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Abstract 

The hierarchy of fractional quantum Hall states has been studied here in the framework of a Z, spin system. It is shown 

that we can derive an equivalence relation between the anyon statistical formulation of the hierarchical states depicted in 
the continued fraction scheme and the Jain classification scheme based on the composite fermion model or its variant in 
the Berry phase formulation. Also the FQH states in the even denominator filling factor can be realized in this framework 
in special cases when electrons appear in pairs in concurrence with the results of the Berry phase formulation. @ 1998 

Published by Elsevier Science B.V. 

Fractional quantum Hall (FQH) states are formed 

in a magnetic field by the strongly correlated system of 
electrons representing incompressible fluids, at filling 
factor v = 1 /m, m being an odd integer, and can be 

described by the Laughlin wave function [ l] 

$0 = n (Z; - Z,j)"'eXp (- ;clzi/2) > (1) 
i<j \ / 

where Z, = Xi + iyi is the coordinate of the ith electron. 
This wave function suggests that this has a zero of the 
mth order as any pair of electrons approach each other 
and hence electrons try to stay away from each other 
as much as possible. The effective theory of such a 
state is described by the Lagrangian 

where a CJ ( 1) gauge field afi is introduced to describe 
the conserved particle number current 

and A, describes the vector potential of the electro- 
magnetic field. The hierarchy of FQH states are gen- 

erally studied by the following two schemes: 

( 1) one proposed by Haldane [ 21 and Halperin [ 31 
based on anyon statistics; 

(2) another proposed by Jain [4] based on a com- 
posite fermion model. 

The filling fraction Y in the first proposal based 

on anyon statistics in a 2 + l-dimensional system is 
described by a continued fraction 

1 
V= ffl (4) 

mf 
P2 - Ly2*3 

Pj - - 
p4 . . 

where m is the inverse of the parent filling factor, m be- 
ing an odd integer and (Y, = *I, +( -) corresponding 
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to condensation of quasiholes (quasielectrons) and pi 
an even integer. Since all fractions are obtained starting 
from 1 /m the latter has come to be known as the fun- 

damental fraction. The physical basis of this continued 
fraction scheme follows from the following considera- 

tions. It is assumed that as the magnetic field is varied 
away from the l/m (m odd) filling factor, quasiparti- 

cles (quasiholes or quasielectrons) having fractional 
charge and fractional statistics are created. At certain 

filling factors these anyonic quasiparticles themselves 
form a Laughlin-type correlated state. Now two equiv- 

alent pictures emerge. 
( 1) In a mean field theory approach, we may view 

the gauge field aP as a fixed background and the quasi- 
particle gas behaves like bosons in the magnetic field 

b = EijiJiaj. These bosons do not carry any electric 

charge and when the boson density satisfies 

Jo=-$ 
where p2 is even, the bosons have a filling function 
1 /pz. The ground state of the bosons can again be de- 

scribed by a Laughlin state. The final electronic state is 
just a second level hierarchical FQH state constructed 

by Haldane [ 21. 
(2) If we let a,+ interact with the current of the 

quasiparticles, quasiparticles will be dressed by the 

uP flux. The dressed quasiparticles carry an electric 

charge e/m and a statistics of 0 = r/m, where the 
quasiparticles have the density 

Jo = 
1 eE 

(p2 + O/T) 277-m ’ 
(6) 

where p2 is even, the quasiparticle will have a filling 
fraction l/(pz + B/r). In this case the quasiparticle 
system can form a Laughlin state described by the 
wave function 

I-I ( Zi _ zj)P2+@l~. (7) 
i<j 

The final electronic state obtained this way is again a 
second level hierarchical FQH state. This scheme was 
proposed by Halperin [ 31. 

Haldane’s scheme of hierarchical states can be gen- 
eralized to have an effective theory of FQH states as 
has been described in detail by Wen [5] and Zee [6]. 
Introducing a new U( 1) gauge field u;L to describe the 

boson current, the total effective theory for the second 
level hierarchical state has the form 

(8) 

The filling fraction v is given by 

1 
U= 

m - l/p2 . 
(9) 

This equation (8) can be written in a more compact 

form by introducing (a,, u;L = (alp, ~12~) ) 

t 10) 

where the matrix K has integer elements given by 

K= (11) 

and tT = (tl (12) = ( 1,O) is called the charge vector. 
The filling fraction can be written as Y = tTK-‘t. The 
above construction can be easily generalized to higher 
order hierarchical states. Indeed, the effective theory 

of the nth level hierarchical state will be given by ( IO) 

with n gauge fields. An nth level hierarchical state is 
obtained by condensation of quasiparticles with the 

a~, charge II l,=i . .._. ,+, . The matrix K is given by 

(12) 

with p,, even. Now with the charge vector given by 
tl = 611, the filling factor is given by 

v = tTK-'t . (13) 

Alternatively, Jain [ 41 proposed a composite fermion 
theory by suggesting that the FQHE of electrons is a 
manifestation of the IQHE of some more complicated 
fermionic objects called composite fermions where a 
composite fermion is formed by the bound state of an 
electron and even number of flux tubes. The inverse 
of the filling factor is given by the number of flux 
quanta per particle. The same external flux is available 
to each composite fermion in the composite fermion 
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state (not counting the flux which is a part of the 

composite fermion) as to each electron in the original 
electron state. For a filling factor II of the composite 
fermion state, this leads to an electron state such that 
(,-I + 2m) flux quanta are available to each electron. 
Thus the composite fermion state of filling factor II is 

equivalent, in a mean field sense, to an electron state 

at a filling factor 

n 

u=2mn+ (14) 

Incompressibility is obtained when the composite 
fermions occupy an incompressible state, e.g. when 

they fill an integer number of Landau levels. How- 
ever, as we know. electron-electron interaction is 

responsible for FQH states where the IQHE repre- 
sents a noninteracting electron state. Jain has pointed 
out that interactions are needed to stabilize the com- 
posite fermions but once the composite fermions are 
generated, they are treated as weakly interacting ob- 
jects. However, Jain himself has admitted that why 
composite fermions are generated is a priori difficult 
to justify. Greiter and Wilczek [7] have pointed out 
that flux tubes carrying any integral multiple of ba- 

sic Rux can be gauged away. Besides the notion of 
composite fermions is quite peculiar as we have the 
same statistical phase. These authors have suggested 
that the acquisition of flux tubes by an electron can 
be considered as processes rather than completed acts 
so that one can carry the adiabatic evolution to have 
at the end an even number of flux quanta localized on 

the electrons. 

In a recent paper [ 81, Basu and Bandyopadhyay 
have studied the hierarchical states in the framework 

of chiral anomaly and Berry phase. It has been shown 
that the unambiguously observed FQH states with fill- 
ing factor v = p/q with p even or odd and q an odd 

integer can be considered from the viewpoint that the 
Berry phase associated with even number of vortices 
can be removed to the dynamical phase and the corre- 
sponding fermionic state attains a higher Landau level. 
Indeed, in a spherical geometry when we consider 
quantum Hall states on the 20 surface of a sphere 
with a magnetic monopole of strength p at the center, 
the angular momentum relation is given by 

J=rxp-pr, 

/1=0, &l/2, 51, 13/2... (15) 

It has been pointed out earlier that p is related to 

the Berry phase factor e’b, where 4 = 27r,u and is 
associated with the chiral anomaly through the relation 

191 

q/q-; s a J5 d4x fiP ’ t 16) 

where Ji is the axial vector current related to a chi- 

ral fermion. Indeed, it has been pointed out that the 
strong external magnetic field causes a chiral symme- 
try breaking of fermions (Hall particles) and as a re- 

sult anomaly is realized in association with the quan- 

tization of Hall conductivity. This helps to study the 
behaviour of quantum Hall fluid from the viewpoint of 

the Berry phase which is linked with chiral anomaly 

[lOI. 
From the angular momentum relation ( 15), we note 

that when we consider the ground state r x p = 0, 
p = l/2, the Dirac quantization condition ep = l/2 
suggests that e = 1, which will exhibit the IQH with 
fermion number 1. However, if we consider the next 
excited states with r x p = 1, which exhibits explicitly 
an interacting system, the respective angular momen- 
tum is changed to J = 312 for p = l/2. This can be 
viewed as a system with ,ucLe~ = 3/2 having r x p = 0. 
In this excited state, the quantization condition epefr = 
l/2 suggests that the quasiparticle will have fermion 

number l/3 indicating that the filling factor is l/3. 
For r x p = 2 indicating perr = 512 with r x p = 0, we 
have the filling factor l/5 FQH state. Now we note 

that when /A is an integer, we come across a peculiar 
situation where we can use a transformation which ef- 
fectively suggests that we have a dynamical relation 
of the form 

j=rxp-pr=r’xp’. 

This indicates that the Berry phase, which is associated 
with ,u, may be unitarily removed to the dynamical 
phase. This implies that the average magnetic field 
may be taken to be vanishing in these states. So in 
FQH states, where we have the relation 2pu,rf = 2m+ 1, 
where m is an integer, these can be viewed as if one 
vortex is attached to an electron as the attachment 
of 2m vortices to an electron effectively leads to the 
removal of Berry phase to the dynamical phase. Now 
we note that for a higher Landau level, we can consider 
the Dirac quantization condition eplL,n = An, where n . . 
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can be viewed as a vortex of strength 2& + 1. This can 
generate FQH states having the filling factor n/2,x=* 
where both n and 2pu,n are odd integers with the Berry 

phase factor 2pen = 2m’ + 1, m’ being an integer. 
Since the Berry phase factor related to 2m’ vortices or 
its multiple can be removed to the dynamical phase, 

we can view these FQH states being depicted by the 
following relation for the filling factor [ 81, 

n 1 n 

GE (2fienfl)/nfi =2mn’ 
(17) 

where 2,ucLen 7 1 is an even integer given by 2m’ = 
2mn. Here the +( -) sign indicates the orientations 

of the vertex line. This is essentially the Jain classi- 

fication scheme excepting the fact that here n is an 
odd integer and we have taken both f sign indicating 

the orientation of the vortex. This is not surprising as 

in the Jain scheme a composite fermion is a bound 
state of an electron with 2m flux quanta and a flux 
quantum is topologically equivalent to a vortex line. 
In the present scheme, the FQH states having the form 
n’/ (2mn’ f 1) with rz’ an even integer can be gener- 

ated through particle hole conjugate states 

,_-.!I-= n(2m - 1) * 1 

2mnf 1 2mn+l ’ 
(18) 

where n is an odd integer. It is noted that for m = 1, 

we have 

nfl n’ l-L=_=_ 
2n * 1 2nf 1 2n’ T 1 ’ 

( 19) 

where n’ = n + 1, n being an odd integer. This suggests 
that for m = 1 in relations ( 17) and ( 18) particle-hole 
conjugate states can be accommodated in a unified 
relation of the form 

n 

v=2n 
(20) 

indicating that this is valid for both n odd and even 
integers. 

In this note, we shall show that FQH states with fill- 
ing factor p/q, p even or odd and q odd, both the con- 
tinued fraction scheme based on anyon statistics and 
the composite fermion scheme or its variant in Berry 
phase formulation can be related in an equivalent way 
when we consider that FQH states can be described 
in the framework of a 2,) spin system. 

In an earlier paper [ 111 it has been shown that frac- 
tional statistics has its relavance in a 2, spin system. 

It is well known that a 22 system represents an Ising 
model, whereas a Z, system with p + 03 represents 
a plane rotor model (XY model). The planar model 
exhibits certain specific characteristics which are sig- 
nificantly different from the Ising model. We can go 
gradually from the Ising model (Z, model) to the XY 
model by considering a series of the Z, model and 
sending p ---f co. Indeed, the Z, model is one in which 
each classical spin can form only one of the p discrete 

angles 8, = 2rm/p with some fixed direction in the 
space of internal degrees of freedom. Elitzer, Pearson 
and Shigemetsu [ 121 have shown that for p < 4 we 

have two massive spin wave phases with a conven- 
tional singularity behaviour at the transition. However, 
for p 3 5 we have three phases, i.e. a massless phase 

appears in between two massive phases. Again, in the 
XY model (5 with p --) oo) we have two phases 

characterized by the fact that, at high temperature, we 
have massive spin waves with finite correlation length 
similar to the high temperature behaviour of other 
spin systems, but below a critical temperature Tk, we 
have massless spin waves with power behaved corre- 
lation function and continuously varying exponents. 
This implies that as p --t cs, the lowest ordered phase 
shrinks down to zero temperature forbidding the exis- 

tence of an ordered phase in a continuous symmetry 
model. A Zz system (Ising model) can be described 
by a system of fermionic gas. In an earlier paper [ 131 
it has been pointed out that in three space dimension, 
such a Z2 spin system (fermionic gas) can be well 
described by a system of scalar particles, each having 

half orbital angular momentum with a specific I, value 
( + l/2 or - l/2) in an anisotropic space or in the field 

of a magnetic monopole. It can be shown that a two- 
dimensional Z,,, spin system can be well described by 
a system of scalar particles, each having an orbital an- 
gular momentum 1 = l/p and this gives rise to the 

behaviour of such particles having fractional statistics 
[ 1 I]. Indeed, in a (2 + 1 )-dimensional system, the 
angular momentum can take any arbitrary value. The 
Chern-Simons term in the (2+ 1) dimension given by 

Lcs = kPYAa 
2 

a aA PV ’ (21) 

where up is a gauge field, corresponds to any arbitrary 
fractional value of the angular momentum. In fact, this 
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corresponds to the field equation 

e/P = ec 
2 

pvA F,,* (22) 

and integrating the O-component of this equation, we 

find 

eN=p4. (23) 

where N is the particle number and d is the magnetic 

Flux. Thus the effect of the Chern-Simons term is to 
associate with each particle a magnetic flux e/p. This 
corresponds to the change in statistics characterized 

by the parameter 

hf3 = e’/2p (24) 

in terms of the phase factor eiH characterizing the 
statistics of the particle. This phase factor eie is again 
related to the angular momentum through the relation 

e2in/ = e;// . 
(25) 

Now just as a fermion gas represented by a scalar 
particle moving with 1 = l/2 having a fixed I, value 

corresponds to a Z2 system, we can associate a Z, 
spin system characterized by the angle 0,,, = 2rm/p, 

which the classical spin forms with some fixed direc- 
tion with the angular momentum J = l/p. Now, from 

the statistical parameter 

where n = co corresponds to a fermion and n = 1 a 

boson, we find from relations (25) and (26) that for 
J= I/p 

/I-2’ 
(271 

Thus a two-dimensional Z,, spin system can be taken to 
represent a gas of particles having fractional statistics 
given by the statistical parameter (26)) where n is 
related to p through relation (27). 

Now from relation (27) we note that for a Zz sys- 
tem. we have II = a implying that it is equivalent to a 
fermionic gas. Again for p = 3 and 4, we find II = 3 
and 2, respectively, implying that the system can be 

represented by a system of fermions having fractional 
fermion number. However, for p 2 5, we note that n 

is not an integer and hence will not represent a sys- 

tem of any specific fractional fermion number. Indeed, 
the quasiparticles corresponding to these systems will 
represent a hedgehog mixture of bosons and fermions 
having no specific fermionic and bosonic property. 
Again as p + cx, we have n = 1 implying that the 
system represents a gas of bosons. This analysis sug- 
gests that although Z,, systems with finite p represent 

discrete symmetries, all discrete symmetries cannot be 
associated with a pure fermionic character. It is only 
for p = 2,3,4 that we can get a pure fermionic prop- 

erty when p = 2 corresponds to a conventional fermion 
with a fermion number 1 and p = 3 and 4 corresponds 
to a fractional fermion number. For p 3 5, we have 
a hedgehog mixture of bosons and fermions with no 

specific fermionic property. This is the reason why we 
have different phase structures for p 6 4 and p 3 5 
in a Z, spin system. 

Now to study the relationship between hierarchical 

FQH states with the Z,, spin system, we note that the 
effective theory of hierarchical FQH states governed 

by the Laughlin wave function can be constructed by 
considering a charged anyon system in a magnetic 

field [ 141 

(28) 

cc, anyon is the field that describes anyons with fractional 

statistics 8. At filling fraction v = (6/n + 52))‘, 

where r% is an even integer, the anyon ground state is 
given by the Laughlin wave function 

(29) 

We note that the state is an incompressible Auid and the 
anyon number current JP has the following response 
to a change of electromagnetic fields, 

Introducing a f.J( 1) gauge field a, to describe the 
conserved anyon number current 

the effective Lagrangian can be written as 

(31) 
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+ ;Ap&aAPA. (32) 

A quasiparticle excitation at position 5 in the Laugh- 
lin state is created by multiplying ni(& - zi) with 
the groundstate wave function in the electron conden- 

sate carrying electric charge 1 /( fi + 8/T) and can 
be created in the effective theory by inserting a unit 
charge of the a, gauge field, i.e. by adding a term 
s d*z a0 (z ) 6( z - 5) to the effective theory. Introduc- 

ing a bosonic field to describe the source that creates 

the quasiparticles, the full Lagrangian of the effective 
theory with (second quantized) quasiparticle excita- 

tions is then given by 

+ &A,&a~t’“” 

+ ++i(& - iaa)@ + &++(di - iUi)2+, (33) 

where the bosonic field C$ describes the quasiparticle 

in the Laughlin state. 
From the equation of motion 6’L/dao = 0, we find 

the filling fraction to be 

(34) 

Inthecasee/n= l,wehavev= l/(Cz+l).Wecan 
increase the filling fraction by creating quasiparticles. 
As mentioned earlier in the mean field theory sense, 
the quasiparticles behave like bosons in the magnetic 
field b = d;aici,j. When the boson density satisfies 

where p2 is an even integer, the bosons have a filling 
fraction 1 /pg. The final state represent a second level 
hierarchical FQH state as constructed by Haldane and 
Halperin. In this way, we can construct the nth level 
hierarchical state. This analysis of Wen [ 141 shows 
how we can arrive at the continued fraction scheme 
from the anyonic formalism in a direct way. 

Now we note that from the expressions (26) and 
(27) showing the relationship of fractional statistics 

and Z, spin system 0 = 7~( 1 - i) and n = p/p - 2, 
we find 

e/r=I-i= I- P-2 -=2/p. 
P 

(36) 

So from the relation for the filling factor in terms of 
fractional statistics 

y-l - - i + fi (iit even integer) , (37) 

we can write 

2 
v-‘=-+fi 

P 
(38) 

so that 

P v=-. 
pfi+2 

(39) 

Now for p an even integer given by p = 2n, ih = 2m, 
we find 

2n n 
y=~=~. 

4mni2 2mn+ 1 
(40) 

Thus we arrive at the Jain classification scheme from 
the relationship between fractional statistics and Z,, 

spin system. 
This is not surprising. Indeed, we have noted that 

for a Z, spin system with p > 4, the system repre- 

sents a hedgehog behaviour showing a peculiar mix- 
ture state of fermions and bosons having fractional 

statistics and this is similar to the analysis of a filling 
factor in the anyon statistical formulation of a contin- 
ued fraction. Again, as in a two-dimensional Z,, sys- 
tem, we can consider that a particle is moving with 
angular momentum J = 1 fp, where a fermion is repre- 
sented by a scalar particle moving with I = l/2, which 

can be represented by a vortex, the angular momen- 
tum I = I/p (p > 2) just shows the departure from 
the pure fermionic character which can be character- 

ized by the strength of a vortex added to a fermion 
when an even number of vortices added to a fermion 
will not alter its statistics. So in the expression for 
filling factors (39) and (40), where we have taken 
p = 2n, we note that for n = 1,2,3,. . ., representing 
p = 2,4,6 ,._., a vortex of strength 1, I/2, l/3, . . . 
is attached to an electron which is already attached 
to 2m vortices. As we know topologically a vortex is 
equivalent to a flux quantum, this effectively leads to 
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the fact that (n-l + 2m) flux quanta are available to 

each electron. 
As mentioned earlier, a variant of this formulation 

can be derived when we consider that in case a fermion 
is attached to an even number of vortices, the Berry 
phase can be removed to the dynamical phase and 
hence the concept of a composite fermion as proposed 

by Jain is not necessary. In view of this, we find that 
when the hierarchical FQH states are analysed in the 
framework of a Z,] spin system, we find an equiva- 
lence relationship between the anyon statistical analy- 
sis incorporating a continued fraction and the classifi- 
cation scheme proposed by Jain as well as that based 
on the analysis of the Berry phase proposed by Basu 

and Bandyopadhyay [ 81. 

We may point out here that both the anyon quasipar- 
title condensation approach of Haldane and Halperin 
and the composite fermion approach of Jain cannot 
explain the even denominator filling factor recently 
observed in special cases. However, the Berry phase 

approach can explain it in a nice way when electrons 
appear in pairs giving rise to a non-Abelian Berry 
phase [ I5 1. In view of this, these are termed non- 
Abelian Hall fluids. In terms of the Z,, spin system, 
we note that from relation (39) when p is odd given 
by 11 = 2n + I we have a filling factor of the form 
I’ = !I’/ ( 2nm’ + 2) with II’ = 2n + I. It is noted that 

for 1~ = 0.11’ an odd integer, we have an even denomi- 
nator tilling factor given by Y = r1’/2. With n’ = 1 and 
5, we have Y = l/2 and 5/2, where the latter is known 
as the Haldene-Rezayi state [ 161. However we have 

a peculiar situation here when the average magnetic 
tield vanishes. In terms of the Berry phase, this sug- 
gests that the Berry phase in this case can be removed 
to the dynamical phase. These FQH states can only be 
observed when the state is split into a pair of electrons. 
For Y = l/2, the pair is a p-wave state of spin polar- 
ized (or spinless) electrons. The splitting of the state 

into spin polarized states suggests that Y = l/2 can be 
observed in a double layer or thick layer system [ 17 1. 
The Haldane-Reazayi state (Y = 5/2) can be viewed 
as a state in the second Landau level when the pair 
may he viewed as a d-wave state having even parity 
representing a spin singlet state. Since the spin states 
are unpolarized, we can observe it in a single layer 
system [ 181. Since these pairs will give rise to the 
SU C 2 ) symmetry as we can consider these two elec- 
trons as a SU(2) doublet, these represent non-Abelian 

Hall fluids, characterising a non-Abelian Berry phase. 
From this analysis, it appears that when the hierar- 

chical FQH states are analysed in the framework of 
a Z,, spin system, we have a unified description of 
all the classification schemes and an equivalence rela- 
tionship can be established. The fact that some of the 
FQH states which generally arise in the continued frac- 

tion scheme have not been observed unambiguously 
but are automatically forbidden in the Jain or Berry 

phase scheme is generally considered a point against 
the Haldane-Halperin scheme. Indeed, the naive for- 
mulation of the continued fraction scheme cannot ex- 

plain why we have not observed the FQH states with 
v = 215 and 2/l with equal prominence, z’ = 5/ 13 at 
the third level is not observed, whereas Y = 6/13 at 

the sixth level is observed and similar other features 
[4]. Generally, these unobserved or unsharp states 
are forbidden in the Jain scheme or its variant in the 

Berry phase scheme. However. the equivalence rela- 
tionship of different classification schemes obtained 

in the framework of the Z,, spin system suggests the 
exclusion of these undesirable states in the continued 
fraction scheme and we can have a formal explanation 
of this feature. 
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