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Gaussian averages of automorphisms of & von Neumannn algebra vield Markowy
semigroups by the well-known procedure of subsedinaton. We construct operator-
valued martingales to realise perturbations of such semigroups through Feynman-
Kac formulae The perturbations are noncommutative vector lelds, and  the
martngales are operator Bmilies, which are determined by an L6 equation on each
vector and satsh cocwvele relations with respect o a randomised low on the
algebra. In partcular this sives a probabilistic representation of some symmetric
Markov semigroups considered by Davies and Lindsay.

INTRODUCTION

The Feynman—Kac formula represents a classical Schrodinger operator
H= —1%,87+ Von LY R™) as a certain average over Brownian paths,

e~ Ml x)= |' el Fix e i e 4 et )) dPlaw), (0.1}
e

in which (2, #, P} is the standard Wiener space. This identity holds for a
wide range of potentials V (see. ez, [ReS]). The mathematical structure
of this representation is better revealed by writing

Pr.f'=[E[i'f”5':;_J'], (0.2}
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where P,=¢ " (lix)= Expj,:,[.‘:.ﬂ VS ' Nx)ds, S, fix)=flx+r) for
fel? [[F‘“".\, B (i) =es) and [ is the Wiener expectation. Thus the transla-
tion group on L) is randomised and then the shifted function is acted
upon by a (randomised ) multiplication operator, before being averaged to
realise the semigroup generated by the Hamiltonian M. Several features of
the Feynman—Kac multiplier ({!) are worth noting Set j(p)=S5 0S5 4.
for e L™(R*), and extend j, to random [unctions pointwise, so that
W) =8, 8- w) S _ ., then:

(i) £ is a l-cocycle with respect to the randomised translation
group acting on the von Neumann algebra L™{R™):

L= TAEDYEY. (0.3)

(ii) ¢! is the unique solution of the following stochastic initial value
problem in e [R3):

AT =Tt d Y=l (0.4)

Another form of multiplier has been introduced to study vector field per-
turbations of the Laplacian

mf_’_ ,=exp l |'r Je b dB — é— ) J. B rﬂﬂ'J 4 (0.5)

where j, (w):=Sy 5 @Sy 5 and be L™ ). These satisfy

m’ —m’“':”m'r.' ) (0.6}

roNT

and
dm? f=j, ibym. fdB,; m. . f=f, (0.7)

for e L2(R*) (cf, [PaS]i The main difference between the two multi-
pliers is that while &), as the solution of (0.4), defines an L*{R™)-valued
function of Brownian mntmn the solution m} , of ((L7) exists only as a
strong solution in LR

These structures, ln@lher with various noncommutative extensions.
have been studied by a number of authors (eg., [AcF], [Arv], [HIP],
[ Pin]). Noncommutative extensions arise in two ways: the function space
on which the semigroup acts may be replaced by an operator algebra,
or the randomising may be effected by quanum stochastic processes
([AFL])—quantum Brownian motion and its associated caleulus ([ Mey ],
[ Par]) being a natural tool for this. In the present note we are concerned
only with the former kind. The translation group i replaced by an
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automorphism group of a von Neumann algebra and our main result is the
construction of multipliers which yield non-commutative elliptic operators
of the form 14 4+ N.d, where N, is left (or right) multiplication by the
bounded algebra element «. If @ is self-adjoint and central then the multi-
plier is given formally by expi [ jla) dB,— 3 [§ jla®) ds}. however this is
not easy to make sense of, and we have found it necessary to take a less
direct route, Our construction, through [i6 stochastic caleulus, yields
bounded operators sy from b, the Hilbert space on which the algebra acts,
to £(£2: h). There is no obvious sense in which one can take sections of
these maps to yield operators on b isell. Even in the classical case one
cannot expect to obtain bounded operators on b= L*[R*)—the paper
[ Pin] appears to be in error over this point

In Section 1 we review Gaussian subordination for an automorphism
group by means of Brownian motion, and describe the 1i6 equation for the
randomised group. The multipliers are constructed in Section 2, and the
basic representation is given in Section 3. In the last two sections we
specialise to semi-finite algebras, and consider automorphism groups which
are integrable in the sense of [Dal]. Section 4 deals with the L= -theory,
and the final section considers Feynman-K ac representations on L(.«/, 1),
for a trace t on the algebra.

Notation. Throughout the paper (£, %, P) will denote the Wiener
probability space: thus 2 is the complete metric space of continuous real-
valued functions on the halfline [, zc) which vanish at 0, with metric
defined through the seminorms p, () =sup{|a(t)|: te[0.n]}. nef, # is
the Borel g-algebra and P is Wiener measure. The coordinate process
e L2 e t) 15 a standard Brownian motion which will be denoted B —it
generates the Wiener filtration (8, ,),.,20: %8, =c| B, —B.:r<s<1}. We
shall be considering a von Neumann algebra o/ acting on a Hilbert space
b, and will denote the von MNeumann algebra (respectively Hilbert space)
tensor products .o/ @ L*(£2) and h® LY(£2) by .# and 3 respectively.
Elements of .4, # and .#, may be considered as (equivalence classes of)
functions on €: .4 =L"(2; /), #=L2:;bh); and .#,=L"(2; ).
Here «, and .#, denote the preduals of the von Neumann algebras .o
and & respectively (see [Sak], not [Tak]!)

1. GAUSSIAN SUBORDINATION
Let (a,: te[2) be a weak"continuous group of *-automorphisms of the

von Neumann algebra .« acting on the Hilbert space b, We first randomise
this group. Thus for each =0 and o e o define f(a): Q2 — of by

[jeala)=o .0
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Jda) then defines an element of &= L") o) and each j, defines a
weak *-continuous injective *-homomorphism of .« into .. Moreover the
family {j:¢t=0) s [pointwise) weak*-continuous in ¢ and so delines a
W *-stochastic process in the sense of [ AFL].

We extend the maps (), as well as the shifis and conditional expecta-
tion maps on Wiener space, to .# as the unique weak *-continuous linear
extensions of the respective prescriptions

Jra@eew— jla) e
Bra@p—a@eoy,
E:a@p—a@E[p|#] ae .o, e L™(02),

where 7, is the shift on paths defined by (pe0)s)= i+ 5)—e{), and
#B,=:8, . (J:t=20) is then a (pointwise) weak*-continuous family of
*automorphisms of &, (@,:¢=0) a weak®-continuous semigroup of
injective *-homomorphisms of .# and (E,:¢=0) is a weak*continuous
family of projections on .4, related to the shifts through

I]:'.r':;;"r=[E':r [1.1?

and satisfying the tower relation EE =E ., ., and E(feh)=f(E g)h
when [ he & =E[(.#), ge.#—in particular E, maps .# to o/ @C
identified with the algebra .o/ itself Viewing .4 as consisting of .«/-valued
functions,

(S NMw)=awolfle], O flw)=flyw), WES)=E[vef|2H].
for fe.#, vesd,. It is convenient to work with two parameters, so let
"‘.-.',r = J.-.' IJrv t'ﬂ'l.d .-'I:.-.',: ="‘.\. P | ':‘f

We summarise how the randomised automorphisms combine with the
shift and conditional expectation maps.

ProrosiTion 1.1, Fortz0let 5i=J,0 & - & Then (' 020) isa
weak ¥-continuous  semigroup of injective *-homomorphisms on & which
extend [ f,), in the sense that I, jla)=j, la). g€, and satisfy

lE.'.fl.'.'=_.lrl.-.'|£¢r- [ 1.2 )
FProof. The semigroup property [ollows from the relation

0.J,=J .. .0 (1.3)

S, 8+T L
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which may be verified directly on .#. (1.2) [ollows by weak *continuous
linear extension of the relation

E.Jla@e)=E[ jda) @]l =ida) E[ @ | #F] =J.Ela @ @)

for e, we L7(0), together with (1.1). The remaining properties are
inherited from (J,) and (& ). |

Remark.  The relation (1.3) 15 a (commutative! ) extension of the follow-
ing cocycle relation considered by W. 5. Bradshaw ([ Bra]):

J.\g.\'jr =.I|I:.‘|' +r*

ProrosiTioN 1.2, For t20 Jet PU=E,j: oo/ (Pl:itz0) is a
weak *-contimiows  semigroup  of  completely  positive,  identity  preserving
normal contractions on o,

FProof. By the tower property of conditional expectations, (1.1) and
(1.2),

“'I.(-.-r“'“rr =Eqj,Eod,
= lEtr[E.-.-‘;I.-..-lrlr
= lEl:r_.ll!.'\.' 1= -P“

The remaining properties follow from the corresponding properties of £,
and { j.) |

We shall refer to (P)) as the Gaussian semigroup corresponding to the
automorphism group (o).

We next establish a stochastic integral representation of the flow ()
by appealing to the Itd Lemma. For each ae.o/, {j, (a): 125} may be
viewed as a strongly measurable, .o/-valued stochastic process adapted to
the Brownian filiration. Let § denote the weak®-generator of the auto-
morphism group ().

ProrosiTion 1.3, Let xe Dom(d7) and vel. Then

i Jodéx) vdr, (1.4)

Jodxlv=xv+ ] Joddx)vdB, + 1

where the first integral is an 66 mtegral for a function taking valwes in the
Hithert space b, and the second is a Bochner integral defined pointwise for
each path,
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FProof.  First suppose that y=10, let we b and define a function R — C
by firi={w a(x)oy By our assumption on x, e CYR) and f*'r)=
fu,md"x) vy for n=1, 2. Hence by the 1t6 Lemma

i {u, fAG %) o) o

i

S, flx)ey=<{u, w0y + [r {u, jidx)oy dB.+1
Joy

={ 1w v+ | jidx v dB. + 5| jidx) L'n’r\.
b o] Y .-"'

Letting w run through a countable dense subset of b we see that (1.4) holds
almost everywhere or as an identity in # = L*(£2; h). when s =0. The full
relation now follows from identity (1.3 resiricted to o/ j, , =@ _j, .. and
the corresponding property of Brownian increments. |

Notice that (1.4) provides the pathwise continuous version of the Itd
integral [} 2o win(dX) v dB.(w), namely

f
! 2

M 7 ,.,.:_.,-][(5 X)v dr.
dy

it} — e il X) U — X0 — 3

In order to use the above representation to wentify the weak®-generator of
the Gaussian semigroup (P)) precisely. we need the following invariance
result.

Lemma 14 Let xe Domd. Then, for cach s =10,
Flxe Domd and 8 P'x) = P%dx).

Proaf. Let vesf, and let (¢,) be a real sequence converging to zero.
Then

<, '[a_,ﬂ— id.) PYxy = |' (4 '[[-::t,"l“r —id. ] v, o dPew)
= |' AN I |[D‘_rﬂ —id.)} x> dP{w).

Since the integrand is bounded by |v| ., |dx]| . . weak®-lim, , _ ¢, '[:r.,"—
id.) P%x exists and equals P%dx) by Lebesgue’s Dominated Convergence
Theorem. The result follows, |

TueorREM 1.5, Let (o) be a weak®-continuous automorphism group on a
von Neumann algebra «f, If 8 is the generator of (a,) then 167 is a weak®-
pre=generator of the corresponding Gaussion semigroup,
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Proof. By Proposition 1.3, if x € Dom(47), then for u, ve b,
L (Pl ey =Edu, flx) e

={u, x4 5k | {u, j6°x) v dr
Yo
/ M poe1 g \
={'u,.tu+| P,[Eﬁ.ﬂun’rl}.
Y o /

Since (PY) is a semigroup, this implies that its generator is an extension of
16%. Now let /,.(d) denote the collection of analytic vectors for the
generator § of the group (). o, (d) is weak*-dense in .« ([ BrR], p. 178)
and, by Lemma 14, it is invariant under (P¥). Therefore. by [BrR]
Corollary 3.1.20, «/_(d) is a core for the generator of (P?). In particular
167 is a pre-generator for (PY). |}

2. EXPONENTIAL MARTINGALES

In this section we define an analogue of exponential martingales. Techni-
cal problems associated with infinite dimensionality (of the algebra and
Hilbert space) force us to approach these somewhat indirectly. We obtain
bounded operators from b to # = L%(Q; h), as strong (operator) sense
solutions of stochastic differential equations.

In the proof of the first resuli, we need to make the identification
L3(£2,: #)= L*(£2; h) in which Q = {e: [s o) R|e is continuous}
and .Jﬂ.=L3[‘Q_\]: b This is given by f{on Newa )= fler) o), where

leraf £) i<s

(g oo ) =
= Leral 8 )+ crg( 8 ) — e[ 5) f=x.

ProrosiTion 2.1, For 520, ae. &, ve# the stochastic integral
eguaiion

Na, voe, t)=v+ |' o da) flavss t)dB, (2.1)

has a wnigue solution,

Proof.  Assume, as induction hypothesis, that the recursive procedure

fO=v; = Aa) f;VdB,  (nz1)
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defines adapted. measurable h-valued processes (f'")), ., satisfying

O L =
J 2 . ~ 1 3y
1A S =E NG < Cllall Sy (¢ —s)]" o) % /n (22}
where |a| , and ||v| , are the norms

el 4 :=ress sup |lalw)| .,
o K2

and

- 12
uﬂu:=muwm“={memﬁde% :

The inductive hypothesis is clearly satisfied when n=10, s0 assume it is
satisfied when n=k. Then (J, (a) f'*): 12 5) is adapted. measurable and
satisfies

= =r
| E WM, Ja) £ de< llal? | ENSE)2 e
i L

af
2 e 2 &
= |la||~s E ||v) % | [ el iz—5)] K de
Jy

=[llal?, (t—3)11%*" o] fik+ 1)

so that (f%"":t=z45) is welldefined and satisfies (2.2). The recursive
procedure is therefore justified, moreover

Y I e <lol e ¥ (lal e /t—5)" /0! < 0.
FIg=11 ] =1

Hence ¥, ., f*"! defines an b-valued L -process { f, : t = ). Since, for each
Nzl,

N i B
Y fm=v+| Joda) ¥ fUdB.,
=i i i}

(f. ) satisfies the equation (2.1). Now let (g,) be any solution of (2.1).
Then

mf mr I
g—v=| J da)g. dB.=| J fa)g.—v)dB +

& & va

S da)v dB,
so that, by the triangle inequality and Itd isometry,

wF
Ellg,—vl,=20t—3s)llal, Elol;+2 lal =, | E|g,—vl; e
'



408 LINDSAY AND SINHA

Applying the Gronwall Lemma therefore leads to the bound
Ellg,—vls=<(t—s) lal’ (2E o)) exp{2 llal % (¢ —5)}.  (23)

Now let fi, be the difference f,  —g,. By Itd isometry

E I, 2= E|J, fa) b, |2 de

mr
< lal?, | E|h|? e
it

Iterating this relation and applying the bound {2.3) to the estimates
I, I*<2{|f. jirs v|*+| g s v|*} gives

i g I i ; I
Elh 2 llalZ | | | SE[ulf(r,—s) e et s2gr, ... dt

& v -r

aF af
M

< BE v ; exp{2 |la] 2, (t —s)}[lal?, (¢—5)]%n!

for each n. Hence g, = f, , almost everywhere, in other words the solution
is unique, |

CororLary 220 Let e of and we by, and keep the above notation. Then,
Jor 1=,

fla, w s, ) =0 fla, u; 0, t —s). (2.4)
where @' is the shift on 3 = LY(Q; h): 02 f(w) = f(y,w).
Proof. The effect of the shift on an [tH integral is given by
02 |”';;a dB, = | @Dk, )dB..
) off |
Therefore, putting g, , = €' fla, u; 0, t — ), we have

g =07 {IH- | . Jaoa) fla. w0, a) .n’E,,,?r
M *ik .I

—u+| [@.7. Ja)] @2 fla, w0, t—s)dB,

=u-+ |' Jeda) g, dB..
vy
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The result therefore follows by unigueness for this stochastic integral
equation. ||

Another immediate consequence of uniqueness is the following result.

CorotLary 23 letae &, ve ¥ For any ¢ in B %)) which commutes
with the family {J, (a)r =5}, we have

Sla, ev s, ) =cfla, v, 5, 1), (2.5)

We now cast this in terms of operators,

ProrosiTion 24, For each ae &, there is a wnigue family of bounded
operators my o H, — Ao #2200, satisfiring the (strong operator sense)
stochastic differential equation

m; =T, dm; =J, Ja)m] dB,.

¥, 8

These opevators satisfy

me ,=mAme (2.6)
[y —my || < /20t —5) |lal exp]|al, (t—r)}, (2.7}
my i =a'my, (2.8)

Jor a'e o', the computant of oF, and r <51

FProof. By Proposition 2.1, m v=fla.v; s t) defines maps # —
#, — . Linearity of these maps [ollows from the uniqueness part of
Proposition 2.1, and boundedness follows from (2.3), To prove (2.6) 0x
ve ), and define {g, ,:t=r} by

[ fla,vir, t) for r<it=s
A ml A e, v ) for t=za

Then ( g, ) satisfies the same stochastic integral equation as (m} v) and so
(2.6) follows by unigueness.
In particular,

=g | < lendef— L | |2,

and (2.7) follows from (2.3) and a further application of Gronwalls
Lemma. (2.8) also follows by a uniqueness argument. |
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Our next goal is to display the sense in which operators (m) ) form a
cocycle with respect to the free flow (J,). For this we make the following
assumption: the automorphism group (=) 15 unitarity implemented,
afa)= U al¥ where (U)) is a strongly continuous one parameter group of
unitary operators on b Randomise and extend to # by continuous linear
extension of the prescription

uir @@ el (= 0).
This defines a family of unitaries on # satisfying the (ae.) identity
(w, )= U [ flw)]. (2.9)

MNote that u, leaves # invariant, for each ¢,

TueormEM 2.5, Ler (o) be a weak *-continvous  automorphism  group
on o I (a,) iy unitarily implemented then, for each ae of | the exponential
martingale conytructed in Proposition 24 satisfies the cocyele identity

i R R | .
u iyt =m (s1),

where we abbreviate nt | to m?.

Proof. Let vel and define (g,: t=0) by

[ fla, v 0,t) Oty
S L w ¥ fla, v 0, 5) t=a
Then, for =4
af 'J
g, =u, {u_:."_f'[ﬂ, o), 8)+ | Fodaym ul fla, v 0, 5)dB,_ ;
_ J

= fla, v 0, 5)+ |' Fha)u m® u® fla, v, 0,5)dB,

=v+ | Jla) fla e, 0, 1)dB, + | JAa) g dB,
L 1.

=v+ |' Jla) g dB_,
vy
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and similarly, for ¢ 3. Hence, by uniqueness for this stochastic integral
equation (Proposition 2.1), g, = fla, v: 0, t) =m%v, or

e L] Ty — €T gy
W, oM U=

Since this holds for each v e by, the result ollows. |

Remark, If o a)=T.aT_; so that j_{a)=T o oo - mo, then
the result of Theorem 2.5 remains true with obvious modifications. This is
because the ¢yproperty of T, implies that | T, < ¢*'"" for some = 0 and
feld and in such a case, the proof of Proposition 2.1 goes through essen-
tially unchanged. The only change one has to make is to replace [(2.2) by

[llal?, wie—s)]"

. .
LFeH < oy o]l %>

where
W(t—s)=| E[exp(B|B.—B,|)]dr
- |'r.r.|’r2¢»ﬂ’<r -\'].'3{ |'T..1-' L2y —f 7= 5F ﬂr-}, J
L]

2

# \_."_r ot d.l"’ J

o

o

al
= [ e

bl ]

" dr 2 { 142

3. FEYNMAN-KAC SEMIGROUPS ON o

In this section we show how the exponential martingales, each deter-
mined by an element a of the algebra, may be emploved as multipliers to
yield Feynman—Kac type perturbations of Gaussian semigroups. In the
notation of the previous sections define, for xe .o/, maps PYx:h— b by

3 ]
Py o ES[ flx)mie],

where, for s 20, E'* is the expectation map (orthogonal projection) from
H to #, Clearly P7x are linear maps and, since they satisfy

[(PFx) el < x| o]l o]l (3.1)
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each Px is bounded. Moreover if " belongs to the commutant of = then,
by (2.8),
YiPrx)yo=EP[ilx) ymv]
=EG'[jdx) mi y'v] = (Pix) y'u.  veb.

Therefore Px e.o/, and so each P maps o to .o/, Clearly each P? is linear
and by (3.1), also bounded. We exiend each P{x to # by ampliation

[ PTx) M) = PYx[ fle)].

Lemma 3.1, For wed#, 5.t 20, xeuol,

&3 v

E* j,. o5 £ X) M°

el =(Pix)w.

Proof. We exploit the Hilbert space counterpart to (1.1): EP¥é@{Y =[E{*,
If w=u®@¢, where el ™(#,) and ueb, Corollaries 2.2 and 2.3 imply
that

ER e sedxdm® . w]=E2[&Y jix)m u] o
=EX[iix)meu] p
={Pix)up =P x)w,

s0 the identity holds for such w. But these are total n #, so the result
follows by linearity and continuity. ||

Tueorem 3.2, I the weak®-continuous  auwtomorphism group (o) s
unitarily implemented, then (PY) defined by

(P9x) v =E[ jd x) m“v], veb,

iv a weak®-continuows semigroup of identity preserving operators on o
whose weak*-generator is an extension of 16° + R, &, where R, is the right
muldtiplication operator: B, x=xa.

Proof. Let w=uXmv, where u_is given (in terms of the implementing
unitary group) by (2.9), and apply the tower property of conditional expec-
tations, Theorem 2.5, and Lemma 3.1:

{2 . i I s N T by '
Ee'[is s dx) my, 0] =BG "B [0 jo ss dx) ¥l 0]

u*

L E L

=EMuw B F, . dx)hme

o
g mr]

= EMud Pox) w]
=EX[jPix) mv]=(P?Pox) 0.
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A weak*continuous semigroup whose penerator extends (87 + L J is
- b
PO e
() =P

where P =CPC, C being the isometric operator x—x* on .o/, We conjec-
ture that both these semigroups are positivity preserving, and therefore
Markov (in the sense of [ Dal]). when a is self-adjoint and central.

4. THE SEMIFINITE CASE: L™-THEORY

In the next two sections the algebra o will be semifinite with faithful
normal trace . We shall consider it acting in standard fashion on the Segal
space of T-measurable square traceable operators Lo, t), by strong sense
lefi multplication ([ Nel]. [DaL]). The previous sections will be applied
with b= LY o/, 7). In this context we can establish the reality of Feynman—
Kac semigroups (P)) when o 18 sell-adjoint and central. To do this we
exploit the action of right multiplication of & on L.+, 7):

Lemma 4.1 Let a be i, ve s, Then, in the notation of Section 2,

(1) fla, v s t) b= fla, vh; s, 1),
and. if {J_ (a) r=s) commutes with &, then
(i) fla* o¥ s t)*=fla, v s, )

Proaf.  Straightforward application of the uniqueness part of Proposi-

tion 2.1. |

CorotLary 42 Let aeof be self~adioint and central then, for each
weak *-continuous  automorphism  group (o), o of <. the associated
Feynman—Kac semigroup (P]) is real: Py =P, or P{x* = P{x)*

Progf. Combining Lemma 4.1 with Corollary 23 we have the following
relations for w, ve L2~ L™,

Ma w0 tyo=ufla, v;0,6);  [fla*. u*;0,0]%=fla, w0, ¢},
when a is central. Therefore,
Lo (P oy =BG ) mie, vy = Eo([mfv]™ jix)v)
= Ex(j,(x) e[ m" 0*] )= Ex( j(x ) " 0] 0*)
={p, (PCx)v) vel?n L™,

The result follows, |
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We next suppose that the automorphism group (=) 18 integrable with
respect to v ([DalL]) Thus (x,) satisfies the invariance condition

tla*a) < oo =rlalaa)) < o,
and the continuity condition
tla*a) <o =t([ada)—a]* [z ja)—a])—=0 as (— 10

Then the group (=,) extends to a strongly continuous group (7"} on each
Lo, t) for (1 £p < o), moreover under the duality of Segal spaces

TN =4 T¥  for lgp<a,

where each A4, is the multiplcation operator by a bounded, self-adjoint
element of the centre of . ([ DalL], Theorem 4.5). In particular, for a e .o/,

L L
afa) =T aT".

Let d, denote the generator of (7). Under the following smwothness
assumption on the L'-generator: ueDom d,— t(d,u) is L'-bounded, we
may say more.

Tueorem 4.3, Let (o) be g weak®-continuous automorphivm group on a
semi-finite algebra o, which i integrable with respect to the faithfid, normal
semifinite trace v on . If le Domd} then o, =ad U, where (U} is the
strongly continwows unitary group with skew-adjoint generator (d, — M ,..) in

which b= 411,
FProof.  Under the above assumptions it follows from [ Dal], Proposi-

tion 6.6, that ¥ = —d,+ M, s0 d,— M, is skew-adjoint and (U ) well-
defined. Let Z,=¢ """ then, since b is central,

T'HZ aZ T =T%al"? =a(a) Ve g o, selR,
Therefore, for each n,

(T Z ) o T e =T ) Dl e (T Z )

= ﬂr-“[ i '[5'-,-“[.\?” TR |

=alx)
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Hence, by the Trotter product formula ([ Kat]),

L'I.r.T L".,* = E.r':.-i; My J]_.“‘, fidy — My

H 't f J | .
o Wf}ﬂ[ III'I.'l [E,-:r JI:IJJ & -:r.u].H*J:IJl .I[-E"“ 1 H*J & “'“:”1:'“

L B e

30 |:‘.-r['x':-:

and the result follows, |

MNote that, for xeDomd, dx=[id, x], where id=d,— M,,, and
u(=Ug) salmf’eq the (strong operator sense) li6 equation du, =
uid dB, +uf —1A%) db. Mnrmuerﬁ il 1eDom ddf, then for xe Dom 67,
16°x 2 Axd — }(A’x + xA?), where the right hand side has dense domain
Dom 43 = Dom §%4.. In the next section we take a different point of view,
namely we consider semigroups on L./, t) generated by bounded vector
field perturbations of the symmetric Markov generator — 144, ([ DaL]).

5. FEYNMAN-KAC SEMIGROUPS ON L.+, 1)

Let {o,) be a r-integrable automorphism group of the semifinite algebra
o, with corresponding groups (7%"') on L”, Define j'*' = .” h— # =
L2 k) and let 4, be the generator of (T'%).

ProrosiTioN 5.1, For each x € Dom(d3) the Hilbert space valued process
( j*'x) satisfies the It6 equation

- f =r
JPx=x+| j2a,x)dB,+} | jPA63x)ds.
ol 1] ik

Proof.  Straightforward and similar to the prool of Proposition 1.3, ||

For each ¢z 0 let ¢¢ be the unique bounded operator on b determined
by

Cu, OF vy = (P 0% mou*y =Er[mu*i? v].

ProrosiTion 32, The family (Q7) forms a cp=semigroup on b whose
generator extends 103+ R, 6,. Moreover the semigroup is compatible with
the corresponding semigroup on L7

x=P%% xel*nlL=
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Proof. Let x, y,ze L~ L™, Then, by Lemma 4.1,
{x, Qz) yr={xp*, Oz = IEr[_I.r"r:’[:i el ypx®) ]
= Ee[ jiiz) mf y.x*]
={x flzymdyy ={x Piz. ¥y}

Hence by density, (QF) and (P} are compatible—in particular (39) is a
one-parameter semigroup. Writing out the 1t6 product

{u, Qo ={uw vy +E |'r {{_,r'h[ —érﬁgu*!, meuty
Jo
+ ¢ jddav®), jla) mfu*}} oy

={uvy+ | E{ jla*d,0* + 1830%), m u* > ds
“ik
=-::u,u+ | Qi[%ﬁgﬂ-}[é:ﬂl{”(ﬂﬂ"}.
\ 0 !

In particular, the semigroup is weakly, and hence also strongly continuous
and the generator extends 143+ R.d.. |

If the automorphism group (=) satisfies the symoothness condition
le Dom 4}, i(5.1)

then 4% = — d; + M, where b =47 |, and we may sharpen the previous result.

Tueorem 3.3, Let (o) be an integrable automorphism group on (oF, 1)
whose generator § satisfies the smoothness  condition (5.1). Then, for
cach ae.of, the elliptic operators 163+ R, 6 and 165+ L0 generate
(holomorphic) egsemigroups, (QF) and (QF) respectively, on Lo, ), and
both are expressible ay Feymman—Kace Gpe averages with respect to a
standard Brownian motion,

Proof. The smoothness assumption implies that 6= —4%48,+ M, 4d,.
so each of the operators is of the form — %3 + N&, where N is a bounded
multiplication operator and d=4,. Let V|d| be the polar decomposition of

d into partial isometry V and non-negative operator |4, Then, for
xeDom 4% and A =10,

INdx|| =NV 8] (5% +4)" " (5% + 4) x|
< |N|| 18] (812 +4)7Y 6%+ 4) x|
<2402 |N| {138%8x] + 4 |1x]/2}.
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Letting 4 — oo we see that Nd is relatively bounded with respect to — %3,
with relative bound equal to zero. But — 14*4 generates a holomorphic con-
traction semigroup and hence (by [Kat], Ch. 9, Corollary 2.5) —14*3 + N4
generates a holomorphic ¢-semigroup and the proof is complete. ||

Specialising to symmetric Markov semigroups ([DaL]) we have the
following:

CorotLary 54 Let 4 be a smooth generator of a  t-integrable
automorphism group on a semifinite von Newmann algebra o . Then

(P.x)v= | N ) m T Y @) v d P(w)

xel*nL*, vel® represents the symmetric Markov semigroup with L*
generator —L8%6,.
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