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Abstract 

Two mixed boundary value problems associated with two-dimensional Laplace equation, arising in the study of scattering 
of surface waves in deep water (or interface waves in two superposed fluids) in the linearised set up, by discontinuities in 
the surface (or interface) boundary conditions, are handled for solution by the aid of the Weiner-Hopf technique applied to 
a slightly more general differential equation to be solved under general boundary conditions and passing on to the limit in a 
manner so as to finally give rise to the solutions of the original problems. The lirst problem involves one discontinuity while 
the second problem involves two discontinuities. The reflection coefficient is obtained in closed form for the first problem and 
approximately for the second. The behaviour of the reflection coefficient for both the problems involving deep water against 
the incident wave number is depicted in a number of figures. It is observed that while the rellection coefficient for the first 
problem steadily increases with the wave number, that for the second problem exhibits oscillatory behaviour and vanishes at 
some discrete values of the wave number. Thus, there exist incident wave numbers for which total transmission takes place 
for the second problem. 0 1999 Elsevier Science B .V. All rights reserved. 

1. Introduction 

If a part of the surface of deep water is covered by an inertial suvface composed of a thin uniform distribution of 
non-interacting particles (e.g. broken ice, unstretched mat) and the remaining part ispee, then the surface boundary 
condition becomes discontinuous in the sense that there are one condition on the free surface and another condition 
on the inertial surface. The line separating the free surface and the inertial surface becomes a line of discontinuity. 
Peters[l], Weitz and Keller [2] first developed this model to study wave-ice interaction. When half the surface 
of water is covered by an inertial surface and the other half of the surface is free, Peters [l] investigated the case 
when waves from the free surface region are normally incident on the straight line separating the free surface and 
the inertial surface. Weitz and Keller [2] treated the same problem for water of arbitrary finite depth and oblique 
incidence of waves. 

Gabov et al. [3] considered two infinitely extended, immiscible superposed fluids for which half of the interface 
is covered by an inertial surface and the other half of the interface is a free separating boundary of the two fluids, 
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and investigated the scattering of the interface waves travelling from the free interface region and normally incident 
on the line separating the free interface and the inertial interface. 

The above two physical problems are mathematically equivalent. This can be shown by considering the case of 
deep water and the case of two superposed fluids separately. 

Case (a). Deep water We first consider a deep water and choose the y-axis vertically downwards into the water 
so that its surface at the rest position coincides with the plane y = 0. Let the semi-infinte plane represented by 
y = 0, x < 0 be the free surface and the semi-infinte plane y = 0, x > 0 be covered by an inertial surface of area 
density U, say. Let Re @(x, y)eeiwt represent the velocity potential describing the irrotational motion in the fluid 
where t denotes the time. Let the factor ePiwt be suppressed always henceforth. Then the complex-valued potential 
function I++ (x, y) is harmonic in the fluid region. The linearised free surface condition is 

llry+a$r=O ony=O, ~(0, (1.1) 

where 

a = w2/g, (1.2) 

g being the acceleration due to gravity. The condition of no motion at infinite depth gives 

$,V@+O asy +co. (1.3) 

Thus an incident progressive surface wave field is represented by the potential function e-ay+iax. Again, the 
linearised inertial surface condition is 

llry+b$=O ony=O, x>O, (1.4) 

where 

b= pw2 
pg- w-=0 (1.5) 

p being the density of water. It may be noted that for CT < pg/w2 (i.e. b > 0), the form of (1.4) is merely a 
modification of the usual free surface condition (1.1) corresponding to o = 0, and it allows progressive waves at 
the inertial surface. However, for G 2 pg/w2 (i.e. b -c 0 or lb1 = co), the form of (1.4) is different and does not 
allow progressive waves at the inertial surface (cf. [4]). 

Let 4(x, y) denote the scattered potential function due to the incident wave field e-ayfian propagating from 
infinity along the free surface and normally incident on the line separating the free surface and the inertial surface. 
Then 4 (x, y) is harmonic in the fluid region and satisfies the boundary conditions 

f$,+ac#=O ony=O, x<O, (1.6a) 

& + bc$ = -(b - a)e iax on y = 0, x > 0, (1.6b) 

so that x = 0 is a point of discontinuity in the boundary condition on the boundary y = 0. 4 also satisfies the same 
conditions as @ satisfies as y + co. Moreover, it also satisfies some edge conditions as (x2 + y2)‘j2 + 0 and 
infinity requirements involving the unknown complex-valued reflection and transmission coefficients as Ix 1 + cm. 
These will be stated later. These utiknown coefficients form a part of the problem. 

Case (b). Two superposedfluids. Again, we consider two superposed fluids of densities pt, p2 where pr is the 
density of the lower fluid and p2 (< ~1) is the density of the upper fluid. Let the y-axis be chosen vertically 
downwards into the lower fluid so that the rest position of the common interface is y = 0. Let the half plane 
represented by y = 0, x < 0 be the free separating boundary of the two fluids and the half plane y = 0, x > 0 be 
covered by an inertial surface of the area density cr. Let Re $1 (x, y)emiwt, Re $2(x, y)eeiWt, respectively, denote 
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the velocity potentials in the lower and upper fluids describing irrotational motion. Then 1@1 is harmonic in y > 0 
and @2 is harmonic in y < 0. The linearised conditions at the free separating boundary are 

pt(gllriY + ~~$1) = p2W2y + ~~$2) on y = 0, x 4 0, (1.7) 

llrly = Jf+2y on y = 0, x < 0, (1.8) 

and the conditions at the bottom and top are 

1cFt,V71cI1+0 asy+co, $Q, V1cf2 + 0 asy -+ -cc. (1.9) 

Thus an incident progressive interface wave field propagating on the free separating boundary is represented 

by 

*;“c(x, y) = e--ay+iax, y > 0, $rp(x, y) = -e-ay+iax, y < 0, (1.10) 

where now 

pt+~~2 a- 
. 

(1.11) 
Pl -P2 g 

Again, the linearised conditions at the inertial interface are 

Pi(&iy + w2til) - P2(g+2y + w2@2> = flw29hy = ~rw~ltr2~ on y = 0, x > 0. (1.12) 

Let Xj (X , Y) (j = 1,2) denote the scattered potentials due to the incident wave field represented by @y (x , y) (j = 

1,2) propagating from infinity along the free separating boundary and normally incident on the line separating the 
free interface and inertial interface. Then xj (x , y) (j = 1,2) satisfy 

V2x1 = 0 in y > 0, V2x2=0 iny<O, (1.13) 

the interface conditions 

PlkXly + W2Xl) - PZkX2y + w2x2) = ( 0 on y = 0, x < 0, 

ffW2xtY - ae inx on y = 0, x > 0, 

(1.14) 

(1.15) 

xly = ~2~ on Y = 0, (1.16) 

and the bottom and top conditions 

xl, VXI -+ 0 as y -+ 00, ~2, Vx2 -+ 0 as y + -co. (1.17) 

We now show that 

X2(X, Y> = -x16, -Y>, Y < 0. (1.18) 

To show this, let 

x(x, Y> = Xl@, Y> +x2(x, -Y>, Y > 05 (1.19) 

then x (x, y) satisfies the boundary value problem described by 

V2x=0 iny>O, xy = 0 on y = 0, x,Vx+O asy-tcc (1.20) 

where Eqs. (1.13) and conditions (1.16) and (l-17) have been utilized. Now, by uniqueness theorem of harmonic 
functions, we find that 

X(X> y) = 0. (1.21) 
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Thus Eq. (1.18) is proved. Hence it is sufficient to solve for the function ~1 (x, y) which is harmonic in the region 
y > 0. The boundary conditions satisfied by x1(x, y) on y = 0 are obtained from (1.14) and (1.15) as 

Xly +ax1 =o on y = 0, x < 0, 

xlY + bx1 = -(b - a)eiax on y = 0, x > 0, 

where a is given by (1.11) and 

(1.22) 

(1.23) 

b = (Pl + P2M2 

(Pl - P2k - .w2. 
(1.24) 

We note that, in the absence of the upper fluid, a, b assume the values given by (1.2) and (1.5), respectively. 
Thus the problem for deep water and the problem for two superposed fluids are mathematically similar, the only 

difference being that the constants a, b for deep water and for two superposed fluids are to be two different sets of 
constants. The mathematical formulation of the corresponding physical problem is described as BVP I in Section 2. 

Instead of the inertial surface occupying half the surface of deep water (or half the interface of two superposed 
fluids) if it occupies an infinite strip of finite width I, say, on the surface (interface), so that it is sandwitched between 
two free surfaces (interfaces), one on the left of x = 0 and the other on the right side of x = I, then we have 
two points of discontinuity in the surface condition. The mathematical formulation of the corresponding physical 
problem is described as BVP II in the following section. 

2. Boundary value problems 

The mathematical formulations of the two wave scattering problems involving discontinuities in the boundary 
conditions are now stated in the form of two boundary value problems (BVPs) described below. 

BVP I. To solve the Laplace equation 

@XX + @yv = 0, y > 0, --oo < x -=c 00, (2.1) 

along with the surface boundary conditions, as given by 

&-I-a@=0 ony=O forx<O, witha>O, 

by + bg5 = -(b - a)elax on y = 0 for x > 0, with - 00 < b < 00, 

producing a discontinuity at the origin in the surface boundary condition, the edge conditions 

C$ = O(1) and V4 = O(1) as Y = (x2 + y2)‘i2 -+ 0 for finite Ibl, 

(2.2) 

(2.3) 

or 

4 =0(l) and r 1/2V~ = O(1) as r = (x2 + y2)‘j2 -+ 0 for Ibl = co, 

which are given by the physics of the problem, the conditions 

4, V@+O asy-+co, 

and the conditions as 1x1 -+ co, as given by 

4(x, y) + pY+iax - Ale-~YPiax + e--aY+iax as x _+ --oo, 

as x -+ 00 for b > 0, 
as x -+ cc for b < 0 or lb1 = 00. 

(2.4) 

(2.5) 

(2.6) 
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In (2.6), A 1 and B 1 are two unknown complex constants to be determined, and 1 A 11, I B1 I represent the reflection and 
transmission coefficients, respectively, corresponding to the incident surface (or interface) wave field represented 

by e- ay+iax propagating in the region x -C 0. Here 4 (x, y) denotes the scattered field so that the total field is 

&(x, y) = 4(x, y) + e-ay+iax. (2.7) 

BVP ZZ. This is the same as BVP I except that the surface boundary condition (2.3) is replaced by two conditions, 
as given by 

tiy + bq5 = -(b - a)e iax ony=O forO<x<l, (2.3a) 

@,+a@=0 ony=O forx>Z (2.3b) 

producing two discontinuities in the surface boundary condition at the points (0,O) and (1, 0), I(> 0) being finite. 
For the edge condition (2.4), Y now represents the distance from the two discontinuities at (0,O) and (0, I), and 
instead of (2.6) 4 now satisfies 

#(x, y) ,._. A2eMaY-iax + e--ay+iax as x + --oo 

= B2e-bYfibx 

( 

+ B3e-by-ib(x-l) 
+ Pl(X, Y), 0 -=c x < 1 for b > 0, 

P2(X, Y)> OtxtZ forb<O or Ib]=co, 
(2.6a) 

- Bqe-ay+id--l) asx + co. 

In(26a), AZ, B2, B3, B4 arefourunknowncomplex constants tobedetermined, andthefunctions ,ut (x, y), ,uz(x, y) 
represent two unknown, ordinary, non-wavy solutions of the Laplace equation. Physically, A2 represents the reflec- 
tion coefficient (complex) in the region x < 0, B2 and Bs, respectively, represent the transmission and reflection 
coefficients (complex) in the region 0 < x < Z and B4 represents the transmission coefficients (complex) in the 
region x > 1, corresponding to the incident wave field e--ay+iax , propagating in the region x < 0 as in BVP I. 

The BVP I can be viewed as a special case of a more general problem of wave scattering by a surface discontinuity 
tackled for its solution by Gabov et al. [3] and the BVP II is a further generahsation of BVP I by introducing a 
second discontinuity on the surface at a distance Z away from the first. 

We observe that both the BVPs can be handled for their solution by the aid of the Weiner-Hopf technique after 
generalising the Laplace equation (2.1) to the Helmholtz equation 

&X + @yy + E24 = 0, y > 0, -cc -=C x -C 00, (2.8) 

where E is a complex number with small positive real and imaginary parts as well as by generalising some conditions 
(as described shortly) and ultimately passing on to the limit as E + 0 in a manner similar to Gabov et al. [3]. Thus 
the generalised form of BVP I is to solve the Hehnholtz equation (2.8) along with the boundary conditions 

@,+&=O ony=O forx ~0, 

&+b@=-(b-a)eikx on y=O forx >O 

where 

k = (a2 + l 2)l’Z withk=a forE=O, 

the edge conditions 

C$ = O(1) and V4 = O(1) as Y = (x2 + y2)lj2 + 0 for finite lbl, 

or 

6 = O(1) and rli2V+ = O(1) as Y = (x2 + y2)lj2 + 0 for Ibl = 00, 

(2.9) 

(2.10) 

(2.11) 

(2.12a) 

(2.12b) 
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and the conditions at infinity, as given by 

@I+ IV41 5 const. e --S(E)r. as r = (x2 -t y2)li2 + 00, (2.13) 

where S(E) is such that 

8(E) -+ 0 + as E -+ 0. (2.14) 

The generalisation of BVP II is similar to BVP I with the exception that conditions (2.9) and (2.10) are replaced, 
respectively, by 

@,+a~#~=0 ony=O forx t0 andx >I, (2.15) 

C& + b@ = -(b - a)e ikx ony=O forO<x<l (2.16) 

and in the edge conditions (2.12), Y denotes the distance from the two discontinuities at (0,O) and (I, 0) so that 

Y = (x2 + y2)‘j2 or {(x - Z)2 + y } 2 ‘j2 It may be noted that condition (2.13) is stronger than condition (2.5) as . 
y + co, and is consistent with the behaviour of 4 as 1x1 -+ 00. 

With this as background, we proceed to present in Sections 3 and 4, the Wiener-Hopf technique applied to 
the two generahsed BVPs satisfying the Hehnholtz equation (1.8) involving the complex parameter E, the surface 
conditions (2.9) and (2.10) (for BVP I) or (2.15) and (2.16) (for BVP II), the edge conditions (2.12) and the 
infinity requirement (2.13). For the BVP I, the reflection and transmission coefficients have been obtained explicitly. 
For the BVP II, which is a generalisation of BVP I to the case when the inertial surface is in the form of a 
horizontal strip of breadth I, the reflection and transmission coefficients have been obtained asymptotically for 
large 1. The reflection coefficient for both the problems in the region x < 0 is depicted graphically against the 
wave number aL for b > 0 to visualize the effect of the inertial surface on the incident wave train progressing 
along the free surface, where L is a characteristic length used to non-dimensionalise a, b(> 0) and a/p for deep 
water. 

3. The Wiener-Hopf technique involving BVP I 

Let 41 (x, y) E 4(x, y; E) denote the function satisfying the generalised BVP I described by (2.8)-(2. lo), (2.12) 
and (2.13). We introduce the Fourier transform @r (a, y) as defined by 

00 

@l(W Y> = s 41(x, Y)e 
iwx 

h, 

--co 

where a! = CJ + it, G and t being real. Then 

@l(% Y> = @1- (cu, y) + @1+ (a, y), 

where 

0 

@l-(a, Y> = 
s 

41 (x, Y)eiax h, Q1+ (a, y) = mq$ (x, y)eiax dx. 
s 

--oo 0 

(3.1) 
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By using condition (2.13) it is observed that the functions @I+ (a, y) and @I- (a, y) are analytic functions of cx in 
the overlapping half-planes t > --6(e) and t < 8(e), respectively, and by using the edge conditions (2.12) along 
with the Abelian theorem (see Noble [5]), it can be shown that 

]@i+(a, y)] = O(]a]-l) as ]a] + cc in t > -s(E), 

]@r-(a, y)] = O(]a]-l) as ]a] + -cc in t < S(E). 

To use the Wiener-Hopf procedure, conditions (2.9) and (2.10) are rewritten as 

(3.2) 

4ly +a41 = ;(x) l ony =Oforx < 0, 
ony=O forx>O 

and 

4ly + Wl = 
g(x) on y = 0 for x < 0, 

-(b - a)e ikx on y = 0 for x > 0 

where f(x) (for x > 0) and g(x) (for x < 0) are unknown functions having the behaviours 

f(x) = O(1) asx -+ +O, 

and 

g(x) = O(1) as x -+ -0 for finite lb] 

while 

g(x) = O(~X]-‘/~) as x + -0 for lb] = 00 

obtained from the edge conditions (2.12) for BVP I. 
Now applying the Fourier transform to the pde (2.8), we obtain that 

(3.3) 

(3.4) 

(3.5) 

d2@l@, Y) 

dy2 
-Y2~1(~!,y)=0, Y LO, 

with y2(~) = cz2 - e2, whose appropriate solution is given by 

@?(a, Y) = Dl(a)epYY, Y 2 0, (3.6) 

where Dt((zr) is an arbitrary function of the transform parameter a, and we denote by y(a) that branch of the 
function (a2 - e2)lj2 that takes the value -k for a = 0. Applying the Fourier transform to conditions (3.3) and 
(3.4) we obtain that 

@;(% 0) + a%(% 0) = F+(a), (3.7) 
b-a 

CD; (a, 0) + b@l (a, 0) = G_ (01) + ~ 
i(a + k) 

(3.8) 

in which the two unknown functions F+(a) s Jo” f (x)eiaX dx and G-(a) = j-ooc g(x)e’“” dx can be shown to 

be analytic in the two overlapping half plane r > --S(E) and t =z S(E), respectively, with IF+(U)] = O(]CX-~) as 
]CX] -+ 00 in t > -S(E) and 

as 1~1 -+ co for finite lbl, 

as ]a~] + co for lb/ = 00, 
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in t < 8(c). Using (3.6) in (3.7) and (3.8) and eliminating Dl (a) we obtain the following two-part Wiener-Hopf 
functional relation, for the determination of the two functions F+(a) and G_(a), as given by 

?‘(a> -b b-a 

V(a) -a 
F+(a) - G_(E) = y 

I@ + k) 
(3.9) 

valid in the strip c < r < d where c and d axe chosen such that 

--S(E) < - min(Im k, Im ao) < c < 0 < d -c min(Im k, Im au) < B(E) (3.10) 

with au = (b2 + E ) 2 1/2 that takes the value b for E = 0. 

Now three cases arise according as b > 0, b -c 0 and lb1 = 00, and we treat the Wiener-Hopf relation (3.9), in 
these three cases, in different manners as described below. 

Case 1:b > 0. We note that the coefficient of F+(a) in (3.9) is [(a2 - $)/(a2 - k2)]M(u) where M(a) = 
(y(a) + a)/(y(a> + b). The function M(a) is analytic in the strip --J(E) < t < 8(e) and hence, in the strip 
c < t -K d, which can be factorised as 

M(a) = M+(a)M-(a), (3.11) 

where M+(a) = M-(-a), lM+(a)I = O(1) as M -+ cc in t > c, M+(a) being analytic in the upper half plane ) 1 
r > c and M_(a) is analytic in the lower half plane t < d. 

Following Noble [!?I, M+(a) is obtained as 

Mi_(ol) = (a - ic)ri2 exp [.&tC($ + k)P + ($/a) A+ (0 + (k/a) A- (k)} d$/02 - k2)] 

(b - i4j2 exp [[,“{(c + a0)/2 + ((lb) A+ ($I+ (w/b) A- (&I dC/02 - ai)] ’ 

where 

As is customary in Wiener-Hopf analysis, Eq. (3.9) is rewritten in the form 

a+cro 
u,,M+W+W - 

2k(b -a) 1 1 
. 
i(an +k) M_(-k)G 

cll-k G_(a) 
=- 

a - a0 M_(m) 

b-a 
+i 

1 1 1 q-k 1 __ 
M-(a) M-(-k) +cto+kM_(-k)G ’ 1 

(3.12) 

(3.13) 

The left-hand side of (3.13) is analytic in t > c and the right-hand side is analytic in t < d, and as 1~~1 + co in 
the respective half planes, each side tends to zero. Applying the principle of analytic continuation and Liouville’s 
theorem, we find that each side of (3.13) vanishes identically. Thus we find the unknown function F+(a), as given 

by 

1 
F+(a) = . 

2k(b - a) 

l(ao + k)M+ (k) (a + ao)M+ (a) . 

Now, the use of (3.6) in (3.7) produces Dt (a) as 

Dl(cf) = - 
F+(a) 

Y(U) - a 
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so that @1 (a, y) is obtained explicitly. Thus, by Fourier inversion @t (x, y) (y > 0) is obtained as 

4Jl(X, Y) = -. 
k(b - a) 

s 

e-iax- yy 

ln(ao + k)M+(k) c (y - a)(a + ao)~+(a) d~’ 
(3.14) 

where C is a line parallel to the real axis in the complex a-plane and lies in the strip c < r < d. 
Case 2: b -c 0. In this case the coefficient of F+(a) in (3.9) is written as L(a)/(a2 - k*) where L(a) = 

(y + a)(y + lb\) which is analytic in the strip c c t < d. L(a) can be factorised as 

L(a) = L+(QW-(a), (3.15) 

where L+(a) = L-(--a), L+(a) is analytic in t > c, L_(a) is analytic in t < d and that L+(a) = O(lal) as 
1~1 -+ 00 in t > c. Following the same procedure as used to obtain M+(a) above, L+(a) is found to be 

L+(a) = {(a - k)(-b - k)} tJ2 exp 
e 

+ a A+ (4) + i A_ (k) 
de 

~ 
t2 - k* 

a 

+ 
<+a0 t - - g A+ (6) - 7 A_ (a()) 

de 
2 

0 1 1 
W’ 

where A+(<) is the same expression as given in relation (3.12). 
Using a similar procedure as in Case 1, the function 41 (x, y) (y > 0) in this case is obtained as 

k(a - b) 
41(x, Y> = -___ 

s 

e-iax--yy 

inL+W c (Y - a)L+(a) da 

where C is the same contour as in (3.14). 
Case 3: lb1 = 00. In this case condition (2.10) assumes the form 

4 = _eikx ony=O forx >O 

so that the functional relation (3.9) is modified as 

v(a) +a 
a2 _ k2 F+(a) + G-(a) = - . 

1 
------forcer cd. 
i(a + k) 

(3.16) 

(3.17) 

(3.18) 

Here we factorise P(a) = y(u) + a (a > 0) in the form 

P(a) = P+(a)P-(a), (3.19) 

where P+(a) = P-(-a), P+(a) is analytic in t > c, P_(a) is analyticin r < d, P+(a) = O(~CZ~~/~) as 1~~1 + co 
in t > c. P+(a) is obtained as 

(3.20) 

Following a similar procedure as in case 1, the function 41 (x, y) (y > 0) in this case is obtained as 

k 
$1(x, Y> = -~ 

s 

e-iax--ry 

ire P+(k) c (Y - a)P+@) 
da. (3.21) 
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The representations (3.14) (3.17) and (3.21) for $1 (x, y) are now analysed after passing on to the limit E -+ 0 
so as to obtain the solution of BVP I for b > 0, b -c 0 and lb1 = 00, respectively. 

As E --+ 0, the functions M*(a) in (3.11), L*(o) in (3.15) and P*(o) in (3.19) reduce, respectively, to 

Mu = MO(--(zr) = (a! + a)li2 exp & Jtj”!” 8 
[ dcl 

(a + b)l12 exp & jt’” $I$ de] ’ 

’ [1 (r r]sd(], Lo = L!(-a) = (a + a)1/2(a! - b)‘i2exp E + 

P!(a) = PO(-a) = (a + a)li2 exp [il-r&dC]. 

Again, as E + 0, we note that 

k+a,cro+b andr+olsgnRea. (3.23) 

Using (3.23) and (3.22) in (3.14), (3.17) and (3.20), we obtain the solution of the BVP I as 

I 
Co 

a(b -a) 

s 

e--cy(sgn Recu)y-iwx 

-ir(a+b)M:(a)_co (czsgnRe(z -a)(a+b)@@) 
dol forb>O, 

co 
a(a - b) 

s 

,-a(sgn Recy)y-iax 

@1(x, Y) = -inLO (a> da 
+ _-oo (LX sgn Recz - a)Lt(cr) 

cc 
a 

s 

,-a(sgn Rea)y-iolx 
-~ 

in Pf (a) 
da! 

_-oo (a! sgn Rea - a)Pf(a) 

for b < 0, 

for JbJ = 00 

(3.22) 

(3.24) 

where the path of the integral is indented above (below), the poles on the negative (positive) real axis. 
To evaluate the integrals in (3.24), we introduce the polar coordinates (r, ,f3) where x = r cos j?, y = r sin ,L? 

(0 5 /I 5 n). The poles of the integrands are on the real axis. For x -C 0 (> 0) we deform the contour over 
the bisectors of the first and second (third and fourth) quadrants of the complex o-plane. The integrands decrease 
exponentially on the bisectors and we retain up to the order of r -l for the integrals on the bisectors. Thus we finally 
obtain the following asymptotic results, valid for large r. 

For x < 0, 

2(b - a) sin j3 2a(b -a) - - 
-inb(a + b)M~(a)@(O) r I(Q + b)$!(a)12 

e--ny-inx for b > 0, 

h(X,Y) = I 
2(a - b) sin /3 

inLO+(a)LO+(O) r 

2a(b - a) e-_ay-iax 

+ {LO+(a)12 

2 sin p 2a 
- - 

, inP$!(a)Pf(O) r {Pf(a)12 

e-ay-iax 

for b < 0, 

for lb] = co, 

(3.25) 
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while for x > 0 

_e-ay+ian 
+ 

2(b - a) sin j3 

inb(a + b)M~(a)@(O) r 

+ 
4abM!(b) e-by+ibn for b > 0, 

41(X,Y) = 
(a + b)2M!f_(a) 

_e-ay+iax _ 2(b - a) sin j3 

inLO,(a)LO+(O) Y 
for b -c 0, 

_e-ay+iax 2 
+ 

sin /I 

in Py (a) Pt (0) 
for IbJ = co. 

r 

(3.26) 

Since the total field is given by (cf. Eq. (2.7)) 

4; (x, y> = eOyfiax + 41 (x, y), 

we observe that the behaviour of the total field as 1x1 + 00, given by (2.6), is satisfied by (3.25) and (3.24). The 
complex constants Al and Et which are the reflection and transmission coefficients (complex), respectively, are 
now determined explicitly. We note that for b > 0, there occurs reflection and transmission of the incoming wave 
train by the discontinuity at (0,O) into the regions x -C 0 and x > 0, respectively, while for b -c 0 and Ibl = 00, 

there is no transmitted wave in the region x > 0. This is expected, since in the latter cases the inertial surface is too 
heavy to allow for the propagation of the incoming wave train after it encounters the discontinuity at the origin. We 
note that the first terms in the right-hand side of (3.25) and the second terms in the right-hand side of (3.26) arise 
due to interaction of the incident wave train with the discontinuity at the origin and they die out at large distance 
from the origin. These do not represent any wave. 

Now comparing (2.6) with (3.25) and (3.26) we find that the complex reflection and transmission coefficients are 
given by 

2a(b -a) 4abMF (b) 

-{(a + b)A4t(a)}2’ (a + b)2Mt(a) for b ’ ” 

AI, BI = 
2a(b - a) 

WO+(a)12 
,O 

I 2a 

-{Pt(a)}2’ O 

for b < 0, 

for lb] = co. 

Hence the reflection and transmission coefficients (real) are obtained as 

for b < 0, 

for Ibl = cm. 

In deriving the results in (3.28), we have used from (3.22) 

a + b ‘I2 
Id$9l = 2b , 

I I 

(3.27) 

(3.28) 

IL$(a>I = l24a - b)l l/2 , IPf(a)I = (2a)1/2. (3.29) 
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The results in (3.28) for b > 0 have been recently obtained by Chakrabarti [6] by a different technique. It is also 
verified from (3.28) that the principle of conservation of energy, viz. 

IAd + I&l2 = 1 

holds good. 

4. The three-part Wiener-Hopf technique involving BVP II 

Let 4~ (x, y) = @2(x, y; 6) denote the function satisfying the generalised BVP II. The Fourier transform of 
42 (x, y) is written in the form 

cc 

@2(% Y) = 
.I 

42 (x, yVX do 

= @2- (a, y) + eia1@2+ (a, y) + s 42(x, y)eiax dx 

0 

where 

0 cc 

@2-C% Y> = 
s 

42 (x9 yk+“’ d.~, %+(a, Y> = 
s 

42(x, Y>e 
ia(x-l) h 

-co 1 

(4.1) 

By using condition (2.13) it is observed that @pz+ (CY, y) and Q2- (a, y) are analytic functions of a! in the half planes 
t > -a(~) and r < 8(e), respectively. Again, by using the edge conditions (2.12) (for BVP II) along with the 
Abelian theorem, it can be shown that 

]D2+(a, y)] = O(]a]-l) as ]a] -+ co in t > -a(~), 

]@-(a!, y)] = O(la]-‘) as Ia] + cc in t < B(E). 
(4.2) 

To use the Wiener-Hopf procedure, as in BVP I, conditions (2.15) and (2.16) are written in the form 

42y + a42 = 
1 

“fi cxj 
ony=O forx t0 and x >I, 
ony=O for Otxtl (4.3) 

and 

( 

u(x) on y = 0 for x < 0, 

q&+b&= -(b-a)eikx ony=O forO<x<l, (4.4) 

u(x) on y = 0 for x > 1 

where fi (x) (for 0 < x < Z), U(X) (for x < 0) and v(x) (for x z Z) are unknown functions having the behaviour at 
the points x = 0 and x = 1, which are similar to the ones given by conditions (3.5). Specifically, 

fl(x)=O(l) asx-++O, and x+2-0, 

u(x) = 
( 

O(1) as x -+ -0 for finite lbl, 

o(x-1’2) as x + -0 for Ibl = co, 

v(x) = 
O(1) asx+Z+O forfinitelb], 
0(1x _ 11-l/2) asx + I+0 for Ibl = co, 

(4.5) 

(4.6) 

(4.7) 
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obtained from the edge conditions (2.12) for BVP II. 
Now an appropriate solution for 02 (a, y) is taken to be 

@2@!, Y> = D2@)eMYY, Y S 0, (4.8) 

where D2 (a) is an arbitrary function of a!, and is determined from the relations obtained by Fourier-transforming 

conditions (4.3) and (4.4), as given by 

b-a 
@;(a, 0) + b&(a, 0) = U_(a) + eia’V+ (01) - y 

1(a + k) 
{e i(a+W _ 11, 

In (4.9) the three unknown functions U_ (cx), V+ (cx) and Fl (a) are defined by 

0 cc 

lJ_(cu) = s u(x)eicrx dx, V+(a) = 
s 

v(x)eiolCx-‘) dx, 

-cxJ 1 
‘ 

FIN) = s .fl(x>e iax h. 
0 

It can be shown that U_(a) is analytic in the half-plane t < S(E), V+(a) is analytic in the half-plane t 
and Fl (a) is an integral function of a. Use of the edge conditions (4.5)-(4.7) ensures that 

U-(&q = O(W1) ( as 1~~1 + 00 inr < S(E) for finite lb], 

O(lalp) as 1cxl + 00 in r < 8(c) for Ibl = 00: 

V+(Q) = 
( 

WC’> as 1~~1 -+ 00 in t > --S(E) for finite Ibl, 

O(lalp) as ICYI + co in t > -J(E) for Ibl = co, 

le-‘OL’F~(a)I = O(lcxl-‘) as lcxl -+ 00 in r < B(E), 

IFl(a)l = 0(lal-“2) as (al -+ 00 in t > --B(E). 

> 

(4.9) 

(4.10) 

--B(E) 

(4.11) 

Using (4.8) in Eqs. (4.9) and eliminating Do we obtain the following three-part Wiener-Hopf functional 
relation, for the determination of the three unknown functions F1 (a), U_(a) and V+(a), as given by 

y(a) - b 
Fl (a) = U_(a) + eial V+(a) - 

b-a 
pie 

i(a+k)l 

14) - a i(a + k) 
- 11 (4.12) 

valid in the strip c -C r < d where c (-c 0) and d (> 0) satisfy inequality (3.10). 
As in the case of BVP I, here also three cases arise according as b > 0, b < 0 and Ibl = co, and we treat the 

three-part Wiener-Hopf relation (4.12) in three different manners as described below. 
Case 1: b > 0. Using the same Wiener-Hopf decomposition (3.11) for M(a) = (y + a)/(v + b) = 

M+(a)M_ (a), multiplying both sides of (4.12) by eeiolz/M+(a) and rearranging, we obtain 

a+k V+(a) -- 

a+aoM+(a) 

= ~M_(cx)e-iU”F~(w) - J-(cx) - ~_.(a), (4.13) 
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where 

5‘+(a) + C-(a) = 
e-‘“l (ae + k) U- (a) 

r-k(m) + rt-(a) = 

(;Yb+_c$lev+“(n) ’ 

i(a + aco)M+(a) . 

(4.14) 

In (4.14), <+(a), q+(a) are analytic in t > c and {_(a), n_(a) are analytic in t -C d, and their explicit forms can 
be obtained by employing the additive decomposition theorem (see [5, p. 131). Similarly, multiplying both sides of 
(4.12) by l/(M_(a)) and rearranging we obtain 

a-k tr_(a) 
~g-$+R-(~)---(4+. 

b-n 

l(a - ao> 
1 1 q-k 1 -- 

M_(a) M_ (-k) +cuo_tkm 1 
where 

R+(a) + R_(a) = “p’” ,;2($‘, 
o! ct! 

S+(a) + s- (a) = 
(b - ~)(a - k)ei(a+k)” 

i(at + k)(a - CX~)M_(CE)’ 

(4.15) 

(4.16) 

R+(a), S+(a) being analytic in t > c and R_(a), S_ (a) in T < d and their explicit forms being obtained by 
employing the additive decomposition theorem mentioned above. 

The left-hand side of (4.13) and the right-hand side of (4.15) are analytic in t > c while the other sides are 
analytic in z < d. Using (4.1 l), it is seen that each side of (4.13) and (4.15) tends to zero as ]a~] -+ co in the 
appropriate half planes having a common region c < t -C d, so that by Liouville’s theorem, each side is identically 
zero. We are interested in the left-hand sides of (4.13) and (4.15). 

For brevity, we introduce the notation 

b-a. 
F(a) = U-(a) + 7, 

~(a! + k) 
b -a 

P+(a) = V+(a) - -----e ilk 

i(a + k) 
(4.17) 

where the superscript star is used to indicate that P?(cz) has a pole at a = -k but apart from this, it is analytic in 
t < d, and P+(a) is analytic in t z=- c. On equating the left-hand sides of (4.13) and (4.15) , and introducing the 
explicit expressions for c+ ((II), q+(a), R_ (a), S_ (a) and using the notations (4.17), we obtain 

iq+cc 
a+k W+(a) -- 

cr +mo M+(a) +ki .I e-i14- (6 + WP (0 
icl_oo M+O>O +ao>O -a> 

do = o 

’ ’ ” (4.18) 

and 

a-k *:(a) 1 
idI fco 

cx -au M_(a) p--idl_m M-(SW~O)(~-~~’ 2ni s 

eiEC(t - k)ly,(C) 

2(b - a)k 1 
__ = 0, 

-iM-(-k)(ao+k)a+k 
t < d, (4.19) 
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where c < cl -C 0 < dl -c d. We choose ct = -h, dl = h where h is positive, then replace 6 by -.$ in (4.18) and 
(II by --a! in (4.19). Noting that &?+(-a) = M_(m), this produces 

and 

ihfcc 
cf!+k P(-a) 1 eiLC G - k)p+G) ~-- 

@+a0 M+(a) 2ni s iI!.- (O(~ - ao)(< + a) 
de 

ih-cc 

w7 -a% 1 = o 

+iM_(-k)(olc+k)a-k 

(4.20) 

(4.21) 

where now t > -h in both the equations (4.20) and (4.21). We define 

s+> = q+(m) + *:(-at), D_T(CX) = !P+(a!) - !I?(-CX), (4.22) 

where in this case the star denotes that the expressions are analytic in r > c except for simple pole at a = k. Then 
addition and subtraction of Eqs. (4.20) and (4.21) produce 

ih+lX 
a+k S;(a) 1 ei@ (6 - k)ST (6) 

--~ 
a + 010 M+(a) 2ni s M-(0@ - ao)O + a) 

4= 

i&cc 

2(b - a)k 1 

‘iM+(k)(q+k)cr-k 
- =o, t > -h 

and 

ih+oo 
a+k 0;(4 

+& s 

e’@($ - k)D$($) 
-- 
a +a0 M+(a) ih_oo M-(0(&? - @O)(< + a) 

G= 

2(b-a)k 1 
-=O, t>-h. 

-iM+(k)(ao +k) a -k 

(4.23) 

(4.24) 

Eqs. (4.23) and (4.24) are of the same type and can be treated for approximate solution for large 2. We write them 
in a compact form, as given by 

ihfcc 

s 

ei’c ($ - k)FT+(e; A) 

M-(l)(tt - ao)O + a) 
dC; 

ih-cc 

2h(b -a)k 1 

=iM+(k)(ao+k)a-k’ 
t > -h, (4.25) 

where FT+(a!; h) is ST (a) or D;(a) for h = -1 or + 1, so that from (4.17) and (4.22) to (4.24) we find that 
FT+(a; h) has the form 

(b - a)e ikl 

F,*,(a; A) = Fl+(w A) - 
A(b - a) 

. 
l(cx + k) 

+ 
i(a!- 

(4.26) 
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where Ft+(a; h) is analytic in t > c, it being understood that Ft+(cz; 1) = V+(a) - U-(--a) and Fr+(a; -1) = 

V+(a) + U-(-a). 
Now writing 

(4.27) 

in the integrand of the integral in the left-hand side of relation (4.25) we note that the integrand consists of two 
types of terms. The first type involves simple poles while the second type involves branch points at 6 = AC in the 
complex c-plane. The integrals involving the first type of terms are evaluated by using the residue theorem after 
completing the contour by a semi-circle of large radius in the upper half. To evaluate the integrals involving the 
branch points, only one branch point, viz. c = E needs to be considered and as such a branch cut is taken parallel to 
the positive imaginary axis from $ = E to infinity. Then the contour is deformed into the two sides of the branch cut 
and contributions from the poles, if any, are taken into account. The contributions from the two sides of the branch 
cut involve integrals of the form 

00 

s 
@(u)u r/2e--Lll du, 

0 

(4.28) 

where +(u) is an analytic function. These are evaluated asymptotically for large 1. If f (I) denotes the integral (4.28), 
then 

where 

cc 

BjtO = s Zjfl/2e-zl & =(+)i+3'2r(j+i). 

0 

Thus 

I 

Incorporating the aforesaid method we find that for large Z 

ih+oo 

f 

eizctt - k)Fl+(f; h) 

M-c!T)G + a>O - a01 
de = 2ni[T(cLr)Fl+(c’; A) + Tl@)Ft+(ao; /t>l, 

ih-oo 

(4.29) 

(4.30) 

where 

@ - a)Eo 1 
T(a) = 

2ni(& - a~)(& + k) .c’ + a! 
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with 

j-c1/2 
Eo=--e 

1312 
i(E1+(3/4)n)M+(E’)(E’ + E)1/2, t&t+31 

21 

and 

TI(~) = 
2b(b - a)M+(ac)ei”o’ 1 

aofk ao+a’ 
(4.31) 

ih+cc 

s 

& 

ih_oo M-(t)(t + a)(.$ - ao) d’ = 2ni 

TI (a) 

R1(czr) + aa - k 1 ’ 
ih+cc 

s eilc (e - k) 

ih_oo M-(6)($ + a)O - ao) 
dk- 25 2ni 

Tl (a) 
&(a) + - 1 ao+k ’ 

where 

Rl(cf) = 
(b - a)Eo 1 

R2(a) = 
(b -a)& 1 

2ni(& - CX~)(E’~ - k2) G’ 23zi(& - a~)(& + k)2 E” 

(4.32) 

(4.33) 

(4.34) 

Using results (4.30), (4.32) and (4.33) for large I in (4.25) we obtain an approximate relation between the 
function Fr+(a; h) and the unknown quantities Fl+(olo; h), FI+(E’; I.). Setting Q! = QO and LX = E’ in this we get 
two equations involving these two unknowns, which, when solved, produce 

Fl+(Qo; A) = - 
b-a 

i(Ah.Dh - BhCh.) 
{eikl(S’B’ - Q’D’) + ThBh - R’Dh}, 

E+(E’; h) = . 
b-a 

l(A”Dh. - B*C*) 
{eikl(ShAh - Q’“C’) + Th.Ah - RhCh}, 

where 

Ah = cxo + k 

2aoM+ (ao) 
+ ATI( 

Bh. = hT(ao), 

’ 
2aoM+(ao) ’ 

R’ = - R1 (czo) - 

Ch = hT1 (E’), 

M+(k);:; - k2) - 2hf+(rr;u;;o -k) ’ 

D” = d-/-k 

M+ (E’) (E’ + ao) 
-I- AT(d), 

(4.35) 

(4.36) 

(4.37) 

s” = 1 
+ h R~(E’) + - , 

1 

Tl (E’) 

JJ+ (E’) (E’ + ao) ao+k 1 

Th = -R1(d) - 
TI(E’) 2k 

--IA 
d+k 

a0 - k M+(k)(uo + k)(E’ - k) - M+(E’)(E’ + cxO)(c’ - k) ’ 
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Thus Fl+ (01; h) is obtained for large 1 and is given by 

F,+ta. a) = (a + aoPf+@) b - a 
a+k [i{~ikz((a+u:)M+(a) +$$+“R2(u)) 

TI (a) -a2 Rl(a)+- ( cxo - k > 
h(oc + k) 2hk 

- 
M+(a)(a - k)(a + ao) + M+(k)(ao+k)h -k) I 

-h{T(a)F~+(d; h) + Tl(a)Fl+(ao; A)} 1 (4.38) 

where Fl+ (ao; A) and Fl+ (E’; h) are given in (4.35) and (4.36), respectively. Rutting k = -1 and 1 in (4.38) we 
obtain two equations for V+(a) + lJ_ (-cx) and V+(a) - lJ_ (a). By addition and subtraction we find V+ (a) and 
U_ (-a) for large 1. Replacing a! by --a we obtain U_(a). Thus V+(Q) and U_(a) are obtained for large 1. Now the 
use of (4.8) in the second equation of (4.9) produces 02(a). Thus we obtain Dz(a). Using this in (4.8) we obtain 
42 (X , y) for large 1 after taking Fourier inversion, as given by 

b-a 
426, Y> = b(x, Y) - - 

(cx + cxo)M+(a)eiuz 

2ni 
0 afk 
C 

i(Cl T(a) + C2T1 (a>> Tl (a> 
X 

( b-a 
-Rl(cY)_- 

cxo - k I 

+(a - ao)M-(a) i(C3T(--a) + C4Tl(-a)) 

a!-k f b-a 

-eikL 
( 

Ti (-a) 
&(-a) + ~ 

ao+k >I1 
e-iax-ry 
pdct 

r-b 

where 41 (x, y) is the same expression as given in (3.14) and 

Ct = ; {FI+(q -1) - Fl+(c; l)}, 

(4.39) 

C2 = ; { F1+ (mo; -1) - Fl+ (ao; 1)) , 

C3 = ; {F,+(t; -1) + F1+(c; 1))) 
(4.40) 

C4 = ; {Fl+(cxo; -1) + Fl+(ao; 1)). 

The second term in (4.39) may be regarded as due to the presence of the second discontinuity at (I, 0) for large 1. 
Case 2: b -c 0. Using the same Wiener-Hopf decomposition (3.15) for L(a) = (y +a)(y + lbl) and proceeding 

as in Case 1, we obtain in place of (4.25) 

(a -I- k)FT+ (a; a) h ‘h+ooeizt (c - k) F;+ ($, 1) 
-_ 

L+(u) 2ni s 2Ua - b)k 1 

L-(C)(S + a) 
de = - 

iL+(k) a! -k’ 
r > -h, (4.41) 

ih-co 

where FF+ (cx; h) has the same meaning as given in Eq. (4.26). We write 

b(c2 - k2) + (cxo” - k2)(t2 - c2)1’2 

(t2 - k2)02 - a;) 1 (4.42) 

in the integrand of the integral in the left-hand side of (4.41). Following similar arguments as described earlier, we 
find that, for large I, 
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ih+co 

s e'@ (c - k) Fl+ (-$; h) 

cc + k&e=) dt x 2niT’(a)Ft+ (E’; h) 

ih-m 

where 

b-a 
Tl((zr) = - 4 1 

2ni 
. I^ 

(et2 - o$(& + k) E’ + a! ’ 

n”L Ei =--e 
1312 

iCcZ+3n/4)L+(Etj(Ef + c)1/2, 

where 

b-a 
R;(a) = - EO 1 

27ci (82 - I?-)(& - f_+$ E’ + a ’ 

and 

ihfoo 

s 

(.$ - k)e’c’ 

(t + a)(f + k)L-(t) 
de M 2niRi (a), 

ih-cc 

where 

b-a 
R;(cz) = - 

Eo 1 

2rci (E’ + k)2(& - a;) 6’ + 01’ 

E” being the same as given in (4.3 1). 
Proceeding as in Case 1 we finally obtain +2(x, y) for large I in this case, as given by 

a-b 
cPz(~~Y)=~lkY)+y-$- seiuz{R:(a) + CsT’(a)} 

c 

-s{eiLIRi(-ol) + C6T1(--a)} 1 
e-icrx-ry 

y-b da, 

where now $11 (x, y) is the same expression as given in (3.17) and 

cs = L+ (E’) 
(E’ + k)2 - (T’(E’)L+(E’)}~ 

{(E’ + k)G;(e’) - T’(d)L+(d)G;(d)J 

with 

,ikl 

G;(a) = -- - R:(a), 
2k 1 

G;(a) = -- - 
a+k 

L+(a) L+(k) a - k L+(a) (a - k) 
- eikl Ri (ct), 

(4.43) 

(4.44) 

(4.45) 

(4.46) 

(4.47) 

and C6 is the same as Cs with Gl and Gi interchanged, R:(u) and R:(a) being given by (4.44) and (4.45) 
respectively. As before, the second term in (4.46) may be regarded as due to the presence of second discontinuity 
at (I, 0) for large 2. 
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Cuse 3: IhI = co. In this case condition (2.16) assumes the form 

4 = _eikx ony=O forO<x <I, 

so that the modification of relation (4.12) is 

Y(cf> +u 1 i(a+k)l 
,2 _ k’ Fl(cr) = -U-((Y) - eia’V_(a) + y 

~(a, + k) 
{e - I}. c<t<d. (4.48) 

Here P(a) = y + a is factorised as P(a) = P+(a)P_(a) where P_(a) = P-(-(Y) and P_(a) is given by (3.20). 
Proceeding as in Case 1, we obtain in place of (4.25) 

((Y + k)F;+@; i) 
ihfW 

A e”[(t - k)F&(tr A) 2A.k 1 
-- t > -h 

P+(a) 23ri s (6 +o)P-(C) 
dc=T- 

lP+(k) (Y -k’ 
ih- x 

where now 

eikl h 
F2*+(cY; A) = F-2- (a; A) - ~ + ~ 

i(a, + k) i(a - k) 

&(a; 1) = V+(a) - U_(-IX), r;;-+((Y; -1) = V+(o) + U-(-a). 

We write 

1 -_n + (<I - c2p2 
-= 
P-(6) e2 - k2 

p+(e) 

(4.49) 

(4.50) 

(4.5 1) 

(4.52) 

in the integrand of the integral in the left-hand side of (4.49) and proceeding in a manner similar to Cases 1 and 2 
we find that, for large 1, I#Q(X, y) is given by 

p-(o) jk/ 3 
-=(e Rj(-a) + CgT2(-(r)) e-iuX-‘r du. 

I 

where now 41 (x, y) is given by (3.21) and 

E* I 1 
R&Y) = 0 - 

2zi (E’ + k)2 E’ + cx ’ 

-_ 
2nie’+ke’+cz 

with 

x1:2 
Ei=-me i(tl+3n/4)p+(E’)(c’ + c)l/2, 

(4.53) 

Cl = 
p+ Cd 

(E’ + k)2 - ( T*(E’) p+(6))’ 
{(E’ + k)G;(c’) - T+‘)P+@)G+‘)}, 
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where 

eikl 

C;(a) = -- - q(a), G;(a) = 
2k a+k 

P+(a) (a - k)P+(k) - (a - k)P+(a) 
- Rz (cx)eik' , 

and Cs is the same as CT with G: and Gz interchanged. The second term in (4.53) is due to the presence of the 
second discontinuity at (1 , 0) for large I. 

Making e -+ 0 in the solutions (4.39), (4.46) and (4.53) of the generalised BVP II for b 1 0, b < 0 and lb1 = 00, 

respectively, we obtain the solutions of the original BVP II for b > 0, b -c 0 and 1 bl = co. The second terms in 
(4.39), (4.46) and (4.53), after making E -+ 0, involve e-ia(x-z) and eeiorX in the integrands. The integrals involving 

e-iax can be evaluated for x < 0 (x > 0) by deforming the contour along the bisectors of the first and second (third 
and fourth) quadrants of the complex a-plane as has been done for $1 (x, y). The integrals involving e-iol(n-‘) can be 
evaluated similarly for x < I and x > 1. However, considerable effort is needed in the evaluations of these integrals. 
Since we are interested only in the wave terms, we need to find only the wave terms of&,(x, y) for different cases 
and different regions. If we denote 

&(x, y) = e-ay+ian + @2(x, y), (4.55) 

then the asymptotic expressions valid for large r, for the wave terms of 4; (x , y) are obtained, as given below. 
Forx < 0 

for 0 < x < 1 

e--ay+ian _ 2a(b -a) 

{(a + b)iM~(a))2e-uy~1a” 

’ 

4ab(T~(b))2M!(a) ‘I2 a(b - a)2M!!(a>eib’ 

(b2 - a2)@(a) b2(a + b)M~(a>(Za>2 
e--ey-ian 

1 
x W!?(b))2 - U’;(W2 

for b > 0, 

e-ay+iax 2a(b - a)e-ay-iax + o 1 
+ 

W!(a)12 (-> (la)3 
for b -c 0, 

e-ay+iax _ 
zae-ay-iax 

IPJ? @)I2 
for Ibl = co; 

4abMT(b) e_by+ibx fj 112 

(a + b)2M!$) 
-i _ 0 n 

a2(b _ a)2Mt(b)eible-bY+ibx 

x b2(a + b)2M:(a){(M!(b))2 - (T,o(b))2} 

0 

1’2 +i6 - 1 a(b -u)~ MT(b) 

n (ZU)~ b(a + b)2 My(u) 

2aTr (b) 

@ - a>{(M!Cb))2 - U’~@>)21 1 e-by-ib(x-l) 

1 

+O (la)3 (3 

for b > 0, 

0 forb<O, 
0 for Ibl = cm 

(4.56) 

(4.57) 
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andforx > 1 

‘[ 2aA4! (u)eib’ 

- (a + Wq(~)WO(~)P - (q%))21 

&(X> Y) = ( 

1’2 1 a - b L:(a) -_ay+ia(x_l) + o 

(la)23-Lo,oe 
for b -c 0, 

1’2 1 @(a) _ay+ia(x_l) + o 

(la)2F$je 
for lb/ = co, 

(4.58) 

where T:(b) = limG+o Tl(ao) = ((b - a)M~(b)eibE)/(u + b). 

Comparing (2.6a) with (4.57) and (4.58) we find that the unknown complex constants AZ, B2, B3 and B4 of (2.6a) 
are now obtained approximately for large 1 and are given by 

2u(b -a) 

-{(a + b)M~(a)12 + 

4ab{T;(b)}2M!(u) 

(b2 - a2)M~ (a) 

‘I2 a(b - a)2M!(a)eibz 1 

b*(a + b)@(u) (la)2 I 

1 1 
A2=< 

x W!!(b)}2 - {Tf(b)12 + O (la)3 H 
for b > 0, 

2a(b - a) 

v:(u)12 
for b < 0, 

2u 

, IPt(a)12 
for lb1 = co; 

(4.59) 

B = 4ab@(b) . 6 ‘I2 a2(b - a)2 

0 

A@! (b)eibz 1 
2 

(u+b)2M$(u) -’ n b2(u + b)2 {M$(b)}2 - {T;(b)}2 (ZU)~ 
(4.60) 

&=i 6 0 1’2 a(b - u)~ My(b) 

b(u + b)* @(a) n 
(4.61) 
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, 
2aM!(a) $bl 

-(a + b)My(a) {My( - {Tf(b)>2 

l/2 (b - a)2M!(a) 

b(a + b)Mi(a) 

B4 = 4 

for b < 0, 

(4.62) 

for lb1 = co. 

In the expressions for A2 and Bi (i = 2,3,4), M:(a), M:(b), Pi(a) are given by (3.29). 
It may be noted from (2.6a) that B2 and B3 exist only for b > 0. It is observed from (4.57) that in the region 

0 -C x -C 1, progressive waves exist only for b > 0, and these consist of transmitted and reflected waves. In this 
case the incident wave from the region x -C 0 undergoes partial transmission below the edge at x = 0 which then is 
partially reflected by the edge at x = 1. For b -K 0 or lb] = 00, there is no progressive waves in this region. (4.58) 
shows that in the region x > 1, there exist progressive waves due to transmission of the incident wave field through 
the region below the inertial surface even though there may not be any progressive wave in the region 0 -C x -C 1. 

5. Reflection coefficient in the region x -C 0 

The quantities a and b are related and for deep water the relationship can be expressed as 

&a, 
1 - Zua 

where lo (= a/p) can be interpreted as the height of a vertical cylinder containing the fluid whose mass is the 
same as that of the floating matter distributed over the cross-sectional area of the cylinder at the inertial surface. In 
order that there exist time-harmonic progressive waves at the inertial surface, b must be positive, as is mentioned 
in Section 1. Hence if the frequency w of the incident wave in the region x -C 0 is kept fixed, then b > 0 implies 
that cr < pg/w2, which is usually interpreted as the inertial surface to be light. However, if b < 0 or lb1 = 00, then 
D 2 ,og/w2 and the inertial surface is then interpreted as heavy since it does not allow propagation of time harmonic 
waves, as was pointed out earlier. Again, b 2 0 also implies w 2 wu where wo = (pg/a)‘i2. This means that wc 
represents a kind of threshold frequency, since if the frequency of the incident wave train exceeds this frequency, 
then the inertial surface does not allow propagation of any time-harmonic wave. This phenomenon is well known 
in the literature (cf. [1,2,4]). 

When the inertial surface is in the form of a semi-infinite plane (y = 0, x > 0, -co -C z < co) as in BVP I, the 
incident wave field undergoes reflection into the region x < 0 by the edge x = 0 and transmission into the region 
x > 0 provided the incident wave frequency w is less than the threshold frequency wn. However, when w 2 wu 
the incident wave field from the region x -C 0 is totally reflected back into the region x -=z 0 by the edge x = 0. Of 
course, there are local excitations by the edge x = 0 and these do not propagate as waves and die out away from 
the edge. 

When the inertial surface is in the form of a strip (y = 0,O I x 5 1, --00 < z < co) as in BVP II, there are 
now two edges, one at x = 0 and another at x = 1. Expressions (4.56) show that the incident wave is reflected back 
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Fig. 1. Reflection coefficient due to a semi infinite inertial surface. 

into the region x -C 0 by the left edge of the strip. Expressions (4.57) show that for b > 0, there is a transmitted 
wave and a reflected wave inside the strip, the transmission being through the edge x = 0 and the reflection being 
by the edge x = 1. For b < 0 or (bl = cm, no wave propagates inside the strip apart from some local excitations 
by the two edges. Finally, (4.58) show that in the region right of the strip, progressive waves exist which are due to 
transmission of the incident wave field through the region below the inertial surface. 

The reflection coefficient IAl 1 for b > 0 is depicted graphically in Fig. 1 against the wave number aL where as 
mentioned earlier, L is a characteristic length used to nondimensionalise a, b (=_ 0) and a/p (= lo) for deep water, 
choosing lo/L = 0.0 1,O. 1. It is observed from this figure that for fixed lo/L, 1 A 11 increases uniformly with the 
wave number a L . 

This is expected since, as the wave number increases, the incident wave remains confined within a thin layer below 
the free surface in the region x (: 0 and as it encounters the edge x = 0, reflection by the edge becomes more. It is 
also observed that for fixed wave number, IAl I increases as lo/L increases, i.e., as the surface density of the material 
of the inertial surface increases. This means that as the inertial surface becomes heavier, more energy is reflected 
by its edge, provided of course the inertial surface is ‘light’ enough to allow progressive waves to propagate on it. 

When the inertial surface is in the form of a strip of finite but large breadth I, the reflection coefficient IA21 for 
b > 0 in the region x < 0 is depicted graphically against the wave number aL in Fig. 2 taking Z/L = 10 and 
lo/L. = 0.01 and 0.1 and in Fig. 3 taking lo/L = 0.01 and Z/L = 10, 20. It has been observed from Fig. 1 that 
in the presence of the semi-infinite inertial surface, the reflection coefficient IAl I steadily increases with the wave 
number. However, when the inertial surface is in the form of a strip, this qualitative behaviour of the reflection 
coefficient (jA21) is lost. In this case, the behaviour of IA21 changes significantly against the wave number. Each 
graph of the reflection coefficient has the same basic feature, consisting of a series of concave curves which meet 
the wave number axis at their ends, so that total transmission occurs for a sequence of discrete values of the wave 
number, It is observed that larger values of lo/L leads to higher maxima in IA21 (cf. Fig. 2) and larger values of Z/L 

leads to more number of zeros of IA21 (cf. Fig. 3). The oscillatory behaviour of IA:! I against the wave number may 
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Fig. 2. Reflection coefficient due to a strip like inertial surface, Z/L = 10. 
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Fig. 3. Reflection coefficient due to a strip like inertial surface, lo/L = 0.01. 
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be attributed due to multiple reflections of the wave by two edges of the strip. 

6. Discussion 

Two mixed boundary value problems arising in the linearised theory of water waves have been solved by using 
Wiener-Hopf technique. The first problem involves water wave scattering by a discontinuity on the surface arising 
due to the presence of a semi-infinite inertial surface while the second problem is a generalisation of the first after 
introducing a second discontinuity at a distance I away from the first, the two discontinuities arising due to the 
presence of an inertial surface in the form of a strip of breadth I instead of the semi-infinite inertial surface. The 
BVP I is reduced to a two-part Wiener-Hopf problem whose solution is obtained in closed form. The reflection and 
transmission coefficients for this BVP are then obtained in closed form also. The BVP II reduces to a three-part 
Wiener-Hopf problem whose solution is obtained asymptotically for large 1. This produces approximate analytical 
expressions for the reflection and transmission coefficients in the appropriate regions whereever they exist. 

The behaviour of the reflection coefficient in the region of the free surface for Zight inertial surface is depicted 
graphically against the wave number in a number of figures and appropriate conclusions are drawn. 

It may be noted that by increasing the breadth of the strip for the BVP II indefinitely, the results of BVP I cannot 
be recovered. This is because the two BVPs are basically different in the sense that BVP I involves only one edge 
while the BVP II involves two edges, and by increasing the distance between the two edges, the second edge can 

never be eliminated. 
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