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Steady thermocapillary and buoyancy driven flow in two-dimensional slots 

R. M. BARRON a*, B. S. DANDAPAT b 

ABSTRACT. - The effect of buoyancy on the flow in a two-dimensional slot, induced by a temperature gradient along the free surface between 
two immiscible fluids, is investigated. For small aspect ratio slots, the complete flow structure is calculated using asymptotic matching of the 
outer core flow and the inner boundary layer flow near the side walls. The shape of the deformed free surface is also obtained. Buoyancy 
causes a decrease in the magnitude of the deflection, but does not affect the shape. The theory is validated against some earlier experiments 
using acetone. 0 Elsevier, Paris. 

1. Introduction 

Variation of surface tension due to temperature gradient can initiate the onset of convection even in the 
absence of buoyancy, as first shown by Pearson (1958). This convection, due to the shearing forces produced in 
the surface layer by gradients of surface tension, is known as Marangoni convection. Several authors (e.g. Nield 
(1964), McConaghy and Finlayson (1969), Dandapat (1990)) have studied the effects of different kinds of body 
forces and thermal conditions on Marangoni convection. In most of these studies, the free surface is considered 
to be undeformed, which is unrealistic. In recent years, attempts have been made to include the deformation of 
the free surface and study its effect on the onset of convection. Among these, Benjuria and Depassier (1987) 
Gouesbet et al. (1990), Dandapat and Kumar (1992a, b) deserve some attention. But all the above mentioned 
works are mainly confined to considering a vertical temperature gradient in the presence/absence of gravity. 

Steady thermocapillary flow can also be generated by applying a temperature gradient along the interface 
between two immiscible fluids. This general class of flows has been well-documented in the review articles by 
Kenning (1968), Levich and Krylov (1969) and Ostrach (1977, 1982). Marangoni convection plays a crucial 
role in crystal growth under microgravity conditions. It is known that the nature of the crystal formed depends 
largely on what occurs in the vicinity of the fluid-solid interface. In that thin zone, the physical and/or chemical 
transformation that occurs during the crystal growth mostly depends on the change in composition across the 
interface. It is also known that the convection increases the overall transport and hence the growth rate, but 
on the other hand, it seems to affect the morphology of the solid adversely. The result, in any case, depends 
on density gradients in the fluid that vary in direction and generate buoyancy-driven convection that can alter 
the transport of heat and other constituent chemicals which may change its shape under some circumstances, 
periodically in others and chaotically in still others. Thus, flow conditions in the vicinity of the fluid-solid 
interface deserve some careful attention for the understanding of the crystal growth. This motivated Pimputkar 
and Ostrach (1980), Sen and Davis (1982), Strani, Piva and Graziani (1983), Chan, Mazumdar and Chin (1984) 
Srinivasan and Basu (1986), Zebib, Homsy and Meiburg (1985), Sen (1986) Rybicki and Floryan (1987a, b), 
Kuhlmann (1989), Hadid and Roux (1991) to study the flow under different geometric conditions. Several 
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authors, including Kirdyashkin (1984). and Villers and Platten ( 1987. 1992) have undertaken experimental 
investigations on Marangoni convection. 

The aim of the present paper is to calculate the shape of the interface analytically for small aspect ratio and 
provide details of the flow structure inside the slot. To obtain the complete flow structure we need to calculate 
the boundary layer flow near the hot and cold boundaries by a finite difference method and match them with 
the core flow by an asymptotic matching principle. 

2. Formulation of the problem 

Consider a rectangular cavity of height d and length /! filled with an incompressible liquid of density 11. 
thermal diffusivity k: and viscosity h (Fig. 1). The end walls are maintained at constant temperature TH and 7:’ 
with TH > Tc and the lower horizontal boundary is thermally insulated. The upper boundary is a free surface 
defined by ~1 = /L(X) and bounded by a passive gas of negligible density and viscosity. When AT = TH - 7;. 
differs from zero, a thermocapillary flow is induced due to the variation of the surface tension 0. It is convenient 
to introduce dimensionless lubrication-type (primed) variables: :I: = I:c’, 111 = dy’, Ir, = d/t,‘, u = I/*IL’, II = t~,/t’, 
p = (/m,l/d’)p’, T - T,,,., = (AT)T’ where E = d/l is the aspect ratio and T,,,.,, is the average of the hot 
and cold wall temperatures. The characteristic velocity 71,~ is obtained by considering the balance between the 
shear stress and the thermal stress acting along the interface and is given by u* = yeAT/,u, where y = $. 
The dimensionless governing equations (with the primes dropped) can be written as 
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Fig. I Rectangular cavity 
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The Reynolds number R,, Marangoni number A&, and Grashof number G,. are defined by R, = $, 
n/r z $, and G,. = “’ ‘:T’ @, where a is the volumetric expansion coefficient, v = p/p is kinematic 
viscosity and y is acceleration due to gravity. The boundary conditions for the dimensionless variables on 
the solid walls are 

u=w=o; T=+on:E=*; 

(-3 ‘l/, 1 ‘(j = 0, T!, = 0 on y = 0. 

On the free boundary, y = h(x), the following must hold: 

(6) 

pn - p + 2EZ (1 + E2h’2)-1 [71Y - Au?, + E”h’ (h’?& - ?Ic)] 

zz ~~c-lh” (1 + ~~h’~)+ (1 - E-lCT), 

(uy + E~‘u,,,) (1 - e’h”) + 2c2h’ (v?, - u,r) = -(l + E2h’2)i (T, + h/T,), 

(1 + e2h1’)-+ (TY - E’h’T,) + L (T + x) = 0, 

w = uh’: 

where C = PU*/~ (To) is the capillary number, L = Ic,d/k is the Biot number, p, is atmospheric pressure, k, 
is the heat coefficient in the gas and Tg is the gas temperature. Furthermore, conservation of total liquid volume 
and the requirement of zero net mass flow into and out of the cavity leads to 

(7) 
J 

11 (.r) 
udy = 0. 

0 

where V is the total volume (per unit depth) occupied by the liquid. Eliminating the pressure from (2) and (3) 
and introducing the stream function u = ii/r, and 21 = -&. gives 

For long shallow cavities, i.e. for small aspect ratio E, the entire flow region will be divided into two distinct 
parts, viz. an outer core flow which will be away from the side wall, and an inner flow (boundary layer) near 
each end wall. This inner flow will turn around to conserve mass and recirculation. The core flow, the shape of 
the interface and the turning flows are all coupled together. Therefore, to complete the flow structure the inner 
and outer flows can be calculated separately and then matched through the asymptotic matching procedure. 
Following Sen and Davis (1982), assume 

The basis of these assumptions lies in the fact that we consider only small departure from the state of pure 
conduction. For small capillary number, the deflection of the interface due to normal stress generated by the 
flow is in general small and thus the free-boundary location may be obtained as a perturbation about the rest 
state of capillary statics. 
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3. Core flow 

To obtain the solution of equation (8), and (2)-(4) for temperature and pressure, subject to the conditions 
(6) and (7) the variables are expanded as 

(10) f = fo (r: y) + Efl (:I:, y) + E’)f2 (x. g) + 0 (2). 
where f is any one of li,, p, T or /l, and IL(~ = 1. 

The zeroth order solution is given by 

(11) $0 = a g2 (:y - 1). To = -2> P() = ; Z + constant 

where HI, H2 and H3 are constants. The zeroth order solution does not satisfy all the boundary conditions at 
the end walls and hence is only valid in the core region of the cavity. The constants in (12) will be determined 
by matching inner and outer solutions. The next order approximation of (8) i.e. O(E), is 

(13) ls/ilj,~,!,~, = STO., 

where S = G,./R, = R,/M, is the dynamic Bond number OC) (AT) d” R, = I,K 1s the Rayleigh number 
> 

, which 
leads to the solution 

(14) 

satisfying the zero mass flux condition and boundary conditions at ?I = 0 and 9 = 1. 
Integration of (2)-(4) gives, to O(E), 

The first condition in (6) implies that /Q(X) must satisfy a third order differential equation, which can be 
integrated to give 

(16) 

where ki, k2 and k.3 are constants which are to be determined by matching the three-term outer solution 
of h, namely h, - 1 + Ehl + ~~112, with a three-term inner solution near the boundary wall and using the 
condition (a = 1,2) 

(17) 

where subscript c refers to the uniformly valid composite expansion of the free-surface height h. It is clear from 
(11) and (15) that the solution for temperature field up to O(c2) does not show any boundary layer behaviour. 
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Moreover, to complete the solution up to this order we need to calculate T2 (z, y) since this will give the 
necessary O(E) correction of the stream function near the end walls. The solution for T2 (x. 9) is 

(18) 
Ma 

T~(z,7J)=--(37J4-47J3+1) 
48 

It is interesting to note that Tl(z, y) does not satisfy the thermal condition at z = fi, so it is expected that 
the thermal boundary layer is present at this order. 

4. Inner flow 

To examine the inner flow near the hot side wall at n: = - i, the z-coordinate is stretched as 

(19) 

and an overbar is used to indicate the inner dependent variables. Under this transformation, the governing 
equations for $ and T become (with r] = y), 

where V” and V” represented the biharmonic and Laplacian operators respectively. To solve (20) with appropriate 
conditions obtained by transforming (6) and (7), all variables are expanded as functions of <, 17 according to (10). 

The zeroth order functions $a and ?ia satisfy a biharmonic and Laplace equation, respectively. Applying 
boundary conditions and matching the outer (core) solution TO ( cf .eqn. (11)) with the inner solution To leads to 

(21) To (E, 77) = f 

The biharmonic for & has been solved numerically using the standard technique of splitting it into a pair 
of coupled second order equations V”qo = g, V2g = 0. These equations are discretized using three-point 
central differencing. Boundary conditions for the auxiliary function g are obtained in a manner similar to that 
used for vorticity in the numerical solution of the 2D Navier-Stokes equations in stream function-vorticity 
formulation. The resulting system of algebraic equations is solved by successive-line-over-relaxation (SLOR), 
with convergence tolerance of 10m5. Systematic grid refinement was performed to ensure convergence to the 
exact solution as A<, A7 + 0. 

Similarly, the solution for ??I is 

(22) T1 (‘5 4 = -E 

and the nonhomogeneous biharmonic equation for $t is solved numerically following the same procedure 
as for &. 
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To obtain the first-order correction in the boundary layer flow we need ??z which is governed by 

The boundary conditions for (23) involve the shape of the interface. Once Kt is determined, (23) is solved 
using SLOR. 

The analysis near the cold boundary (at :I: = l/2) can be performed in a similar manner by stretching the 
:c-coordinate as < = E-I (4 - z). 

5. Shape of the interface 

It can be shown that the functions h,r, hz must be linear functions of <, satisfying homogeneous boundary 
conditions h; (0) = 0. Hence, the inner expansion for the shape of the interface is 

r = 1 + &ll< + E&t< + . . . 

Matching three terms in the outer expansion of h, with three terms in the inner expansion gives 

and 

(25) 
HI Hz 
4 2 +Hs=-& 

Similarly, matching at the cold wall leads to 

(26) $+q+H3=& 

From (25), (26) and (17), we get 

Hl = 0. H2 = ;. H.: = 0 

and hence the first-order deflection of the free-surface from its flat profile is given by 

1 
hl (:I;) = - - cz 

4 

Now, using (27) in (24) and conditions at the cold wall, one can obtain values for kt, kz, k.3, and (16) gives 

(28) 

6. Results and discussion 

Experiments have confirmed that monocellular convection occurs for low R, and A& (c$ e.g. Villers and 
Platten (1992)). These conditions are met when the layer is thin and AT is small. Furthermore, under certain 
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conditions, a multicelllar structure will appear for small E, especially when 1 > d. The present theory does not 
apply as (1! + 0 since then U* + 0 and the scaling breaks down. 

The theory presented in this work can be validated against some experiments conducted by Villers and Platten 
(1992) using acetone. For example, consider the three cases: (a)$ = 1.75srbrrb, 1 = 30rnm, AT = 1.2K (R,, = - 
2212, M,, = 7980. S = 4.755); (b)d = 2. 5rnrn, 1 = 3Ornm, AT = 0.8K (I?,, = 4300, M, = 7600, S = 
6.792); (c)d = 2. hnrn. 1 = 3Omnl,, AT = 1.2K (R,, = 6450, z,, = 11400. S = 6.792). To first order, in the 
core, the dimensional surface velocity along the vertical centreline of the cavity is given by 

‘lL= (;+&s),,*. 

For cases (a) and (c), the ratio of surface velocities is 1.46, which is close to the ratio of thicknesses, 1.43, in 
agreement with the analysis of Villers and Platten (1987). For cases (b) and (c), in which only AT is changed, 
the ratio of the surface velocities is exactly the ratio of temperature differences, i.e. 1.5. 

To first order, the maximum deflection of the interface from the mean, A/I,,,,,,,, occurs at :c = &l/2&. For 
cl = tknm, I = 3Omm and capillary number C = 0.5 we find that A/L,,,;~~ = +O.O072m~n at :I: = f8.fXmm. 
Correcting to second order gives non-symmetric deflection, with AhIIIRI = -0.006Gmm at :c M -9.Ornm. For 
the range of parameters E, S and c for which the present theory applies, one can show from (27) and (28) 
or from numerical tests that, for the right half of the slot, the deflection is an increasing function of capillary 
number c and a decreasing function of Bond number S. The opposite trend exists for the left half of the slot. It 
is interesting to note that, for small E and C (neglecting 0 (~‘(1’))) buoyancy does not change the shape of the 
deflection, but decreases its amplitude by an amount ~‘SE/lti. 

Typical streamlines and isotherms are illustrated in Figure 2, for t = 0.2, Biot number L = 1.0 and S = 1.5 
(left half of cavity only). The theory predicts nearly straight isotherms in the core region, and the parameters L 
and S have very little effect on their shape. As L increases, the isotherms shift towards the hot wall. However, 
L has minimal effect on the streamlines. On the other hand, as S increases, the streamlines are pulled towards 
the hot wall, indicating a faster flow in that region. 

The results of Sen and Davis (1982) are recovered from the present theory when S = 0. We see that buoyancy 
effects are felt in the core only at first order, in the horizontal pressure gradient and the streamfunction. The 
horizontal pressure gradient depends linearly on z/ for nonzero S. Throughout both the core and the boundary 

Fig. 2. - Streamlines and isotherms L = I. ,S = X/2 
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layer region, the local temperature does not depend on S. However, the buoyancy does reduce the amplitude 
of the free surface deflection. 
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