processors and converges 
to an output. Thus, the only difference between our 
model and the original model in terms of conver- 
gence is that the former is a repetitive application 
of the latter, each time increasing/reducing the size 
of the net without disturbing the global ordering. 
From the fact that once the processors are ordered 
they remain so for all t (see [4, p.143]), the output 
net in the proposed model will give the skeletal 
shape of the pattern, as given by Kohonen's model. 

For tree-patterns, after a few phases (when almost 
all the weight vectors are positioned within the 
pattern, or at least quite close to it), a spike in the 
net is replaced by a 'Y'-  or 'T'-like structure locally. 
The starting net being linear, a spike here represents 
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Fig.2. Two intermediate steps and the final skeletons for patterns 'S', 'X', 'a' and 'y'. 

a junction in the local neighbourhood of the pattern. 
The method is repeated after each phase. For a '+'- 
like junction, two such replacements are required. 
For other parts of the pattern, the argument holds 
good, since a tree-pattern is a union of several 
arc-patterns. 

If the pattern has a loop, the algorithm (up to 
Step 8) yields only a tree-structured net. Sub- 
sequently, loops are formed depending on the 
Voronoi regions. If two Voronoi regions are adjacent 
but the respective processors are not already linked, 
then a link between the two processors is estab- 
lished. 

2.4. Choice of 6~ and 32 

It is easy to see that 61 and 62 play a role here. 
Very low values of 61 and ~2 might produce a zig- 
zag (peano curve) network (Fig. 3a-b) which does 
not represent the true skeletal shape of the pattern. 
On the other hand, if 6i and 62 are very high, the 
skeleton does not properly represent the medial axis 

(Fig. 3e-J0. Experiments have shown that the skel- 
eton starts becoming zig-zag when 82 (with 61 -~- 162) 
becomes less than �89 where T is the local thickness 
of the pattern. Values of 62 larger than �89 can 
prevent the zig-zagness. Thus, if the input pattern 
has more or less uniform width and the approximate 
width value is known, then the choice of 61 and 62 
is easy. But in practical situations, the thickness 
may not be uniform or, even if it is, its value may 
not be known. In such situations, some adaptive 
mechanism is necessary. One such mechanism is to 
introduce an activation level in the weight updating 
process, which is described below. 

We specify an activation region of a processor 
so that if an input vector falls within the region 
then only it activates the processor. The activation 
region decreases over time. In the present problem, 
it is taken as the circle with the corresponding 
weight vector as the centre and the activation level 
as its radius. The values of the activation level ai(s) 
for i,...,n(s), at the end of the sth phase, are com- 
puted as follows: 
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Fig. 4. The raster skeletons obtained (a), (b) without and (c), (d) 
with activation level. 61 = 1, 6a = 2. 

Fig. 3. The role of 6~ and 52 on the output skeleton. (a) 6~ = 3, 
62=6, (b) 6j=4, 6~=8, (c) 61=5, 62=10, (d) 51=6, 62=12, 
(e) 61 =7, 62= 14, (f) 61 = 8, 62 = 16. 

a~(s) = max Iw (ts)- wi,(ts)l (7) 
~i' ~Ni--{Tri} 

A processor is called active if  the presented input 
vector lies within its activation region. In other 
words, if an input vector lies outside all the acti- 
vation regions, it is ignored in the competition and 
updating process (Eqs 1 and 2). Only active pro- 
cessors are qualified for the competition, after which 
the winner processor is selected. As the activation 
region is shrunk over time (according to Eq. 7), the 
object pixels away from the medial axis gradually 
and symmetrically loose their effects on the weight 
adjustments. Thus, all the weight vectors approach 
the medial axis. The algorithm described earlier is 
modified to incorporate the activation level. Results 
of the modified algorithm are shown in Fig. 4. It is 
found that the modified algorithm gives much better 
results, In the original algorithm, if 61 and 6 2 take 
small values (say, 6~ = 1, 62 = 2) then the skeletons 
become zig-zag (Figs 4a, b), but in the modified 
algorithm, the skeletons do not become so with the 

same 61 and 62 (Figs 4c, d). Thus, we can always 
set 61 = 1 and 62 = 2 and, by introducing the acti- 
vation level, a satisfactory medial axis representation 
can be obtained. 

Note that smaller values of 61 and 62 will take a 
longer time to converge. However, in some appli- 
cations, a crude approximation of the skeletal shape 
serves the purpose. In such situations, we can choose 
higher values of these two parameters and get the 
output more quickly. Thus, the user has an option 
to make the algorithm faster at the cost of accuracy. 

3. Comparisons Between Neural and 
Conventional Techniques 

3.1.  R o b u s t n e s s  

An important aspect of a skeletonisation algorithm is 
noise immunity, which makes the present algorithm 
qualitatively different from the conventional ones. 
Two types of noise, namely boundary noise and 
object noise, are considered here. If the original 
object contains noise, the skeleton should not deviate 
much from the skeleton of the same object without 
noise. A serious problem with most of the existing 
algorithms is that they sometimes produce noisy 
skeletons if the input patterns contain noisy bound- 
ary (see Datta and Parui [9] and Jang and Chin 
[10]). Moreover, these algorithms cannot handle 
object noise. On the contrary, the proposed algo- 
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rithm is designed to take care of both these types 
of noise and is highly robust to them. 

The above claim of robustness of the present 
algorithm can be argued as follows. The resulting 
skeleton here is given by the weight vectors after 
convergence, and their links. Its final position is 
highly insensitive to noise pixels because of two 
factors. First, the weight vector converges to the 
centre of gravity of the respective Voronoi region 
(Si) and this centre is not greatly affected by noise 
pixels. Secondly, the activation region of a processor 
decreases over time and, as a result, the boundary 
noise pixels are kept outside it, to a great extent. 
Thus, the noise insensitivity of the present algorithm 
is clear from its learning mechanism and conver- 
gence property. 

Most existing conventional algorithms use a rigid 
definition of connectedness of the object - which 
in effect causes noise sensitivity. Our method relaxes 
the concept of connectivity, and it is found that 
such a relaxation helps the robustness, particularly 
in situations where SNR is very close to 1. 

3.1.1. Boundary Noise. The boundary noise is dis- 
tributed on the boundary of the object (white noise) 
and on its immediate neighbourhood in the back- 
ground (black noise). The proposed skeletonisation 
algorithm is found to be very robust to such bound- 
ary noise. Here we add black and white boundary 
noise pixels and study the effect they have on the 
skeleton. We have experimented on several 
examples with different SNR values, where the SNR 
is defined as follows: 

Number of boundary black pixels 
SNR8 = (8) (B+ W) 

where B = n u m b e r  of black noise pixels and 
W= number of white noise pixels. To demonstrate 
the effect of boundary noise, results are presented 
for a straight line pattern of length 33 pixels and 
width 5 pixels, where '0' represents an object pixel 
and '*' represents a skeletal pixel (Fig. 5). The 
skeletons obtained by the present algorithm, and by 
several conventional algorithms [9,11-14] are shown 
in Figs 5(b)-(e) for a fixed SNR= 18. There is no 
distortion in the output skeleton obtained by our 
algorithm. For different SNR values, the output 
skeletons obtained by our algorithm from the same 
pattern are given in Figs 5(f)-(i). The output skel- 
eton remains undistorted even with SNR= 3. At 
SNR= 2, the output skeleton has some distortion 
with me = 0.31, where (as in Jang and Chin [10]) 

Area[SK_S,K] + Area[S'K-SK] I 
me = rain 1, Area[Sx] J (9) 

where Sx and S'x are the skeletons obtained from S 
and its noisy version, respectively. Area [.] is an 
operator that counts the number of pixels. 

The proposed algorithm has been tested on 62 
test patterns (English upper and lower case charac- 
ters and numerals), and the average values of m~ 
against different SNR values are computed. Using 
the same measure, Jang and Chin's [10] algorithm 
has been shown to be superior to several other 
conventional algorithms. The average rn~ values, in 
our algorithm, are found to be less than 0.04 for 
SNR values ranging from 20 to 3. For SNR = 2, 
the average value of m~ ~ 0.35. In Jang and Chin's 
algorithm, even for SNR = 10, the average value of 
m~ is higher than 0.2; and for S N R = 2 0 ,  it is 
higher than 0.1. For SNR values higher than 20, 
our algorithm produces me that is practically zero. 
Thus, it is found that our algorithm is even better 
than Jang and Chin's algorithm in terms of boundary 
noise immunity. 

3.1.2. Object Noise. By object noise we mean the 
white noise distributed over the entire object, includ- 
ing its boundary. The existing conventional algor- 
ithms are not able to handle such noise, which is 
interior to the object, but such noise may occur 
in practice for several reasons. The problem with 
conventional algorithms (for example, the iterative 
ones) are that they use the property of local con- 
nectivity within a small window (mostly 3 x 3), and 
try to preserve such local connectivities throughout. 
Secondly, due to the use of a fixed set of templates 
of a small size, they treat a single white noise pixel 
as a hole consisting of a single pixel. As a result, 
in the output skeleton it appears as a big hole 
(Fig. 6(b)). Figure 6 demonstrates how only two 
noise pixels misclassify a '1'-like pattern to an '8'- 
like pattern. On the contrary, the proposed algorithm 
uses the connectivity concept in a more global sense 
(for example, while joining two processors, we 
check whether the two respective regions are 
adjacent). The algorithm treats small holes as white 
noise at the cost of the possibility of missing a true 
small hole. Thus, very small holes have hardly any 
effect on the resulting skeleton (Fig. 6(c)). But if 
the hole is large enough and is in fact a part of the 
pattern, it is output as a hole in the resulting skeleton 
(Figure l(f)). We have experimented, and found that 
the algorithm is robust and performs satisfactorily 
with moderately low SNR (moderate amount of 
noise), where the SNR is defined by 

Number of object pixels 
SNR = (10) 

Number of noise pixels on the object 
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be neighbours to each other. Therefore, we join two 
processors by a link if they are close enough, but 
are not already joined. The closeness is determined 
on the basis of 62. Formally, loop joining step can 
be stated as follows: 

For every processor, its nearest among other 
processors (excepting its neighbours) is found. 
If  the distance between these two processors 
is less than 82, then they are joined by a 
new link. 

Thus, after the initial convergence, we join the 
processors satisfying the above criteria. Then we 
continue the algorithm until final convergence is 
reached, i.e. until condition (6) is satisfied. 

An illustration is presented in Figs 7(b)-(d) for 
the pattern 'A '  with different SNR values. We have 
taken a very high amount of object noise and tested 
the algorithm for several character patterns. It has 
been found that even in the presence of very high 
noise (SNR= 2.0, 1.5 and 1.1), the proposed algor- 
ithm is able to extract the skeletal shape of the 
original object as can be seen in the example figure 
(Fig. 7). The existing conventional algorithms fail to 
work in such situations. 

Fig. 6. Output skeleton generates big holes in the presence of 
even single noise pixels. Output of conventional thinning algor- 
ithms (a) without any noise, (b) with two single noise pixels, 
(c) output of the proposed algorithm with the same noise as in (b). 

For a very low SNR, i.e. for a very high amount 
of noise, when the binary object merely becomes a 
set of scattered pixels or a dot pattern, the proposed 
algorithm with some modifications in the loop join- 
ing step can still yield the global skeletal shape of 
the pattern, assuming the noise to be uniformly 
distributed. 

It is clear that the loop joining process, by check- 
ing the adjacency of two respective regions' Si's, is 
meaningful as long as the connectivity of the object 
is preserved after noise addition. Otherwise, the loop 
joining has to be done in a different way. In fact, 
by the properties of Kohonen's  model, two pro- 
cessors will be neighbours to each other if the two 
respective Voronoi regions are close in the pattern 
space, since Kohonen's  self-organising map pre- 
serves the topological relationship. Hence in our 
case, it is expected that two close processors should 

3.2. Rotation Invariance 

Another advantage of our algorithm is that the out- 
put skeleton does not depend upon rotation of the 
input pattern by arbitrary angles. This is because 
the proposed method does not assume any underly- 

Fig. 7. The final skeletons obtained for the pattern 'A' with object 
noise. (a) Original binary pattern, (b) SNR- 2, (c) SNR = 1.5, (d) 
SNR = 1.1. 
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ing grid. The iterative methods for skeletonisation 
that use square grid are invariant under rotation by 
multiples of 90 ~ only. A recent paper [10], based 
on derived grid, reports invariance under 45 ~ 
rotation also. As an illustrative example, we have 
rotated the pattern 'A' by different angles (11 ~ 22 ~ 
and 45 ~ ) and shown the output skeletons in Fig. 8. 
Figures 8(b)-(d) show almost no effect of rotation 
of the input pattern on the output skeleton. 

3.3. Medial Axis Representation 

As the basic purpose of skeletonisation is to approxi- 
mate the medial axis of the object pattern, it is 
important that the output skeleton should approxi- 
mate the medial axis as closely as possible. In other 
words, the skeleton should not be biased. After 
getting the raster skeleton, the following measure 
[14] is computed for comparison of the goodness 
of medial axis representation with some other thin- 
ning algorithms: 

Area[S'] 
- Area[S] (11) 

where S = set of all object pixels in the input pattern, 
and S"=union of the maximal digital disks 
(included in S) centred at all the skeletal pixels. 
Clearly, ~ ranges from 0 to 1, and the derived 
skeleton is identical to the ideal medial axis if ~/ is 
1. ~ measures the closeness of the extracted skeleton 
to the true medial axis. Jang and Chin [14] found 
the average values of 7/ to be 0.712 and 0.881 on 

a number of pattems for the algorithms in Arcelli; 
et al. [11], Tamura [12] and Hilditch [13] and the 
algorithm in Jang and Chin [14], respectively. In 
Datta and Parui [9], this measure was further 
improved to 0.931. For the proposed algorithm, the 
average ~/ value is found to be 0.885 (with 61 = 1 
and 62 = 2) for the same set of test patterns. 

3.4. Data Reduction Efficiency 

The above neural network model using competitive 
learning creates an adaptive vector quantisation [4] 
of the input set. Each weight vector tends to the 
centroid of the respective regions Si. Within each 
region, all pixels have the same weight vector as 
their nearest one. In general, the output weight 
vectors give the prototype or examplar vectors from 
the appropriate classes (regions), and these can be 
an encoded version of the input, in less storage 
space. In the present situation, the set of weight 
vectors along with their interconnections, or the 
graph (planar straight line graph) with the weight 
vectors as its nodes and the interconnections as its 
edges, represents the skeletal shape of the input 
binary pattern. The graph requires much less space 
than the original input set, and hence a considerable 
data reduction is achieved. 

One of the basic purposes of skeletonisation is to 
reduce the storage space required to store the image 
data without losing the essential structural infor- 
mation. The proposed method can achieve more 
data reduction compared to most of the existing 
skeletonisation algorithms. It can be seen that the 
fewer processors in the network, the greater the data 
reduction. By choosing larger values of 6i and 
82, i.e. by making the average distance between 
neighbouring processors larger, we can make higher 
data reduction. But this might worsen the accuracy 
of medial axis representation. A proper choice of 
61 and 62 (as mentioned earlier) can balance this 
trade-off. 

Fig. 8. Effect of rotation by angIes (b) 11 ~ (c) 22 ~ and (d) 45 ~ 

3.5. Extendibility to Dot Patterns and Grey- 
Level Images 

For a dot pattern, unlike in the case of a binary 
image, a skeleton is not be properly defined. But 
our biological visual system can still extract the 
perceptual skeleton from a dot pattern. For example, 
a dot pattern having a definite shape (say, 'A'-like) 
can be recognised by the human brain almost as 
easily as a binary image having the same shape. 
The conventional thinning algorithms that extract 
skeletons from binary images do not work for dot 
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pattems. In contrast, as seen in Section 3.1.2, the 
proposed neural algorithm, with a minor modifi- 
cation, can be used to extract a perceptual skeleton 
of a dot pattern [15]. 

Conventional binary image thinning algorithms 
work only on binary images. They cannot be 
extended to grey-level images. On the other hand, 
the neural technique discussed here can also be 
extended for implementation to grey-level images. 
A grey-level image may concern either the whole 
image or a subset of it. Here the latter case is 
assumed. We consider, as in Arcelli and Ramella 
[16], grey-level images where the area of interest 
(i.e. the object portion) can be interpreted as consti- 
tuting a multi-valued foreground emerging from a 
single-valued background. The extension can be 
done in the following way. 

Suppose for a grey-level pattern, grs is the grey 
value of the pixel at the rth row and sth column. 
Then the update rule replacing Eq. (2) will be 

Wv(t+l) = W:,(t) + oe(t){Pj-Wp(t)]g,.,, for % �9 Nk 

(12) 

Multiplication by g,., means that the amount of 
update will be more for pixels with high grey values 
and less for pixels with low grey values. The grey- 
level extensions for arc and tree-like patterns are 
thus straightforward. But for loop patterns, the 
extension is not trivial because the definition of 
adjacency is not well defined in that case. If criteria 
for the adjacency are available, then the extension 
is also possible for loop patterns. In some situations, 
the loop joining criteria used for dot patterns may 
work. Alternatively, one can use the adjacency as 
defined for binary images after local thresholding 
(locality being defined by the regions Si). The algor- 
ithm has been tested on several grey-level images, 
and Fig. 9 shows the result from a chromosome 
image. 

Fig. 9. Output skeleton of a grey-level chromosome image with 
intermediate stages of skeletonisation. 

them are robust to boundary noise only. The neural 
algorithm is highly robust to both boundary and 
interior noise, in the sense that it can produce 
satisfactory skeletons even under very low SNR 
(close to 1) or a very high amount of noise. Noise 
is unavoidable in real-life applications. The neural 
technique is useful particularly in a highly noisy 
environment. 

Another advantage of the neural algorithm is that 
it is invariant under rotation by arbitrary angles. 
Most of the existing algorithms are invariant under 
rotation of 90 ~ only. The data reduction efficiency 
of the neural algorithm is higher than that of the 
other algorithms. Moreover, the neural technique is 
found to be extendible to a dot pattern or to a grey- 
level image. Thus the neural technique provides us 
with a unified approach to skeletonisation. 

4. Conclusions 

Performance analysis of a neural network-based 
skeletonisation technique for a binary object is the 
main motivation here. The technique uses a modified 
version of Kohonen's self-organising model. This 
neural technique is compared with a number of 
conventional thinning techniques qualitatively as 
well as quantitatively. The comparative studies, car- 
ried out here, demonstrate that the neural technique 
has some advantages over the existing conventional 
thinning techniques. Most of the existing conven- 
tional algorithms are not robust to noise; some of 

References 

1. Smith RW. Computer processing of line images: a 
survey. Pattern Recognition 1987; 20:7-15 

2. Lam L, Lee SW, Suen CY. Thinning methodologies - 
a comprehensive survey. IEEE Trans. PAMI 1992; 
14:869-885 

3. Datta A, Pal T, Parui SK. A modified self-organizing 
neural net for shape extraction. Neurocomputing 1997; 
14:3-14 

4. Kohonen T. Self-Organization and Associative Mem- 
ory, Springer-Verlag, 1989 

5. Sabourin M, Mitiche A. Modeling and classification 
of shape using a Kohonen associative memory with 



Shape Extraction 355 

selective multiresolution. Neural Networks 1993; 6: 
275-283 

6. Fritzke B. Let it grow - self-organizing feature maps 
with problem dependent cell structure. In: Kohonen T 
et al. (eds), Artificial Neural Networks, vol. 1, North- 
Holland, 1991 

7. Choi D, Park S. Self-creating and organizing neural 
networks. IEEE Neural Networks 1994; 5 :561-575 

8. Kangas JA, Kohonen T, Laaksonen J. Variants of 
self-organizing maps. IEEE Trans Neural Networks 
1990; 1 :93-99 

9. Datta A, Parui SK. A robust parallel thinning algor- 
ithm for binary images. Pattern Recognition 1994; 27: 
1181-1192 

10. Jang BK, Chin RT. One-pass parallel thinning: analy- 
sis, properties and quantitative evaluation. IEEE Trans 
PAMI 1992; 14:1129-1140 

11. Arcelli C, Cordella L, Levialdi S. Parallel thinning of 
binary pictures. Electron Lett 1975; 11:148-149 

12. Tamura H. A comparison of line thinning algorithms 
from digital geometry viewpoint. Proc 4th Int Joint 
Conf Pattern Recog, Kyoto, Japan, 1978; 715-719 

13. Hilditch CJ. Comparison of thinning algorithms on a 
parallel processor. Image Vision Comput 1983; 1: 
115-132 

14. Jang B, Chin RT. Analysis of thinning algorithms 
using mathematical morphology. IEEE Trans PAMI 
1990; 12:541-551 

15. Datta A, Parui SK. Skeletons from dot patterns: a 
neural network approach. Pattern Recognition Letters 
1997; 18:335-342 

16. Arcelli C, Ramella G. Finding grey-skeletons by iter- 
ated pixel removal. Image and Vision Comput 1995; 
13:159-167 


