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Summary. The paper presents an exact analysis of the streamwise dispersion of passive contaminant 
molecules released in an incompressible viscous fluid flowing through a channel under the influence of a 
periodic pressure gradient. Using the Aris-Barton method of moments which is valid for all time after the 
injection of the solute, the dispersion coefficients of a passive contaminant cloud are obtained separately 
for three different cases: steady, periodic and for comparison the combined effect of steady and periodic 
currents. Here it is shown how the injected material disperses due to the shear effect caused by the com- 
bined effects of flow (steady or periodic) and lateral diffusion about its mean position, and how the centre 
of gravity of mass moves, when the initial distribution of contaminant is uniform over the cross-section of 
the channel. The comparison reveals that for all cases the dispersion coefficient asymptotically reaches a 
stationary state after a certain time, but it changes cyclically with dispersion time even in the stationary 
state for the case of oscillatory flows. The analysis leads to the interesting result that the dispersion coeffi- 
cient consists of a steady part and a fluctuating part due to the pulsatility of the flow. 

1 Introduction 

The dispersion of  a cloud of  soluble matter injected into a pipe has been extensively studied 

by many researchers following the classical works of  G. I. Taylor [10]. Taylor first presented 

the idea of  "shear effect" for the case of  dispersion of  passive contaminant  in a viscous lami- 

nar flow through a circular tube. He also pointed out that the dispersion of  a soluble matter 

in a laminar flow through a capillary tube can be described by means of  an apparent diffusion 

coefficient due to the combined action of  convection and molecular diffusion in radial direc- 

tion. His analysis is applicable at asymptotically large time (after injection). Aris [1] extended 

Taylor 's  theory to include longitudinal diffusion and developed an approach "method of  

moments"  to analyze the convection process in steady flow using first few integral moments. 

He showed from second moment  that the effective longitudinal dispersion coefficient D~ is 

proportional to D + P~2D~, where P~ is the P6clet number which measures the relative 
characteristic time of  the diffusion to the convection process, D~ is the apparent dispersion 

coefficient. Barton [3] presented an approach for steady flow that resolved certain technical 

difficulties in the Aris method of  moments and obtained the solutions of  the second and third 

moment  equations which are valid for all time. All the papers mentioned above were based on 
steady flow. 

Aris [21 used his method of  moments to analyze the longitudinal dispersion coefficient of  a 
soluble matter in an oscillatory flow of  a viscous incompressible fluid within an infinite tube 

under a periodic pressure gradient. However, his analysis was also limited to asymptotically 
large time after the injection of  the solute and did not throw any idea on the instantaneous 

variation of  the dispersion coefficient with time immediately after the injection of  the solute. 
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Chatwin [4] employed an exact solution of the diffusion equation to study the dispersion in 
oscillatory flow. He showed that the simple Gaussian form for the cross-sectionally averaged 
concentration that was proposed by Taylor [10] for a steady flow was retrieved after a suffi- 
ciently large time in oscillatory flows, and also pointed out that the contaminant may appear 
to be periodically expanding and contracting. The effect of flow oscillation (without a time- 
mean flow) due to a periodic pressure gradient on the axial diffusion of a solute in a pipe was 
studied by Purtell [8], considering a small perturbation to the oscillation Reynolds number. 
Smith [9] analyzed the variance and the dispersion coefficient during the initial to the statio- 
nary stage in the oscillatory flow. He pointed out that the dispersion coefficient may be some- 
times negative due to the reversing flows in oscillatory current, which describes the periodicity 
in the concentration of the contaminant. Yasuda [11] examined the dispersion process from 
the initial to the stationary stage in both steady and oscillatory current and proposed a new 
definition of vertical averaging on variance to escape the negative dispersion coefficient. Some 
important characteristics of time-dependent laminar flow may be found in Jimnez and Sulli- 
van [6], who studied the rate of growth of variance by using the probabilistic approach. Muk- 
herjee and Mazumder [7] extended the Aris-Barton method of moments for studying the all 
time evolution of the central moments of dispersion of a passive contaminant cloud in an 
oscillatory flow. The solution was based on the method of separation of variables which 
depends upon a certain eigen-value problem with a discrete spectrum of eigen-values. They 
studied the contribution of the flow oscillation to the longitudinal dispersion coefficient 
during the initial to stationary stage within a tube, when the initial distribution of contami- 
nant cloud was uniform, and the P6clet number was large. Their analysis was carried out in 
the flow through a tube in the presence of a periodic pressure gradient with non-zero mean. 
They confined their analysis only to the case of combined effect of steady and periodic flow 
within a tube. The dispersion coefficient due to periodic current was not studied separately by 
Mukherjee and Mazumder [7]. 

The aim of the present paper is to study the longitudinal dispersion coefficient of passive 
contaminant in a viscous incompressible fluid flowing through a parallel plate channel under 
a periodic pressure gradient with a non-zero mean. The solution is based on the method of 
moments due to Mukherjee and Mazumder [7] by suitably modifying the treatment of Barton 
[3], who studied only steady flows. Results are shown for all time period how the spreading of 
tracers is influenced by the combined effect of flow (steady or unsteady) and diffusion in the 
cross-sectional plane about its mean position, and how the centre of mass of solute moves, 
when the contaminant is initially uniform over the cross-section of the channel and the P~clet 
number is large. The analysis has been performed for three different velocity profiles to iden- 
tifY the individual effect on dispersion processes due to steady, periodic and for comparison 
the combined action of steady and periodic currents. The motivation of the study of diffusion 
in oscillatory flows stems mainly from important applications, namely, the dispersion of tra- 
cers in pulsatile blood flow in a cardiovascular system, the chemical reaction designs, studies 
on flow transients using probes based on diffusion controlled electrode reactions and the dis- 
charge of outfalls in homogeneous tidal estuaries. 

2 Mathematical formulation 

Consider a two-dimensional fully developed pulsatile laminar flow of a viscous incompressible 
fluid between two parallel plates of distance 2L apart. We employ a coordinate system with 
z*-axis along the flow and y*-axis perpendicular to the flow and where the plates are at 
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y* = 4- L. The flow is driven by a periodic axial pressure gradient with a non-zero mean given 

by 

l o p  - Pz* (1 • ee i~~ (1) 
O 0x* 

where 0 is the density of the fluid (assumed to be homogeneous), P~, is the mean pressure 
gradient, eP~, and w are respectively the amplitude and frequency of the pressure pulsation. 

The velocity distribution u*(y*, t*) parallel to the x*-axis satisfies the Navier-Stokes equa- 
tion 

cOu * 1 019 ['O2u*'~ 
ot~ - ~ Ox* + ~ t ~ y , ~ )  (2) 

with no slip conditions at the boundary u*(+ L, t) = 0, where u is the kinematic viscosity of 
the fluid. 

When a contaminant of constant molecular diffusivity D is injected into the above men- 
tioned time-dependent flow, the concentration C(x, y, t) of the contaminant satisfies the 
dimensionless convective-diffusion equation of the form 

OC 0C ( 0  2 0 2 ) 
at t- P~u(y,t) o~z = O~2x2 + ~  c (3) 

where the dimensionless quantities are given by 

x* y* Dr* u* UL 
x L '  Y = L '  t -  L2 , u = ~ ,  Pc D 

U is the reference velocity. The P~clet number Pe, introduced here, measures the relative 

characteristic time of the diffusion process ( ~ - )  to the convection process ( L )  . 

The initial and boundary conditions for the contaminant input are 

C(x, y, 0) = C(x, y) 

0C 
- - = 0  at y = •  
Oy 

C is finite at all points, (4) 

x~C--+O and x'~Ox~C--~O as Ix[--*oc, m , n = 0 , 1 , 2 , . . .  

+1 +oc  

2 
1 --OO 

The solution of Eqs. (1) and (2), satisfying the no-slip conditions u( •  t) = 0 at the 
boundary y = • is given by 

~(V,t) = ~o(y) + ~ ( ~ , t )  (2) 

where 

1 (i - y2) 

~l(y,t) = -ReI~ (1 cosh v~ y'~ d~s,] 
~-;E~h ~ - ;  ' 

(6) 

(7) 
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%* / 
and u = -  is the dimensionless axial velocity fU being the time averaged axial velocity 
px, L2~ U ojL2 

\ 

- ~  ),  c~ = ~ is the dimensionless frequency parameter or oscillation Reynolds number, 

u 
S = ~ is the Schmidt number. The first term of  the right-hand side of  (5) corresponds to 

plane Poiseuille flow and the second term corresponds to the flow due to pulsation. Here, of  

course, the physical significance is attributed only to the real part, and the real part of  u(y, t) 
is given by 

u(y,t) = 5(1 _y2)  K 1 cosh ycos y - K  1 

+ K 2 ( s i n h @ 2 y s i n ~ y - K 2 ) }  sinc~St 

+ K] sinh y sin y - K2 cosh y cos y cos ctst (8) 

d e  where K1 = cosb_ cos , and K2 = sinh sin . 

Following Aris [1], [2] we define the n-th moment  of  the concentration distribution 
through y at time t as 

+co 

t) = / PC(x, y, t) dx (9) C~(y~ 
- c o  

and the n-th moment  of  the distribution over the cross-section of  the channel as 

+1 1/ 
Mn(t) = ~ Cn(y, t) dy = C,z. (10) 

- 1  

Using (9) and (10) in Eqs. (3) and (4), we have the following moment  equations: 

OC~ = 02Cn + n(n - 1) Cn-2 + nPeu(y, t) C~ 1 (11) 
Ot c9y2 

with 

ac~ 
c,~o,  o) = c ~ o ) ,  ay = o ~t y = •  (12) 

and 

0 M~L 
-- nPeuC~_l + n(n - 1) M~-2 (13) 

Ot 

with 

M~(O) = d~. (14) 

Here an overbar denotes the cross-sectional mean. Also Mo(t) = 1, since C has cross-sectional 
mean unity for all time (see (4)), and Ml(t) is the mean of  the distribution and M,(0)  = 0 for 
n > 0 .  
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The n-th central moment  of  the concentration distribution can be defined as 

+1 +oc  

1 
L'n(t)=9~o / / (x-~2g)nCdxdy 

--1 oc 

(15) 

+1 +oc  

where 2g - 221//0 xC dx dy = M00 can be regarded as the 'centroid'  of  the contaminant  

--1 --~o 

distribution which measures the location of  the centre of  gravity of  the cloud movement with 

the mean velocity of  the fluid, initially located at the source, and the second central moment  

(u2) can be related to the dispersion of  diffusing substance about its mean position. Thus we 

have the expression for central moments: 

.~ ( t )  = ~ - x ,  ~ 

M3 3er - ~,3(~) = ~ - - xg 3 

3//4 42gua(t) - 6292,2 - 

(16) 

Though the third and fourth moments are also important  factors during the initial stage, 

the present study is concentrated only to the dispersion effect (variance). 

The aim of  the analysis is to solve the moment  equations (11) and (13) subject to the initial 

and boundary conditions (12) and (14) for n = 0, 1, 2 . . . .  The method of  solution adopted 

here is the Aris method of  moments as modified by Barton [3] for steady flow and later by 

Mukherjee and Mazumder [7] for oscillatory flow. According to Mukherjee and Mazumder  

[7] we consider an eigen-value problem 

d 0 ) 
~2 at ~#' fi=o (17) 

0fi 
-- 0 at y =-t-1, fi finite (18) Oy 

where i runs over the positive integral values. 
( i ~ )  2 

This gives us a discrete set of  eigen-values #i - (1 + c) 

tions fi(y, t) = , /2  cos iTre -"~et, i = 1, 2, 3 , . . . ,  so that 

- -  and the corresponding eigenfunc- 

fifj=O, if i T~j (19) 

fifj hi, if i = j  

where hi is the function of  t alone and hi(0) = 1. To complete the set of  eigen-functions we 

augment this set by setting f0 = i corresponding to #0 = 0. 
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Following Mukherjee and Mazumder [7], the expression for variance u2 (t) is given by 

u2(t) : 2 t -  2Pe 2 Ea~i(O) / uffie -~t dt § 2Pe2E /a~iu-ff i dt 

where a~o~(t) = e-~# f e~#~f Aq~(~) at. 
The rate of growth of variance which indicates the degree of dispersion effect at any time 

is given by 

1 du2 -- 1 + p~2Da (21) 
2 dt 

where D~ is the apparent dispersion coefficient depending on parameters S, o~, e and t. The 
first term on the right-hand side comes from longitudinal diffusion and the second term repre- 
sents the interaction between the convection and lateral diffusion. The analysis is confined to 
study the behaviour of variance u2 and the dispersion coefficient D~ due to shear effects of 
steady, oscillatory and the combined effect of steady and periodic currents separately. 

2.1 Plane Poiseuille flow 

The velocity distribution of the plane Poiseuille flow through a parallel plate channel is given 
(putting c = 0 in (5)) by 

1 (1 - y~) .  (22) ~ ( y )  : ff 

The corresponding results for the plane Poiseuille flow may be retrieved from the eigenvalue 
of~ 

problem (17) by putting ~ -  equal to zero and which is same as given by Barton [3]. The eigen- 

values and the corresponding normalised eigen-functions for this steady flow are therefore 
given by 

#i = (iTr) 2, fi(Y) = v/~ cos iTry i = 1, 2 , . . .  (23) 

The corresponding expression for variance u2 is 

1 du2 . 
The rate of change of variance ~ ~ -  is proportional to the sum of a constant quantity 

one due to longitudinal diffusion and the apparent dispersion coefficient Da given by 

2 
Dalsteady = z ~  " ~ - g ( 1 - - e - " r  (25) 

For large time (t ---, oc), the longitudinal dispersion coefficient D~ can be written as 

t~oo 1 d~'2 t~oo ~ .  2 z)~ _ ~ ~ -  = ~ + po2 . ( i~ )  6 

which is consistent with the asymptotic results of Chatwin [4] and Barton [3]. 
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2.2 Periodic flow 
If we consider the flow to be unsteady only due to the periodic pressure gradient, the velocity 
of the fluid can be obtained form Eq. (5) by setting u0 = 0, c r 0 and is given by 

= ~/'I(Y,/;) ( 2 6 )  

where ul(y, t) is given by (7). 
Using the general form of u2 (t), from Eq. (20) we can easily derive the explicit expression 

for variance us taking into account the eigen-values and the corresponding eigen-functions of 
the eigen-value problem (17). 

The expression for variance uz (t) is thus obtained as 

= t-2Pe 2 E  bi2 D 2 i - ~  Dli 
i 2 i -- 

) ] X D2i ~ - Dl i  sin c~St - D2i + ~ Dli  ( c o s  O~St --  1) e -iz~r2t 

E bi +2Pe2 i 4as[(D~i-D~i-2D2~Dli~)sin2c~St 

+{2D2iDli +i~2(ctS ,D22~_ D~i)}(1 - cos 2c~St)] 

where bi - (i~r)2 
(o~S) 2 + (izr) 4 

C C 
Dli  = - ( K 1 R 2  + K 2 R 1 ) ,  D2i = - 

v%(K1 ~ + K22) ~ ( K 1 2  + K2~) 

2 
R1 = sin ( V / ~  + ir 0 cosh V/~-/2 

+ ( 4 a  + i~)  ~ 

- ( ~  + iTr)cos (V/a-/2 + ilr)sinh ~ ]  

2 
. - ( , / a  + i~) ~ [ V ~  ~i" ( , / a72  - i~) cosh , / 7 / 2  

- ( ~  + i70 cos ( V / ~  - i~) sinh N/~], 

2 [ ( ~ / ~  § i T r) sin ( ~  + i T r) cosh V/~-/2 
R2 = c~ + ( v / ~  + ire) 2 

+ ~ cos ( ~  + ire)sinh X / ~ ]  

2 [(Vr@2_ix) sin(x/~_i~r)coshv/~/2 
~ - ( v ~  + i~)  ~ 

- V / ~  cos ( . , / ~  - irr)sinh ~/~]. 

The apparent dispersion coefficient Da can be obtained from (21) as 

bi 
D~l.~st = ~ ~ [(D~i § Dgi) + A 1 COS 20~S~ -]- A 2 sin 2~St] 

i 

- E b i ( S 2 i - ~ D l i )  ( D 2 i c o s o ~ t q - D l i s i n o ~ ) e  -i2~2t 

c~S 
where A,  = D~ - D~ - 2D~Dz~ 

(K1R 1 - -  K2R2) , 

a S  2 
and A~ = 2D~DI~ + ~ (D~ - D~O. 

(2r) 

(2s) 
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For a large time after the release, the expression for D~[~  t reduces to the form 

D~[unst ~ Ao + [A1 cos 2c~St + A2 sin 2aSt] (29) 

where the constants A0, Am and A2 depend on c, c~ and S. This result is consistent with the 
work of Chatwin [5]. It is observed that Eq. (29) consists of a steady A0 and a fluctuating part 
within parentheses due to the periodicity in the flow. 

As the parameters E, c~ and S are involved in the expression of velocity u, the variance u2 
and D~ are much more important from the physical point of view. The parameter c indicates 
the extent to which the velocity profile deviates from the Poiseuille profile after the perturba- 

,[c~ L2 1)  
tion is introduced in the steady flow. On the other hand, the parameter a [ =  = - -  �9 is 

y " 

a measure of the ratio of the time required for viscous force to diffuse across the channel 
width (L2/u) to the period of imposed oscillation (1/cJ), and the Schmidt number S is a meas- 

ure of the ratio of the intensities of viscous diffusion and the molecular diffusion. Therefore, 

- can be regarded as the ratio of the time taken for transverse variations in 
/ /  

concentration to be smoothed out by molecular diffusion (L2/D) to the period of imposed 
oscillation. 

The effect of the oscillation parameter on the variance v2 and the apparent dispersion co- 
efficient Da will be discussed later on. 

2.3 Flow due to periodic pressure gradient with non-zero mean 

Now we fix our attention to the dispersion phenomena due to the shear effect produced by 
the combined action of steady and periodic currents as given by the velocity distribution (5). 
Using the eigen-values and the corresponding eigen-functions of the eigen-value problem (17) 
in the equation of variance (20), the explicit expression of u2(t) for the combined flow can be 
obtained and the corresponding expression for De is given by 

Da] . . . .  b i n e d  = Dalunst + ~ + a i ' ( D l s i n a S t + D 2 c o s a S t )  (1 + i27r2bi) 

(30) 

(-1)'+1x/2 , ai 
where ai - i27r 2 , ai i27r 2 . 

For a large time after the release, the expression for Da]combined reduces to 

Da[combined ~ A0 t § A1 ~ cos 2aSt + A2 ~ sin 2aSt + A3 ~ sin aSt + A4 ~ cos aSt (31) 

where the constants A0 ~ and X s  are real constants. This result is more general than that ob- 
tained by Chatwin [5]. 

The second term of the right-hand side of Eq. (30) under the parentheses is attributed to 
longitudinal dispersion due to non-zero mean in the pulsatile flow. The corresponding results 
for the steady flow can be obtained by putting e = 0 in the expressions for the variance u2(t) 
and the apparent dispersion coefficient Da (Eq. (30)) and are given by Eqs. (24) and (25) in 
the plane Poiseuille flow. 
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3 Discussion of results 

The results obtained in the previous Section are discussed in the following paragraphs and the 
effect of oscillation parameter on the longitudinal dispersion has also been widely discussed. 

The first order moment of the concentration distribution of solute Ca can be obtained 
from Eq. (11) putting n = 1 in the case of unsteady flow (u = ua(y,t)) and the combined 
action of steady and periodic current (u = u0 (y) + ul (y, t)) separately. Following Mukherjee 
and Mazumder [7], the solution for C1 in the case of unsteady flow is given by 

D aS'~ C,(y, t ) L =  = E1 -- ~ Pe ~i D2 - 1 i ~ 2 )  bi cos iTry e -i2~2t ~- ( E  1 cos o~St -- E 2 sin aSt) 

aS sinaSt)] bicosiTry 1 i ~ 2 )  COS O~St Jr- q- 

cPe (sinh 2 V/~-/2 sin2 V / ~  + cosh2 a ~ / ~  cos 2 X / ~ )  and where E1 = - 2a2S(K12 + K22) 

sP~ (sin X/z~-/2 cos V/a/2 - s i n h  V / ~  cosh V / ~ )  E2 = 2ct2S(K12 + K22 

Similarly, the expression for C1 in the combined action of steady and periodic flow can be 
obtained as 

( . , aq2 ) The variation of C1 against y for different phase values aSt  = 2 '  has been plotted in 

Fig. 1 for a = 0.5, 4.0 when e = 1.5 and S = P~ = 103. Figure 1 a shows the periodicity of C1 
with flow phases due to the oscillatory nature of the velocity profile. The variation of C1 
against 2 due to the combined effect of steady and periodic current is shown in Fig. 1 b and it 
is observed that C1 oscillates with flow phases and that the effect of steady current in C1 is 
more significant than the oscillatory one. 

d 

1.5 

1 

0.5 

0 

-0.5 

-1 

( a )  

~ =  o.5 
_ ---- ~= 4.0 x . ~  

o~ _ ~ ~ . . ~ . ~ l - - ~ , 2 ~  
~ _- _- -_ - :-k _- __- - ~_ - _ ,  . _ ~ : : :  : ~  

0 0.2 0.4 0.6 0.8 

Y 

cY 2 

0 
0 

I 

(b) 

.... oc=4.0 X 

' 

0.2 0.4 0.6 0.8 1 

Y 

Fig. 1. First order moment C1 against y (channel width) for different phases, when S = Pe = 10 ~, e = 1.5; 
a periodic flow, b combined effect of steady and periodic flow 
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lO .-. / (a) 2 

, /  / 
/ o o~.b ~.2~-~- ........ 

_ o - - - ~ . . . .  u n s t e a d y  

f-X .... 7"\ .r- f ' ,  "'~,,_,, \ , j  X,/  \ .  

-5 

1.5 

0.5 

. . . . . . . . . . . . . . . . . . . . . . . . .  0.5 
0.01 0.02 0.03 0.04 0.05 

(b) 

~ _ i i l s t e a d y , . , ,  

, , , , I , i , t I , , , , I , , , , t . . . .  

0.001 0.002 0.003 0.004 0.005 

t t 

Fig. 2. Comparison of centroid displacement (:~9) due to steady, periodic and the combined effect of 
steady and periodic flow, when S = Pe = 103, c = 1.5; a a - 0.5, b a = 4.0 

The first moment  3/I1 (putting n = 1 in (13)) indicates the mean concentration distribution 
over the cross-section of the channel. The mean longitudinal displacement ~g = (M1/Mo) of  
the solute moving with the mean periodic velocity of  the fluid mainly depends on a,  ~ and t. 

Figure 2a,  b shows the displacement of  centroid (:~) for three different velocity profiles 
(steady, periodic and for comparison the combined effect of  steady and periodic) and for 
c~ = 0.5, 4.0. It is seen that for plane Poiseuille flow the centroid of  slug increases linearly with 

time; for periodic flow, it increases with wavy nature and for combined flow, the centroid 
moves cyclically with the oscillatory nature of  the flow, and it changes asymptotically over a 
period. 

Figure 3 ~ d  represents the plots of  variance u2 of the longitudinal concentration distribu- 
tion against the dispersion time (t) for low and high frequency of  oscillations (c~ = 0.5, 4.0) 
due to oscillatory current. In steady current variance u2 increases rapidly with dispersion time 
(t) which agrees well with that of  Yasuda [11] in which he has shown the temporal  changes of  
the vertically averaged variance (obtained from averaging the concentration of  the diffusion 
substance). In ocillatory flow for small frequency (a  = 0.5), it is seen that  the variance increa- 

ses with time in a wavy nature. In one complete period, variance changes cyclically with a 
double-frequency (Fig. 3 a) and it reaches a stable state after a certain time (~  t > 0.3), whe- 
reas for high frequency oscillation (a  = 4.0) the nature of  double-frequency oscillation in the 
variance almost vanishes (Fig. 3 c) and it increases with a wavy nature (Yasuda [11]). Further,  
if we fix our attention on the temporal  variation of u2 with a due to the combined effect of  
steady and oscillatory current, it is seen from Fig. 4 a, b that  the variance for low frequency 
(u2) increases rapidly with time (t) in wavy pat tern at small time (0 < t < 0.05). This pheno- 
menon is still there for large (a = 4.0) at small time (Fig. 4c, d) and it reaches a steady state 
after a certain time. The nature of  double-frequency oscillation diminishes for both  cases. 
F rom these observations it may be concluded that  the variance (u2) due to the oscillatory cur- 
rent was found to be much smaller than that due to the steady and the combined effect of  
steady and periodic currents. That  is, the pulsatility of  the flow arising out of  a periodic pres- 
sure gradient reduces the value of  u2. 

Following Aris [1], we have already described the apparent  longitudinal dispersion coeffi- 
cient Da as a function of  a,  e, S and the dispersion time. This dispersion coefficient Da will be 
discussed for each velocity distribution and different frequency of  oscillation. In the case of  a 
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0 

( a )  

0.005 0.01 0.015 0.02 0,025 0.03 
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1.2 

1.15 
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1.05 

1 
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(b)  

0.305 o.31 o.315 0.32 
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0.005 

(c) 
0.65 

0.64 

0 . . . . . . . . . . . . . . . . . . . . . . .  0.6 
0 0.001 0.002 0.003 0.004 0.005 0.3 

0.63 

0.62 

0.61 

(d) 

, , , , I , , , , I , , , , I , , , , 

0.305 0.31 0.315 0,32 

t t 

Fig. 3. The temporal variation of variance (u2) due to periodic flow for S = P~ 103,e = 1.5; a small 
time, 5 large time when c~ = 0.5; e small time, d large time when a = 4.0 

steady flow (u = u0), the dispersion coefficient Da increases with time (t) and asymptotically 
reaches a steady state (~  0.0023) at dimensionless time N 0.34. It is interesting to note that 

the dispersion coefficient for steady flow through a channel is much smaller than that of  the 

flow through a tube. Smith [9] pointed out that in steady flow the apparent longitudinal 

dispersion coefficient can exceed molecular diffusivity or eddy diffusivity by many orders of  
magnitude, and high apparent diffusivities are only achieved after the solute has been mixed 

right across the flow. The variation of  the apparent dispersion coefficient Da with dispersion 

time t in the oscillatory flow (u = %1(y ,~) )  is plotted in Fig. 5 for a = 0.5, Fig. 6 for a = 1.0 

and Fig. 7 for a = 4.0. Now v ~ can also be considered as the ratio of  the half of  channel 

width (L) to the thickness of  the Stokes boundary layer x/~-/w. A small value of  a implies a 
large viscous layer near the wall compared with a small inviscid core near the center or, alter- 

natively, a large oscillation period compared with viscous diffusion time and therefore quasi- 
steady flow and vice-versa for large a. When ~ = ~x//JL2/D is large then the diffusion term 
in Eq, (3) for C is much less than the time-derivative one and consequently the concentration 

varies very little in the transverse direction except in the thin boundary layer. When ~ is 
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small, the diffusion terms are more dominant  and concentration is unaffected by the periodic 
pressure. F rom Fig. 5 it can be seen that Da changes cyclically with a double-frequency period 
in oscillatory flow and after a certain time it reaches a stationary state. At low frequency 

(c~ = 0.5) of  oscillation the amplitudes of  Da are approximately equal for all time (Fig. 5 a) 
whereas in the case of  high frequency (oz = 4.0) Da varies cyclically with the same frequency 
of  oscillation as the periodic current during the initial stage and then it fluctuates with a 
double-frequency oscillation. It  is observed from the figures that  for small a the dispersion 
coefficient Da reaches the steady state earlier than that  for large c~. Figures 6 and 7 show that  
for high frequency D~ is more  significant during the first half  of  the period than the second 
one. The solute disperses at a fairly uniform rate after a certain time (t ~ 0.4), that  means Da 
oscillates steadily (Yasuda [11]). The fluctuations in the velocity profile induce the positive 
and negative dispersion during the period of  oscillation. A negative dispersion coefficient has 
been obtained due to the reversing flow of  oscillatory currents (Smith [9]) at a particular level 
and D~ decreases with increasing a which shows that  due to the high frequency of  oscillation 
Da becomes negligible although for steady and quasi-steady flow it is more significant. It  can 
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be seen that  at a fixed instant the ampli tude of  De increases with increase in the ampli tude of  

the pressure pulsation. 

F o r  comparison,  the plots of  the apparent  longitudinal  dispersion coefficient Da due to 

the combined effect of  steady and oscil latory current  for different frequency of  oscillation c~ 

(e = 1.5, S = 103) are also shown in Fig. 8 for c~ = 0.5, Fig. 9 for c~ = 1.0 and Fig. 10 for 

a = 4.0. I t  is observed that  Da in the combined flow is much more significant than D~ in the 

oscil latory flow and it is also seen that  in the combined flow Da has no longer the double-  

frequency period. The ampli tude of  oscillation increases initially upto a certain time and then 

it stabilizes for a long time which means that  the apparent  diffusion coefficient Da due to 

steady flow plays a more significant role than that  due to the periodic flow. The variat ions of  

Da for the frequency parameter  c~= 1.0,4.0 have been plot ted in Fig. l l a ,  b for 

S = 1.0, e = 1.5 for unsteady and combined flow. It is thus quite clear that  both  ampli tude 

and frequency of  pressure pulsat ion exert enormous influence on the longitudinal  dispersion 

due to unsteady as well as combined flow. The most  interesting fact is that  the apparent  

dispersion coefficient Da for both  unsteady and combined flow consists of  a steady par t  (A0 
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in Eq. (29) and A0 / in Eq. (31)) and a fluctuating part  due to the pulsatility of  the flow. It is 

also noted that there is a remarkable difference in the behaviour of  the longitudinal dispersion 

coefficient for small and large values of  frequency of  imposed oscillation. 

4 Conclusion 

We have focussed our attention to the dispersion processes of  contaminant  molecules due to 
the shear effect individually generated by steady, oscillatory and the combined action of  
steady and oscillatory currents through a parallel plate channel; and also we have compared 
some specific results with particular emphasis on the role played by non-zero mean flow. All 
the investigations have been done for flow velocities when the slug is released at the maximum 
pressure at time (l) equal to zero, given an initially uniform slug over the cross-section of  the 

channel and a large P6clet number. 
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The temporal variation of  centroid displacement ( ~ )  of  the slug due to the periodic 

current is much smaller than that for the steady or the combined steady and periodic currents. 

As the periodic flow moves with the mean flow in the same direction, the effect of  frequency 

of  oscillation due to pulsatility in pressure gradient on the central displacement becomes less 

significant, and hence it behaves like quasi-steady. 

The apparent dispersion coefficient (Da) reaches a stationary state after a certain time for 

all cases of  velocity profiles, though it changes cyclically with time for periodic and combined 

flow. It is important  to note that the dispersion coefficient (Da) due to oscillatory current is 

much smaller than that due to steady and combined effect (flow due to periodic with non-zero 

mean). For  low frequency of  oscillation, D~ varies cyclically with double-frequency period 

from the initial stage, whereas for high frequency of  oscillation it appears that D,  goes on 

changing cyclically with the same frequency as the periodic current at the initial stage, and 

then it oscillates with double-frequency period at large time. When these are compared with 

D~ due to the combined shearing effect of  steady and oscillatory currents, D ,  no longer has a 

double-frequency period, which means that the influence of  mean flow plays a significant role 

in the dispersion process. It is also quite interesting to note from the analysis that the apparent 

dispersion coefficient due to pulsatility of  the flow consists of  a steady and a time-dependent 

part, which is consistent with the results of  Chatwin [5]. Both amplitude and frequency of  

pressure pulsation exert enormous influence on the steady as well as the time-dependent parts 

of  the longitudinal dispersion coefficient. 
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