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ABSTRACT. This paper is concerned with the generation of surface waves by an axially

symmetric initial disturbance applied at an inertial surface in an ocean of finite

depth. This initial disturbance can be either in the form of an impulse or an

elevation or depression. The depression of the inertial surface is obtained as an

infinite integral in each case. The method of stationary phase is applied to evaluate

the integral for large values of time and distance.
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1. INTRODUCTION.

Waves are generated by an explosion above or within an ocean. The formulation of

the problems associated with the generation of these waves as an initial value problem

is based on the linear theory of surface water waves. If the explosion occurs above

the ocean surface, the initial condition on the surface is taken as an initial impulse

distributed over a certain region while for the case when the explosion occurs at or

below the ocean surface, the initial condition is taken as an initial elevation or

depression of the same surface. Stoker [I] and Lamb [2] considered the two

dimensional unsteady motion due to an initial surface disturbance concentrated at the

origin and gave the velocity potential as well as the asymptotic form of the free

surface for large values of time and distance. Kranzer and Keller [3] considered the

three dimensional unsteady motion due to an arbitrary axially symmetric initial

surface disturbance in an ocean of uniform finite depth and gave explicit formula for

the surface elevation and compared the theory with experimental results. They also

deduced these results for an ocean of infinite depth. Chaudhuri [4] and Wen [5]

considered the case when the initial surface disturbance is a combination of both

surface impulse and surface elevation distributed over an arbitrary region of the
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surface of an ocean of uniform finite depth and obtained asymptotic results by using

the method of stationary phase.

In all these cases, the ocean was essentially bounded above by a free surface.

Recently there has been a considerable interest in various problems concerned with the

generation of surface waves due to different types of sources of arbitrary time-

dependent strengths present in a liquid covered by an inertial surface composed of a

thin but uniform distribution of noninteracting floating particles (e.g. broken ice

floating on an ocean surface) (see Rhodes-Robinson [6], Mandal and Kundu [7,8] and

Mandal [9,10]). It is thus natural to extend the problems due to initial surface

disturbances in an ocean with a free surface to the case when the ocean is covered by

an inertial surface. Recently, Mandal [I0] considered the two dimensional unsteady

motion in a deep ocean covered by an inertial surface due to initial disturbances at

the inertial surface while Mandal and Mukherjee [II] considered the three dimensional

unsteady motion due to a prescribed axisymmetic initial surface disturbance.

In this paper we extend the problem considered in [II] for a deep ocean to an

ocean of uniform finite depth. This may also be viewed as an extension of the problem

of generation of water waves at the free surface of an ocean of finite depth

considered by Kranzer and Keller [3] to an ocean covered by an inertial surface.

After formulating it within the framework of llnearized theory as an initial value

problem, it is reduced to a boundary value problem by taking the Laplace transform in

time. The Hankel transform is then used to solve this boundary value problem.

Finally, Laplace inversion gives the potential function from which the depression of

the inertial surface is obtained in terms of an infinite double integral. By applying

the method of stationary phase twice in succession to this integral, the asymptotic

form of the inertial surface is obtained for large values of time and distance. In

the absence of the parameter characterizing the inertial surface, known results given

earlier in Kranzer and Keller [3] are recovered.

2. STATEMENT AND FORMULATION OF THE PROBLEM.

We consider the unsteady three dimensional motion of an inviscid, incompressible,

homogeneous liquid of volume density p covered by an inertial surface composed of thin

but uniformly distributed disconnected floating matter of area density

p e (E 0) under the action of gravity g only. The liquid is of uniform finite

depth h. 0 corresponds to a liquid with a free surface. We assume that the

motion in the liquid is started at time t 0 from a state of rest by a prescribed

axfsymmetric initial disturbance at the inertial surface. We choose a cylindrical

polar coordinate system (r,8,y) in which the y axis is taken vertically downwards and

is the axis of symmetry of the initial disturbance, the plane y 0 is the position of

the inertial surface at rest, and y h is the bottom of the unlimited mass of the

liquid. Since the motion starts from rest, it is irrotational and can be described by

a velocity potential (r,y;t) for t 0. Within the framework of linearized theory,
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it can be shown that satisfies

(r r) +--- O, 0, y , h t 0
y2

with the inertial surface condltion

2
t

2
(0- ay) 0 on y 0, t > 0

while the boundary condition at the bottom is

(2.2)

0y 0 on y h, t O. (2.3)

If the initial disturbance is due to an axlsymmetrlc displacement G(r) of the inertial

surface at a dstance r from the origin, then the initial condlttons are

0-e Oy 0, y 0, t O,

--( e ..) g G(r), y 0, t O.
y

(2.4a)

(2.5a)

We note that the initial displacement of the laert[al surface may be a depression or

elevation depending on G(r) being positive or negative. However, if the initial

disturbance is due to an axially symmetric impulse of strength F(r) at a distance r

from the origin, then the initial conditions are

F(r)
on y O, t 0 (2.4b)o- Oy= P

(- e 0 on y 0 t O. (2.5b)
t y

3. SOLUTION OF THE PROBLEM.

Let (r,y;p) denote the Laplace transform of (r,y;t) in time t defined as

(r,y;p) f (r,y;t)e-Ptdt, p > O.
o

Then (r,y;p) satisfies the boundary value problem

3 32
r r (r --) +-2- O, 0 g y g h,

2 ep2p -(g+ )(R)
y

and 0 on y h.
Y

g G(r) on y 0

or

-P F(r) on y 0

(3.1)

(3.2a)

(3.2b)

(3.3)
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(3.2a) holds for an initial surface displacement while (3.2b) holds for an initial

surface impulse. Let (k;y) be the Hankel transform of (r’y) defined as

(k’y) r O(r’v) J (kr) dr, k 7> O.
o

o
(3.4)

Then satisfies

d2
k
2

2
0, 0 y h,

dy

2 ep2 I g G(k)

p V (g + ) or
Y

P

(3.5)

(3.6a)

(3.6b)

and ? 0 on y h.
Y

(3.7)

Here (k) and (k) are the Hankel transforms of C(r) and F(r) respectively.

Then

(k,y)

coshk(h-)g G(k)
2

p D(k) + gk sinh kh

or

P (k coshk(h-y)
O p2D(k) + gk sinh kh

(3.8a)

(3.8b)

where D(k) cosh kh + ek sinh kh.

(r,y;p)

Hence

2 gk sinh kh
where IJ D(k)

(k)k cosh k(h-y)J (kr)
g / o

dk
o D(k)(p2 + ij2)

or

pk F(k) cosh k(h-y)J (kr)

o D(k)(p2+u2)

(3.9)

(3. tOe)

dk (3.10b)

Taking the Laplace inversion we obtain the potential function. For the case of an

initial axially symmetric displacement we use (3.10a) to obtain

-(k)J (kr) sin Ut coshk(h-y)
(r,y;t) f o

0 s inhkh
dk (3.11a)
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For the case of Inltlal axially symmetric impulse we obtain from (3.10b)

2F(k) cost coshk(h-y) J (kr)
O(r,y;t) 1___

sinhkh
o

Pg 0
dk.

In these cases the inertial surface depression (r,t) is given by

(3.11b)

(-(r,t) = [ y--0

so that

(r,t) =

k (k) J (kr) cost dk
0 o

(3.12a)

or

f k 9(k) slnvt J (kr) dk.0 o
(3.12b)

The results given in Kranzer and Keller [3] are recovered by making c 0. Also, by

making h and setting c 0, results given in Stoker [I] are recovered.

4. ASYMPTOTIC EXPANSIONS.

The method of stationary phase is now applied to obtain an asymptotic form of

(r,t) for the integral in equation (3.12a) for large t and r but finite ratio r/t.

Using the result

J (kr) 2 cos(kr cosB)dS,
o = 0

(3.12a) is written as

__11 Re f / k (k) [exp{it(g + k cos )}
0 0

r+ exp{it(g k cos)}] d dk.

By using the method of stationary phase first to the -Integral, we get

E(r t) (2__)2 k
2 (k) [exp{it PI(R)} + exp{it P2(k)}] dk

r 0

Pl(k. + kr Iwhere
t 4t

and kr wP2(k) I -- +
4t

(4.2)

(4.3)

rNow P_(k) Q(k)
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I/2 .( kh )I/2 sinh kh.I/2
where Q(k) =- (gh) [--{D(k) }3/2 -n--k- + cosh kh (---) )] (4.4)

so that P(k) Q’(k).

It is obvious that P(k) < 0 for 0 < k < m. Hence P(k) is a strictly monotonic

decreasing function in 0 < k < m. Also

P(k) (gh) I/2 r 0
+

-as k

r
and P(k) - as k (R).

t/2
These show that there Is no stationary point in the Integral for r/t > (gh) while

for r/t < (gh) 1/2, there is a single stationary point in 0 < k < so that there

exists only one stationary point at k a (say), where a is the real positive root of

the equation P1/2(k) O. When r/t (gh)I/2, it gives a smaller contribution than the

r/t < (gh) I/2
case so that contribution from it may be neglected. Also Pl(k) has no

stationary point in the range of integration. The stationary phase method for the k-

integral when applied to (4.2) leads to

(r,t) () cos (t P2 (a) 4

(a) (a,Q(oO I/2
r -Q’(a) cos((a)t at)

where
ga tanhah )1/2(a) (l+ea tanhah

^In partlcular, when the displacement is concentrated at the origin, G 2--
In this case

a ,Q(a) I/2(r,t) (,Q (a)) cos((a)t at). (4.6)

Without solving for a from the equation P(a) 0, we consider the following two

special cases.

CASE I. Shallow ocean (h small).

For small values of h, we can approximate as

k2h2 ek
2 1/2[gk2h(l - h)] (4.7)
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so that
r)23 {gh ( I/2a=[

2
h {4gh + 9Eg ()2

(4.8)

P"(a) Q’()
I12

(_h) [2 a2h2 2h(9e+4h)
2 .3/2 (1 - ){I-

2 2 2h2 Jh (ge + 4h)}](t - {I - (4.9)

Using (4.8) and (4.9) in (4.5) we obtain (r,t).

The asymptotic form of the inertial surface given in (4.5) can also be expressed

in the form

(4.1o)

2 2
where T and % =-a (4.11)

For the case of an initial axially symmetric displacement, we obtain by a similar

analysis the asymptotic form (r,t) of the inertial surface given by

(r,t) a () anhch 1/2

(rg)i/2 (l+ea tanhh)l/2 (tlp,(a)i) sin( u( a)t-r)

a F(o) (,Q() tanh 1/2
s

t r

1/2r Cl+ea tanhah) 1/2 :Q; in[_2( -) I
(4.12)

where a is given by (4.8) and Q’(a) is given by (4.9).

^When the impulse is concentrated at the origin F In this case, the

asymptotic form of the inertial surface has the form given by

(r,t) a e2h) (.Q() tanh )I/2 L2 t )1/2 (1 _;) sin ,( (4.13)
2pg r

The result given in (4.5) and (4.12) are in complete agreement with the corresponding

results given by Kranzer and Keller [3] if we put : 0 and -CASE II. Deep ocean (h is infinite)

gk 1/2
p (l+ek) and from the equation P(k) 0

1/2
we get kl/2(l + k) 3/2 fig t

2r
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In this case the asymptotic form of the inertial surface can be obtained by a slmltar

analysis and the corresponding results given by Mandal and MukherJee [II] are easily

recovered.

5. DISCUSSION.

From equation (4.10) and (4.12) we see that the surface wave amplitude, the

period T, and the wavelength A all depend upon r/(gh)I/2t as well as . The amplitude

in both cases is zero if r/(gh)I/2t > 1. The factor sin 2[t/T- r/A] or
I/2

cos 2w[t/T -r/A] describes the actual waves. If r (gh) both the wavelength

and period will be infinite in wave motion and both decrease for fixed t or as t

increases for fixed r. These observations were also arrived at for the corresponding

problem in water with a free surface (cf [3]). Thus the qualitative behavior of the

solutions remains unaltered due to the presence of an inertial surface.
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