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Abstract

Two mixed boundary value problems associated with two-dimensional Laplace equation, arising in the study of scattering
of surface waves in deep water (or interface waves in two superposed fluids) in the linearised set up, by discontinuities in
the surface (or interface) boundary conditions, are handled for solution by the aid of the Weiner—Hopf technique applied to
a slightly more general differential equation to be solved under general boundary conditions and passing on to the limit in a
manner so as to finally give rise to the solutions of the original problems. The first problem involves one discontinuity while
the second problem involves two discontinuities. The reflection coefficient is obtained in closed form for the first problem and
approximately for the second. The behaviour of the reflection coefficient for both the problems involving deep water against
the incident wave number is depicted in a number of figures. It is observed that while the reflection coefficient for the first
problem steadily increases with the wave number, that for the second problem exhibits oscillatory behaviour and vanishes at
some discrete values of the wave number. Thus, there exist incident wave numbers for which total transmission takes place
for the second problem. © 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

If a part of the surface of deep water is covered by an inertial surface composed of a thin uniform distribution of
non-interacting particles (e.g. broken ice, unstretched mat) and the remaining part is free, then the surface boundary
condition becomes discontinuous in the sense that there are one condition on the free surface and another condition
on the inertial surface. The line separating the free surface and the inertial surface becomes a line of discontinuity.
Peters[1], Weitz and Keller [2] first developed this model to study wave—ice interaction. When half the surface
of water is covered by an inertial surface and the other half of the surface is free, Peters [1] investigated the case
when waves from the free surface region are normally incident on the straight line separating the free surface and
the inertial surface. Weitz and Keller [2] treated the same problem for water of arbitrary finite depth and oblique
incidence of waves.

Gabov et al. [3] considered two infinitely extended, immiscible superposed fluids for which half of the interface
is covered by an inertial surface and the other half of the interface is a free separating boundary of the two fluids,
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and investigated the scattering of the interface waves travelling from the free interface region and normally incident
on the line separating the free interface and the inertial interface.

The above two physical problems are mathematically equivalent. This can be shown by considering the case of
deep water and the case of two superposed fluids separately.

Case (a). Deep water. We first consider a deep water and choose the y-axis vertically downwards into the water
so that its surface at the rest position coincides with the plane y = 0. Let the semi-infinte plane represented by
y = 0, x < 0 be the free surface and the semi-infinte plane y = 0, x > 0 be covered by an inertial surface of area
density o, say. Let Re ¥ (x, y)e ™™’ represent the velocity potential describing the irrotational motion in the fluid
where ¢ denotes the time. Let the factor e ~*** be suppressed always henceforth. Then the complex-valued potential
function ¥ (x, y) is harmonic in the fluid region. The linearised free surface condition is

Yy+ay =0 ony=0, x <0, (1.1
where

a=w? /g, (1.2)
g being the acceleration due to gravity. The condition of no motion at infinite depth gives

v,V -0 asy — oo. (1.3)

Thus an incident progressive surface wave field is represented by the potential function e~#1%* Again, the
linearised inertial surface condition is

Yy+by =0 ony=0, x>0, (1.49)

where

2
b= (1.5)
pg —wso
p being the density of water. It may be noted that for o < pg/w? (i.e. b > 0), the form of (1.4) is merely a
modification of the usual free surface condition (1.1) corresponding to o = 0, and it allows progressive waves at
the inertial surface. However, for ¢ > pg/w? (i.e. b < 0 or |b] = o0), the form of (1.4) is different and does not
allow progressive waves at the inertial surface (cf. [4]).
Let ¢ (x, y) denote the scattered potential function due to the incident wave field e~®19* propagating from
infinity along the free surface and normally incident on the line separating the free surface and the inertial surface.
Then ¢ (x, y) is harmonic in the fluid region and satisfies the boundary conditions

¢y+ap=0 ony=0, x <0, (1.6a)
¢y +bp =—(b—a)y”™ ony=0, x>0, (1.6b)

so that x = 0 is a point of discontinuity in the boundary condition on the boundary y = 0. ¢ also satisfies the same
conditions as ¥ satisfies as y — 00. Moreover, it also satisfies some edge conditions as (x? + y*)!/2 — 0 and
infinity requirements involving the unknown complex-valued reflection and transmission coefficients as |x| — oo.
These will be stated later. These unknown coefficients form a part of the problem.

Case (b). Two superposed fluids. Again, we consider two superposed fluids of densities p1, p2 where py is the
density of the lower fluid and py (< p1) is the density of the upper fluid. Let the y-axis be chosen vertically
downwards into the lower fluid so that the rest position of the common interface is y = 0. Let the half plane
represented by y = 0, x < 0 be the free separating boundary of the two fluids and the half plane y = 0, x > 0 be
covered by an inertial surface of the area density . Let Re ¥ (x, y)e ™%, Re ¥ (x, y)e %", respectively, denote
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the velocity potentials in the lower and upper fluids describing irrotational motion. Then v is harmonic in y > 0
and v, is harmonic in y < 0. The linearised conditions at the free separating boundary are

pL(gY1y + w'Y1) = pa(g¥y + w'y2) ony =0, x <0, 1.7

Y1y =yY2y ony=0, x <0, (1.8)
and the conditions at the bottom and top are

w1, Vi — 0 asy — oo, ¥, Vi — 0 asy — —oo. (1.9)

Thus an incident progressive interface wave field propagating on the free separating boundary is represented
by

YO, ) = e @TE y >0, Y, y) = -0y <0, (1.10)
where now
2
=LY (1.11)
P1L—pP2 8
Again, the linearised conditions at the inertial interface are
pr(gyny + W) — p2(g¥2y + W) = cw’Yny, =ow’Ya, ony=0, x > 0. (1.12)

Let xj (x, y)(j = 1, 2) denote the scattered potentials due to the incident wave field represented by l/f}nc e, (=
1, 2) propagating from infinity along the free separating boundary and normally incident on the line separating the
free interface and inertial interface. Then yx; (x, ¥)(j = 1, 2) satisfy

V2X1=0 iny >0, V2x2=0 ny <0, (1.13)
the interface conditions

s =t = (D e oy 20 L0 1

X1y = X2yony =0, (1.16)
and the bottom and top conditions

X1, V1 >0 asy— oo, X2, Vx2 >0 asy — —oo. 1.17)
We now show that

xolx, ) = —x1(x,—y), y<0. (1.18)
To show this, let

X, y) = x1(x, y) + xax, ~y), y>0, (1.19)
then x (x, y) satisfies the boundary value problem described by

sz_—:O iny >0, xy=0 ony=0, X, Vx —~>0 asy— o0 (1.20)

where Eqgs. (1.13) and conditions (1.16) and (1.17) have been utilized. Now, by uniqueness theorem of harmonic
functions, we find that

xx,y)=0. (1.21)
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Thus Eq. (1.18) is proved. Hence it is sufficient to solve for the function x; (x, ¥) which is harmonic in the region
y > 0. The boundary conditions satisfied by x1(x, y) on y = 0 are obtained from (1.14) and (1.15) as

Xiy+ax1=0 ony=0, x <0, (1.22)
Xy +bx1=—b~ a)e” ony=0, x>0, (1.23)
where a is given by (1.11) and

_ (o1 + p2)w?
(o1 — p2)g — aw?’

(1.24)

We note that, in the absence of the upper fluid, a, b assume the values given by (1.2) and (1.5), respectively.

Thus the problem for deep water and the problem for two superposed fluids are mathematically similar, the only
difference being that the constants a, b for deep water and for two superposed fluids are to be two different sets of
constants. The mathematical formulation of the corresponding physical problem is described as BVP Iin Section 2.

Instead of the inertial surface occupying half the surface of deep water (or half the interface of two superposed
fluids) if it occupies an infinite strip of finite width /, say, on the surface (interface), so that it is sandwitched between
two free surfaces (interfaces), one on the left of x = 0 and the other on the right side of x = [, then we have
two points of discontinuity in the surface condition. The mathematical formulation of the corresponding physical
problem is described as BVP Il in the following section.

2. Boundary value problems

The mathematical formulations of the two wave scattering problems involving discontinuities in the boundary
conditions are now stated in the form of two boundary value problems (BVPs) described below.
BVP 1. To solve the Laplace equation

Grxx +yy =0, y>0, —00<x <00, 2.D
along with the surface boundary conditions, as given by

¢y +ap=0 ony=0 forx <0, witha >0, 2.2)

¢y +bp =—(b—a)e”™ ony=0 forx >0, with —oo0 <b < 00, (2.3)
producing a discontinuity at the origin in the surface boundary condition, the edge conditions

¢ =0() and V¢ =O(1) as r = (x2+ y*)1/2 — 0 for finite |b|,
or

¢ =0() and r'/?Vg =0() asr = (x2+ y»)? — 0 for |b| = oo, (2.4)
which are given by the physics of the problem, the conditions

¢, Vo — 0 asy— oo, 2.5)
and the conditions as |x| — o0, as given by

¢(x, }’) + e—ay+zax NAle—ay—mx +e—ay+1ax as x — —oo,

N { Bie % a9 x 5 00 forb > 0,

0 asx — oo forb < 0 or |b] = co. 2.6)
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In (2.6), A and B are two unknown complex constants to be determined, and | A1|, | B | represent the reflection and
transmission coefficients, respectively, corresponding to the incident surface (or interface) wave field represented
by e~*1T19% propagating in the region x < 0. Here ¢ (x, y) denotes the scattered field so that the total field is

@' (x,y) = $(x,y) + e T, Q2.7

BVP II. This is the same as BVP I except that the surface boundary condition (2.3) is replaced by two conditions,
as given by

¢y +bp=—(b—-a)* ony=0 for0<x <l, (2.3a)
¢y+ap=0 ony=0 forx > (2.3b)

producing two discontinuities in the surface boundary condition at the points (0, 0) and (I, 0), /(> 0) being finite.
For the edge condition (2.4), r now represents the distance from the two discontinuities at (0,0) and (0, [), and
instead of (2.6) ¢ now satisfies

¢t (x, y) ~ A2e~ay—iax 4 e—ay+iax a8 X — —00

_ { Boe oy Hbx 4 Bie=by—bG=D 4 i(x,y), O<x <1 forb>0,

pa(x,y), O<x <l forb<0 or |b] =00, (2.62)

~ Bge~@Tal—h a4 5 0.

In(2.6a), A2, B, B3, By are four unknown complex constants to be determined, and the functions 1 (x, ¥), u2(x, y)
represent two unknown, ordinary, non-wavy solutions of the Laplace equation. Physically, A, represents the reflec-
tion coefficient (complex) in the region x < 0, B2 and B3, respectively, represent the transmission and reflection
coefficients (complex) in the region 0 < x < [ and B4 represents the transmission coefficients (complex) in the
region x > I, corresponding to the incident wave field e"*19* propagating in the region x < 0 as in BVP L.

The BVP I can be viewed as a special case of a more general problem of wave scattering by a surface discontinuity
tackled for its solution by Gabov et al. [3] and the BVP II is a further generalisation of BVP I by introducing a
second discontinuity on the surface at a distance ! away from the first.

We observe that both the BVPs can be handled for their solution by the aid of the Weiner~Hopf technique after
generalising the Laplace equation (2.1) to the Helmholtz equation

Oxx + Pyy +e*p =0, y>0, —00 <x <00, (2.8)

where ¢ is a complex number with small positive real and imaginary parts as well as by generalising some conditions
(as described shortly) and ultimately passing on to the limit as € — 0 in a manner similar to Gabov et al. [3]. Thus
the generalised form of BVP I is to solve the Helmholtz equation (2.8) along with the boundary conditions

¢y +ap=0 ony=0 forx <0, 2.9)

by +bp=—(b —a)* ony=0 forx>0 (2.10)
where

k=@*+e»HY? withk=a fore =0, (2.11)

the edge conditions
¢ =0(1) and Vo =0(1) asr = (x> + y*)'/? — 0 for finite |b|, (2.122)
or

¢ =0() and r'?2Vep =0@1) asr = (x> +y»)? - 0 for |b| = o0, (2.12b)
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and the conditions at infinity, as given by

[¢] + Vo] < const. e 27 asr = (x% + )2 — oo, (2.13)
where 8 (¢€) is such that

8(e) >0+ ase—0. 2.14)

The generalisation of BVP II is similar to BVP I with the exception that conditions (2.9) and (2.10) are replaced,

respectively, by

¢y +ap=0 ony=0forx <0 andx > 1, (2.15)

¢y +bp=—(b—a)*™ ony=0 for0O<x <1 (2.16)

and in the edge conditions (2.12), r denotes the distance from the two discontinuities at (0, 0) and (/, 0) so that

r = (x2 4+ y»)12 or {(x — 1)* + y?}1/2. It may be noted that condition (2.13) is stronger than condition (2.5) as
y — 00, and is consistent with the behaviour of ¢ as |x| — oc.

With this as background, we proceed to present in Sections 3 and 4, the Wiener—Hopf technique applied to
the two generalised BVPs satisfying the Helmholtz equation (1.8) involving the complex parameter ¢, the surface
conditions (2.9) and (2.10) (for BVP I) or (2.15) and (2.16) (for BVP II), the edge conditions (2.12) and the
infinity requirement (2.13). For the BVP I, the reflection and transmission coefficients have been obtained explicitly.
For the BVP II, which is a generalisation of BVP I to the case when the inertial surface is in the form of a
horizontal strip of breadth [, the reflection and transmission coefficients have been obtained asymptotically for
large [. The reflection coefficient for both the problems in the region x < 0 is depicted graphically against the
wave number aL for b > 0 to visualize the effect of the inertial surface on the incident wave train progressing
along the free surface, where L is a characteristic length used to non-dimensionalise a, b(> 0) and o /p for deep
water.

3. The Wiener—-Hopf technique involving BVP I

Let ¢1(x, ¥) = ¢ (x, y; €) denote the function satisfying the generalised BVP I described by (2.8)~(2.10), (2.12)
and (2.13). We introduce the Fourier transform @1 («, y) as defined by

B1(a,y) = / 61(x, )™ dx,

where o« = o +it, o and 7 being real. Then
¢1(O{7 J’) = ¢1—((Z, )’) + ¢1+(C{, )’)’

where

4] oo
D1 (a,y) = / P1(x, y)e* dx, Pp+(a,y) = / ¢1(x, y)e* dx. (3.D
—C0 0
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By using condition (2.13) it is observed that the functions @+ («, y) and @{- (¢, y) are analytic functions of « in
the overlapping half-planes v > —&(¢) and © < §(¢), respectively, and by using the edge conditions (2.12) along
with the Abelian theorem (see Noble [5]), it can be shown that

| @1+ (a, ¥)| = O(|a|“1) as j¢] - o0 int > —8(€),
|®1-(a, Y)| = O(je|l ™Dy as la] —> —o00 inT < §(€). (3.2)
To use the Wiener—Hopf procedure, conditions (2.9) and (2.10) are rewritten as

0 ony=0forx <0,

f(x) ony=0 forx >0 3.3)

¢1y +a¢ = {

and

g(x) ony=0 forx <0,

—(b—a)e* ony=0 forx >0 34

¢1y +b¢1 = {

where f(x) (for x > 0) and g(x) (for x < 0) are unknown functions having the behaviours
fx)=0(1) asx — 40,
and
gx) =0() asx — —0 for finite |b|
while
g(x) =0(x|"?) asx — —0 for |b| = 0 (3.5)

obtained from the edge conditions (2.12) for BVP L.
Now applying the Fourier transform to the pde (2.8), we obtain that

d*®1(a, y)
_-_d—yz—y —y?®i(a,y) =0, y=>0,

2

with y2(a) = a? — €2, whose appropriate solution is given by

D1(a, y) = Di{a)e™7, y =0, (3.6)

where Di(«a) is an arbitrary function of the transform parameter ¢, and we denote by y () that branch of the
function (a? — €2)1/2 that takes the value —ie for o = 0. Applying the Fourier transform to conditions (3.3) and
(3.4) we obtain that

D1(a, 0) + adi(e, 0) = Fy(e), 3.7
b—a

(3.8)

in which the two unknown functions F, (&) = fooo F(x)e** dx and G_(a) = fi) © g(x)eio‘x dx can be shown to
be analytic in the two overlapping half plane 7 > —&(¢) and t < 8(¢), respectively, with |Fy (a)| = O(Ja|™)) as
|¢] = ccin T > —8(¢€) and

O(e|™  as|a| = oo for finite |5,
O(la|™Y?)  as |a| — oo for |b] = oo,

G- ()] ={
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in T < §(¢). Using (3.6) in (3.7) and (3.8) and eliminating D; («) we obtain the following two-part Wiener—Hopf
functional relation, for the determination of the two functions F, («) and G_(«), as given by

y@)—b b—a

—F — G () = .

v —a t@ @ = (3.9)
valid in the strip ¢ < T < d where ¢ and d are chosen such that

—8(€) < —min(Im &, Im ¢tp) < ¢ < 0 < d < min(Im £, Im ap) < 8(€) (3.10)

with ag = (b% + €2)1/2 that takes the value b for € = 0.

Now three cases arise according as b > 0, b < 0 and |b| = o0, and we treat the WienerHopf relation (3.9), in
these three cases, in different manners as described below.

Case 1:b > 0. We pote that the coefficient of F, (&) in (3.9) is [(a? — ozg)/(oz2 — k%)M () where M () =
(v(@) +a)/(y(«) + b). The function M(«x) is analytic in the strip —§(¢) < 7 < J(¢) and hence, in the strip
¢ < 7 < d, which can be factorised as

M(@) = Mi(@)M_(a), (3.11)

where M (o) = M_(—a), M {(x)| = O(1) as |e¢| - oo in T > ¢, M4 () being analytic in the upper half plane
7 > ¢ and M_(«) is analytic in the lower half plane T < d.
Following Noble [5], M () is obtained as

(@—ie)? exp[[i{E +K)/2+ (E/a) Asr (E) + (k/a) A— ()} dE/(E? — k)]
(b —i€)V/2 exp [ [J{(€ + a0)/2 + (£/b) At (€) + (o /D) A— (o)} dE/(E2 — oD)]’

Mi(a) =

where

i 1n)/(’;‘) —&+te
nyE) yE +E—€

As is customary in Wiener—Hopf analysis, Eq. (3.9) is rewritten in the form

A(§) = A-(§) = A (=6). (3.12)

o+ 2k(b — a) 1 1
o+ k M+((X)F+(O!) — j(ao _I_k) M_(_k) pory
_a—k G_(a)
T a—agM (@)
b—a oa—k 1 1 oo —k 1 1
- 1 [(d —ap)(a + k) {M_(Ol) B Mﬁ(—k)} + oo+ kM_(—k) o _ao:l . (3.13)

The left-hand side of (3.13) is analytic in T > ¢ and the right-hand side is analytic in 7 < d, and as || — oo in
the respective half planes, each side tends to zero. Applying the principle of analytic continuation and Liouville’s
theorem, we find that each side of (3.13) vanishes identically. Thus we find the unknown function F, (&), as given

by
2k(b — a) 1
i(ao + )My (k) (o0 + co)My ()

Now, the use of (3.6) in (3.7) produces Dj («) as

Fi(a) =
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so that @1 (e, y) is obtained explicitly. Thus, by Fourier inversion @1 (x, y)(y > 0) is obtained as

k(b -a e iy da
in(ao + M (k) ] (v —a)e+a)Mye)

d1(x,y) = (3.14)

where C is a line parallel to the real axis in the complex a-plane and lies in the stripc < 7 < d.
Case 2: b < 0. In this case the coefficient of Fy () in (3.9) is written as L(a)/(a® — k?) where L(e) =
(y + a)(y + b)) which is analytic in the strip ¢ < 7 < d. L{x) can be factorised as

L) = Ly(e)L_ (), 3.15)

where L () = L_(—a), L4 (c) is analytic in 7 > ¢, L_(«) is analytic in 7 < d and that L, (¢) = O(|a]) as
|| = oo in t > c. Following the same procedure as used to obtain M_.(¢t) above, L (&) is found to be

| . [ [&+k k d
Li(@)={(a —ie)(~b —ie)}"/?exp l:/ {5—2—~+ f—z Ap (§)+E Ao (k)} 2 _ékz
4]
[ [+ & o } dg
" N LN % 1 3.16
Of{ TR ) P (3.16)

where A (§) is the same expression as given in relation (3.12).
Using a similar procedure as in Case 1, the function ¢ (x, y) (y > 0) in this case is obtained as

k(a — b —iax—yy
#iiry) = —p o = (3.17)
J (v

d
il ®) ) G —Li@
where C is the same contour as in (3.14).
Case 3: |b| = oc. In this case condition (2.10) assumes the form
¢=—e** ony=0 forx >0
so that the functional relation (3.9) is modified as

y(@)+a 1
a2 — K2 il + k)

Here we factorise P(«) = y{(«) + a (@ > 0) in the form

Filay+G_(a)=— forc <1 <d. (3.18)

P(a) = Pr(a)P_(), (3.19)

where P, (o) = P_(—a), Py () is analyticin T > ¢, P_(«) is analyticin T < d, Py () = O(ja|/?) as |a| = oo
in T > c. Pi(a) is obtained as

44

. E+k & k dg
Pi() = (a —ie)!/? f ERLILERLAN ~A_ (k) } = 3.20
+(0) = (a —i€) /" exp 3 +a +(S)+a (k) 212 (3.20)
0
Following a similar procedure as in case 1, the function ¢ (x, y) (y > 0) in this case is obtained as
—iox—ry
p1(x,y) = (3.21)

_ k / e da
i Py (k) : (y —a)P(a)
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The representations (3.14), (3.17) and (3.21) for ¢1(x, y) are now analysed after passing on to the limite — 0
so as to obtain the solution of BVP I for » > 0, < 0 and |b| = oo, respectively.
As € — 0, the functions M4 () in (3.11), L+ () in (3.15) and P+ () in (3.19) reduce, respectively, to

(o + a)l/? exp[i—lj; f(f‘/a 51;’%1 dé]

(o +b)1/2 exp[;}? f(;x/b glﬁr% d&]

M2 (@) =M (—a) =

a

a/|b]
I I
LY@ =L0(~e) = (@+a) (@~ b)Pexp | — +/ " g |,
0

O~

£ 1
1 “e 1
Poa)=PO(~a) = (@ + @)% exp — f 5—211—5_1 de | . (3.22)
0
Again, as € — 0, we note that
k— a,a90 — b andr - a sgnRea. (3.23)

Using (3.23) and (3.22) in (3.14), (3.17) and (3.20), we obtain the solution of the BVP I as

a(b—a) ® e—a(3gn Reayy—iax

_in(a + b)M?r(a)_ (e¢sgnRea — a)(a + b)M?L(a)

da forb >0,

b @ a(sgn Rea)y—iax
—_ e -
b1(x, y) = —7(“0 ) / — da forb < 0, (3.24)
17rL_i_(a)_Oo (asgnRea —a)L} (o)
o0
—a(Sgn Reo)y—iax
a ° for |p] = o0

Hin PJ(: (a) I (e¢sgnReo — a)PfZ (&)

where the path of the integral is indented above (below), the poles on the negative (positive) real axis.

To evaluate the integrals in (3.24), we introduce the polar coordinates (r, 8) where x = rcos B,y = rsin
(0 < B < m). The poles of the integrands are on the real axis. For x < 0 (> 0) we deform the contour over
the bisectors of the first and second (third and fourth) quadrants of the complex «-plane. The integrands decrease
exponentially on the bisectors and we retain up to the order of ! for the integrals on the bisectors. Thus we finally
obtain the following asymptotic results, valid for large .

Forx <0,
_ 2(b —a) sin 8 _ 2a(b — a) cm—iar forp o 0,
inb(a +b)ML(@MUO0) r  {(@a+bMI@)?
100 y) ~ 2@—-»b) sing  2a(b—a) PR forb <0, (3.25)

inLY@Ly© r = {Li@)}
2 sin 8 _ 2a
| inPo@P20) r  {Po@))?

—ay—iax

for |b] = o0,
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while for x > 0

_o—ay-+Hax 2(b —a) sin
irb(a + b)MS (@)MQ (0) r
0
Mob.)_e—by+ibx forb > 0
2 ’
mpxy @RS . (3.26)
—e—ayHax _ : 0( - ao) sin 8 forb <0,
inLy (@Ly(0) r
_e—ay-Hax 2 sin for |b] = co.

inPY@Pl©) r

\

Since the total field is given by (cf. Eq. (2.7))

Pl (x, ) = e~ L g1 (x, ),

we observe that the behaviour of the total field as |x| — oo, given by (2.6), is satisfied by (3.25) and (3.26). The
complex constants A; and B; which are the reflection and transmission coefficients (complex), respectively, are
now determined explicitly. We note that for b > 0, there occurs reflection and transmission of the incoming wave
train by the discontinuity at (0, 0) into the regions x < 0 and x > 0, respectively, while for » < 0 and |b]| = oo,
there is no transmitted wave in the region x > 0. This is expected, since in the latter cases the inertial surface is too
heavy to allow for the propagation of the incoming wave train after it encounters the discontinuity at the origin. We
note that the first terms in the right-hand side of (3.25) and the second terms in the right-hand side of (3.26) arise
due to interaction of the incident wave train with the discontinuity at the origin and they die out at large distance
from the origin. These do not represent any wave.

Now comparing (2.6) with (3.25) and (3.26) we find that the complex reflection and transmission coefficients are
given by

2a(b — a) 4abM? (b)
— , for b > 0,
{a+b)MY(@) (a+b)?M(a)
2a{b — a)
A1, B1 = m, forb < 0, (3.27)
2a
_——‘{P_?(a)}z’ 0 for |b| = oo.

Hence the reflection and transmission coefficients (real) are obtained as

b— 2lab|'/?
boa) 2labl ™ b0,
a+b| |a+b|
Al 1Bil=11, o forb < 0, (3.28)
1, O for |b| = oo.

In deriving the results in (3.28), we have used from (3.22)

1/2
. MY =

2a cz+1::1/2

a+b 2b
1L (@)] = 2a(@a — B)|'?,  |P)(@)| = Qa)'/%. (3.29)

|M$.<a)|=(

2
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The results in (3.28) for b > O have been recently obtained by Chakrabarti [6] by a different technique. It is also
verified from (3.28) that the principle of conservation of energy, viz.

A1 + |B1P =1
holds good.

4. The three-part Wiener-Hopf technique involving BVP II

Let ¢2(x,y) = ¢o(x, y; €) denote the function satisfying the generalised BVP II. The Fourier transform of
@2 (x, y) is written in the form

Dy(a, y) = f ¢2(x, y)el® dx

{
=@y (@) + 0 @) + [ ha(r 1) o
0
where
0 foe)
Dy (ot y) = / pr(x, e dx,  Pri(e,y) = f $2(x, ) dx. @.1)
—00 !

By using condition (2.13) it is observed that @,+ (¢, y) and @, («, y) are analytic functions of « in the half planes
7 > —8(e) and T < §(¢), respectively. Again, by using the edge conditions (2.12) (for BVP II) along with the
Abelian theorem, it can be shown that

(B (@, Y)| = O(Jr| ™) as |a] = o0 inT > —5(€),

4.2
| Dy (@, )| = O(Jer|™Y) as |a| = 00 inT < 8(€). 4.2)
To use the Wiener—~Hopf procedure, as in BVP 1, conditions (2.15) and (2.16) are written in the form
_Jo ony=0 forx <0 and x > [,
¢2y+a¢2_{f1(x) ony=0 for 0 <x </ (43)
and
u(x) ) ony=0 for x <0,
¢ry + b =1 —(b—a)e™ ony=0 for0 <x <1, 4.4
v(x) ony=0 for x >1

where fi(x) (for 0 < x < [}, u(x) (for x < 0) and v(x) (for x > [) are unknown functions having the behaviour at
the points x = 0 and x = [, which are similar to the ones given by conditions (3.5). Specifically,

filx)y=0() asx— 40, and x - [ -0, 4.5)
_jom as x — —0 for finite |b|,
ux) = { OG~'2) as x - —0 for [b| = o0, (46)
o as x — [ + 0 for finite |b|,
v(x) = { O(lx =117y asx — 1 +0 for |b| = oo, @7
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obtained from the edge conditions (2.12) for BVP II.
Now an appropriate solution for @, («, y) is taken to be

Dy, y) = Da(@)e™””, y >0, 4.8)

where D; () is an arbitrary function of «, and is determined from the relations obtained by Fourier-transforming
conditions (4.3) and (4.4), as given by

D;(er, 0) +adr(e, 0) = Fy(a),

®L (@, 0) + b®> (@, 0) = U_(e) + 6V (er) — i—(l;—:r‘]’c—){e““k)l ~ 1. 4.9)

In (4.9) the three unknown functions U_ (), Vi (o) and Fi (@) are defined by

0 oo
U_(d) = / u(x)eiax dx, V+((X) — f v(x)eiot(x—l) dx,
o0 ’

! “4.10)
Fi(a) = / fi(x)el** dx.
0

It can be shown that U_ () is analytic in the half-plane T < §(¢), Vi () is analytic in the half-plane 7 > —§(¢)
and Fi(a) is an integral function of «. Use of the edge conditions (4.5)—(4.7) ensures that

O(]al_l) as ja| — oo int < 8(¢) for finite |5,
U_(o) = -172 -
O(Je| ) aslo|—> oo int < 8(e) for |b| = o0,
V(@) = O(le|™ as |a| — oo int > —8(¢) for finite |b],
Tl oY aslal— oo inT > —8(e)  for |b] = oo,

le ™ ()] = O0(a|™") as|a| = oo inT < 8(€),

“i2 A “.11)

[F1(e)] = O(je] ) as lo| - oo int > —4(e).

Using (4.8) in Eqs. (4.9) and eliminating D>(«) we obtain the following three-part Wiener—Hopf functional
relation, for the determination of the three unknown functions F|(«), U_(«) and V, (), as given by

y(a)—b _ icl _ b—a
) —a 1@ = U@ + V) — s

(@Ol _ 1) (4.12)

valid in the strip ¢ < 7 < d where ¢ (< () and d (> 0) satisfy inequality (3.10).

As in the case of BVP I, here also three cases arise according as b > 0, < 0 and |b| = oc, and we treat the
three-part Wiener—Hopf relation (4.12) in three different manners as described below.

Case 1: b > 0. Using the same Wiener—Hopf decomposition (3.11) for M) = (y + a)/(y + b) =
M, (¢)M_(c), multiplying both sides of (4.12) by e~/ /M, () and rearranging, we obtain

a+k Vi(w) b—a ekl
o+og My(e) o+ a) Mi(o)

o —ap
T a—k

+ (@) + (@)

M_(a)e ™ Pi(a) — z-(a) — n—(e0), (4.13)
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where
e ¥ a + HU_(a)
(@ +a)Mi(a) ~

b — a)e—od 4.14)
i + ag) My ()
In (4.14), ¢4 (@), n4 () are analytic in T > ¢ and {_(¢), (@) are analytic in T < d, and their explicit forms can
be obtained by employing the additive decomposition theorem (see [5, p. 13]). Similarly, multiplying both sides of
(4.12) by 1/(M_(x)) and rearranging we obtain

£ (@) + b-(a) =

(@) +n_(o) =

o—k U_() , b—a
a —oag M_(a) tR-@) = 5-@+ (e — o)

X[ot—k{ 1 _ 1 +o:0—k 1 :l
a+k | M_(0) M_(—k)] ag +k M_(—k)
_a+tap 2(b — a)k i

= ok My (@) Fi(e) — Ry(@) + Si(@) — e O R atk

(4.15)

where
e (o — D) V(@)

(@~ aM_(@)
b —a)e — k)el(a+k)l (4.16)

i + &) (o — o) M_(a)’

Ri(x) + R_(&x) =

Si(e) + S (o) =

R, (), S+(«) being analytic in t > ¢ and R_(), S-(a) in 7 < d and their explicit forms being obtained by
employing the additive decomposition theorem mentioned above.

The left-hand side of (4.13) and the right-hand side of (4.15) are analytic in T > ¢ while the other sides are
analytic in T < d. Using (4.11), it is seen that each side of (4.13) and (4.15) tends to zero as |¢| — oo in the
appropriate half planes having a common region ¢ < 7 < 4, so that by Liouville’s theorem, each side is identically
zero. We are interested in the left-hand sides of (4.13) and (4.15).

For brevity, we introduce the notation

b—a b—a
W) = U — (@)= Vi(e) - ——ek 4.17

Z(a) (o) + @t h (@) = V(o) @i’ 4.17)
where the superscript star is used to indicate that ¥ *(«) has a pole at @ = —k but apart from this, it is analytic in
T < d, and ¥, () is analytic in T > ¢. On equating the left-hand sides of (4.13) and (4.15) , and introducing the

explicit expressions for ¢y (), n4 (o), R—(e), S (&) and using the notations (4.17), we obtain

icy 400 .
atk Ve 1 [ BG4 e dE=0 1>c (4.18)
a+aoMi(@) 27 S Mi@EE+e0)E —a) ’ '
101 —00
and
idl+00 i
o—k W@ 1 / TE @) .
a—ooM_() 2mi J M-G)E—a0)E ~a)
idj—oo
2(b — a)k L T <d, (4.19)

- =0,
IM_(—k) (oo + k) + k
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where ¢ < ¢; < 0 < d; < d. We choose ¢ = —h, di = h where h is positive, then replace £ by —£ in (4.18) and
o by —« in (4.19). Noting that M, (—«) = M_(«), this produces

ih+co .
a+k Ui 1 elf (& — Hw*(—§)

_ b dg =0 (4.20
o + oo My (a) 2m,] S M_©)E-a)E +)
and
ih+oo .
otk Vi(-a) 1 f eé (& — bW, (&) a
a+oy Mi(@) Zﬂi,h_ M_(5)(¢ — ap)(§ + o)

iM_(—k)(ato + k) o — k
where now T > —# in both the equations (4.20) and (4.21). We define
S (o) = Ui (@) + ¥ (—a), D} (o) = ¥y (a) — ¥ (—a), (4.22)

where in this case the star denotes that the expressions are analytic in 7 > ¢ except for simple pole at & = k. Then
addition and subtraction of Egs. (4.20) and (4.21) produce

otk Spe 1T e —bsie)
draMi@ 21 | M EE -+

&

ik—o0
2b — a)k 1
iM+((k)((xo)+ Dok -0 T>h @29
and
ih+oo .
otk Di@ 1 / es (¢ — kb DL®) o
o +ag My (@) Zmih—oo M_&)E —a)E +o)

_ 20-a)k 1
iM (k) (oo + k)t — k

=0, ©>—h. 4.24)

Eqs. (4.23) and (4.24) are of the same type and can be treated for approximate solution for large /. We write them
in a compact form, as given by

* htoo e x
a+k Fiilwd) e —kF (50
a+oy Mi(a) 2T{i'h M_(E)E —ap)§ +)
1—0o0
_ 2Mb—-a)k 1
T M (k) (o +h) a —k’
where F' (a; A) is S% (o) or D¥ (&) for A = —1 or + 1, so that from (4.17) and (4.22) to (4.24) we find that
F{, (a; 2) has the form

dé

T > —h, (4.25)

®—a)@ A -—a)
i +k) ila—k)’

Fiy (o)) = Fii(o; 4) — (4.26)
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where Fi (o; A) is analytic in T > ¢, it being understood that F1(«; 1) = Vi(o) — U.(—a) and Fi4(o; —1) =
Vi) + U_(—a).
Now writing

L y@E)+b b—a _ 2_21/2]

M@ —M+(§)y@)+ +(5;‘)[ 52—k2{a (§° -7} (4.27)
in the integrand of the integral in the left-hand side of relation (4.25) we note that the integrand consists of two
types of terms. The first type involves simple poles while the second type involves branch points at § = =¢ in the
complex &-plane. The integrals involving the first type of terms are evaluated by using the residue theorem after
completing the contour by a semi-circle of large radius in the upper half. To evaluate the integrals involving the
branch points, only one branch point, viz. § = ¢ needs to be considered and as such a branch cut is taken parallel to
the positive imaginary axis from & = ¢ to infinity. Then the contour is deformed into the two sides of the branch cut
and contributions from the poles, if any, are taken into account. The contributions from the two sides of the branch
cut involve integrals of the form

/ Y @u'?e™ du, (4.28)
0

where i () is an analytic function. These are evaluated asymptotically for large /. If 7 ({) denotes the integral (4.28),
then

d 0
10) = Zﬁ](l)-m
=0

where
Y 1\/+3/2 3
0
Thus
1(1)—/30(1)[ O+ £ 0+ 5 w"(0>+--}

~ Boyr ( ) +0317"?

a2 3/2
( ) ( )+0(r7/2) (4.29)

Incorporating the aforesaid method we find that for large [

ih4o0 e )
e E —bF+¢; ) . ,
= : T A, 4.30
) V-GG +o)E — o) d& =~ 2m7i[T (@) F1y(e'; A) + T1{e) Fi.(ao; A)] (4.30)
where
T(@) = b —a)Ey 1

2ri(e! —ag)(e’ + k) €' +«
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with
Tt/ 3i
__ (€l+(3/9)m) 1/2 —eq 2t
Eg= 13/2e‘€ DL (e +€)'/?, e'-e—l—zl
and
2b(b — ool
@ = 28— M @oe |
oy +k oy +a
ih+co .
ellé [ Ti() T
de ~ 27i | Ry(a) + ,
M ©E+0E - T g — k|
mn—o
i7oo elf (g — k) db ~ 2 —R @+ Ti(e) ]
~ 2mi s
J M @E+0E - | T ok
mn—0co
where
b—a)E 1 b—a)E
Ri(e) = ( YEo Ry(er) = ( YEo

27i(e’ —og)(€? —k2) e +a’

2mi(e’ — ap)(e’ + k)2 e +a’

283

(4.31)

(4.32)

(4.33)

(4.34)

Using results (4.30), (4.32) and (4.33) for large ! in (4.25) we obtain an approximate relation between the
function Fi4(«; 2) and the unknown quantities F1- (ag; A), F1+-(€'; A). Setting & = o and @ = ¢’ in this we get

two equations involving these two unknowns, which, when solved, produce

b—a .
F ;)\‘ [ ikl SXB)»_ A.DX T)\.B}\,__RXD}\.’
b—a :
F l’)\’ — ikl )\‘A)L—" Xc)» T}\,A)\,__R)\ 7y
1+(€5 A) (AR DE —BKC)\){C (s ' CH+ Cc},
where
A oo+ k
=—" "~ 4 ATi(),
200 M (@t0) (@)
B = AT (a),
Tl(do)} 1
A
= A Ry(ag) + ,
Q { 2(c0) ag +k 2000 M 1 (o)
T 2k k
R* = —Ry(atg) — 1{ep) 2 S— ap + ,
o —k My (k) (g — k%) 2ZM_(ap)ao(ag — k)
C* = ATi(e),
Iy e +k ,
= ——— + AT (€),
M (") (e’ + ap) €
1 T1(e")
L . N——— {R )+ :
Mo (e)e T a0) 2t otk
Ty (€ 2k e +k
T = —Ry() — 1) { . ~ ;
op —k My (kYoo + k)" —k)  Mi(e)(e +ap)(e —k)

.

(4.35)

(4.36)

(4.37)
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Thus Fy+(a; ) is obtained for large  and is given by

Dy (¢ +ap)My(x)[b—a ikl 1 AT (@)
Fr(o; A) = > I: ; {e ((a oM@ T atk + )»Rz(a))
Ti(a) Ma +k) 20k
32 —
(Rl(“) T - k) M (@)@ — @+ o) | Ms (O + 0@ -5 }

—MT (@) Fy+ (€' 2) + T1 () Fy+ (eto; )»)}] (4.38)

where Fi+(ao; A) and Fy+(¢’; A) are given in (4.35) and (4.36), respectively. Putting A == —1 and 1 in (4.38) we
obtain two equations for V, (o) 4+ U_{—«) and V. (¢) — U_ (). By addition and subtraction we find V, (@) and
U_(—w) for large I. Replacing e by —o we obtain U_ (e). Thus V. («) and U_ (&) are obtained for large /. Now the
use of (4.8) in the second equation of (4.9) produces D;(«). Thus we obtain D;(«). Using this in (4.8) we obtain
¢2(x, y) for large [ after taking Fourier inversion, as given by

a / (o + ap) My (@)e'™!
o+k

b —

¢2(xa)’)=¢1(x,)’) - i
1

C

« {i(ClT(Ot) + O T1(w)) T1(a) }

- R _
b_a A

(e —ag)M_(a) {i(C3T(—Ot) + C4T1(—))
+
oa—k b—a

- T1 (—Ol) e—iax—ry
— (Rz(—a)—i- a0+k)}] ——da (4.39)

where ¢1(x, y) is the same expression as given in (3.14) and
Ci= -21-{F1+(6; —1) — Fi+(e; 1)},
Cy = %{Fl'*’(“(); —-1) — F1+(0l0; D},
(4.40)
C3 = %{Fﬁ(e; ~1) + Fi+(e; 1},
Cs = 5 {Fi+(ao; —1) + Fy+ (a0 D}

The second term in (4.39) may be regarded as due to the presence of the second discontinuity at (/, 0) for large /.
Case 2: b < 0. Using the same Wiener-Hopf decomposition (3.15) for L(«) = (y +a)(y + [b]) and proceeding
as in Case 1, we obtain in place of (4.25)

* (0. h400 s o 18w
@+BFL@Y 3 EE-RRLGEN | a-bk 1 wan)
Li(x) an_h L_)¢ + o) iLytk) a—k
where F1*+ (cr; A) has the same meaning as given in Eq. (4.26). We write
1 Li® | a b(E> — k%) + (g —K)E* — )12 @42
L) (@+b)|&2—K (2 — kD) (E2 —ad) '

in the integrand of the integral in the left-hand side of (4.41). Following similar arguments as described earlier, we
find that, for large /,



M. Kanoria et al./ Wave Motion 29 (1999) 267-292 285

ih/“’oei’f & — ) Fir (3 1)

v Yarig ] .
E+0L_(5) d§ =~ 2iT " (@) Fi+ (€75 1)

ith—oo

where

() = b—a E} 1
271 (2 —ag)(e +h) € +a (4.43)

1/2
al/ ST () (e 4 )V2,

|
Ey = 132

ih
ih+00 il

E+a)L_(§)

ih—co

d¢ ~ 2miR} (@)

where
b—a Ey 1
27l (€2 — k(2 —ad) € +a

Rl(a) = (4.44)
and

ih+00 (é: _ k)eisl

E+a)E+RL(E)

ih—oco

dg ~ 27iR](a),

where

Rz((x) = . B 2 17} 2 7 »
271 (¢ +h) (e —ap) e’ +a

(4.45)

E° being the same as given in (4.31).
Proceeding as in Case 1 we finally obtain ¢, (x, y) for large [ in this case, as given by

920, 9 = pr(e, ) + 5 f [#(O{k)e’”l{Rll(ot)+C5T1(a)}
C

—lgx—ry

L@ (e Rl (—a) + C6T1(—o¢)}:| — de, (4.46)

Ca—k —-b
where now ¢ (x, y) is the same expression as given in (3.17) and
_ Li(€)
(€02 —{THNL ()}

Cs {(€' +K)GL(€) — THEH L1 (€GN}

with
el , . 2k 1 a+k
L@ He 6= ek L@@ —h

and C is the same as Cs with G! and G} interchanged, R](e) and R}(«) being given by (4.44) and (4.45)
respectively. As before, the second term in (4.46) may be regarded as due to the presence of second discontinuity
at (I, 0) for large /.

Gla) = — — MRl (@), (4.47)
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Case 3. |b| = 0. In this case condition (2.16) assumes the form
¢=—e* ony=0 for0<x </,

so that the modification of relation (4.12) is

y(@)+a Fi(a) = —~U_(a) — ' V_(a) + ey oot <d (4.48)

22 i(e + k)

Here P(«) = y + a is factorised as P(«) = P4 (a) P— (@) where P_(a) = P_(—a) and P_(x) is given by (3.20).
Proceeding as in Case 1, we obtain in place of (4.25)

ih+oo .
kK FY (o A roeliE —kFF (&M
(@ + k)7, (o A)_L. / CE bR E )d§=,2kk ! ., T>—h (4.49)
P, (a) 2mi E+a)P_(§) iPL(k)a —k
ihe-oC
where now
R . ] ‘ ikl N A
Fii(a; 2) = Fp-(a; &) — win Tie o (4.50)
with
For(a; 1) = Vi(a) — U_(—a), Fu(e; —1) = V(o) + U_(—a). 4.51)
We write
1 —a+ (E2 —eHl2
P_(&) - s(f— k; ) P+®) (4.52)

in the integrand of the integral in the left-hand side of (4.49) and proceeding in a manner similar to Cases 1 and 2
we find that, for large I, ¢2(x, y) is given by

P y
¢2(x, y) =1 (x, V)+%/[fge‘“’{&z(a)whcﬂ%a)}

5 @) ikt g2y + CsT2(— a)}] eTex"Y da, 4.53)

where now ¢ (x, y) is given by (3.21) and

R )_E_2 ! ! Ri(@) = =2 E§ : 1
2mie? —k2e +a’ 2 2mi(e +k)2e +a’

T (a )—F—2 : :
2rie’ + ke +a

with
2 !/ 1437 /4) 172,
Eg=—T57¢ elte Py(eN(E +€)
Cr = Prte) 3" + )G = T PG,

(€' + 0% = {T2(€) Pr(e))?
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where

et ) ) 2k a+k
P H@ GO oo B T G—hPi@

Gia)=— ~ R} (@), (4.54)

and Cg is the same as Cy with G% and G% interchanged. The second term in (4.53) is due to the presence of the
second discontinuity at (/, 0) for large /.

Making € — 0 in the solutions (4.39), (4.46) and (4.53) of the generalised BVP Il for b > 0,5 < O and |b| = oo,
respectively, we obtain the solutions of the original BVP Il for » > 0,5 < 0 and |b| = co. The second terms in
(4.39), (4.46) and (4.53), after making € — 0, involve e "#*~D and e ~1¢* in the integrands. The integrals involving
e~1% can be evaluated for x < 0 (x > 0) by deforming the contour along the bisectors of the first and second (third
and fourth) quadrants of the complex a-plane as has been done for ¢1 (x, y). The integrals involving e **~% can be
evaluated similarly for x < [ and x > [. However, considerable effort is needed in the evaluations of these integrals.
Since we are interested only in the wave terms, we need to find only the wave terms of ¢ (x, y) for different cases
and different regions. If we denote

¢ (x, y) = e~ g (x, y), (4.55)

then the asymptotic expressions valid for large r, for the wave terms of d); (x, y) are obtained, as given below.
Forx <0

2a(b — a)

e~ @ytHax _ —ay—iax
{(a + BYM(a)}?
4ab(T (6))*M° (a) i( 3 )1/2 a(b — a)’M° (a)e”
®? - a) M (a) 2 ) b a+b)M(a)(a)?
, ~ J e—ay—lax < 1 ) f 45
¢y (x,y) X OB = IO —l.—O e orb > 0, (4.56)
vt 2a(b — a)e—®y—iax 1
gmaytiax o +0 ( ) forb <0,
{LS @)? (a)?

e—ay+iax zae—ayj—iax

1
— __——{Pg(a)}z +0 (W) for |b| = oc;

for0 <x <1

4abM? (b) bbby ( 6 )1/2
(a+b)2MS(a) 4
y aZ(b = a)ZMg (b)eible—by—i-ibx
b2(a + bY2MO(a){(M° (B)2 — (T (b))%}
_ (6)1/2 1 a®—a)®> ML)
+Hi| —
7)  (a)?bla+b)> M (a) (4.57)

0
% lil 2aTy (b) :| e—by—ibG—1)

Py (x, y) ~

(b — (MO (b))? — (TO(b))?)

1
+O (W) forb > 0,

0 forb <0,
0 for|pb|=00
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and forx > [

B 2a M2 (a)ei
(a + DYM (@ {(MO (b))% — (T ())?}

+i(_3_)1/2 1 (b—a)*M()
27 (a)? b(a + b)M? (a)

i 2a TL(b)
(b —a) (M2 (b)) — (T2(b))?

Pr(x, y) ~ . 1
xe~@HaG=D 4 (W) for b > 0,

(4.58)

1/2 . LO .
—i (—3— 1 a-bL-(@) g~tax—l 4 o 1 forb < 0,
27 (e b L) (la)3

3N\ 1 Pl .. 1
N = —~ay+ia(x—I) of —- for 1b| =
1(%) @) Po@° * ((la>3) orlbl=ce,

where TP (b) = lime_.o Ti(ag) = ((b — a)ML.(b)e®) /(a + b).
Comparing (2.6a) with (4.57) and (4.58) we find that the unknown complex constants Az, Bz, B3 and By of (2.6a)
are now obtained approximately for large [ and are given by

_ 2a(b-a) 4ab(T(0)}*M° (2)
{ta + b)M (@)} ®? — a> M) (a)

" (i)l/Z a(b__a)ZMg(a)eibl 1
27 b2a+b)M(a) (a)?

1 1
=) Xader —mer (Gup) =0 @9

2a(b — a) 1
_— forb <0
Ll @p +O(<la>3) orr ="

2a 1
Piap H° (W) for[p] = oo;

_ 4abM) (b) . ( 6 )1/2 a’(b — a)? MO (b)e! L o ( 1 )
2T @5 M @) b*(a +b)* {M(b)}2 — (TP (b)) (la)? (a)*)’

b3
6\ a® —a)* MY () 2a T2(b) 1 1
=i|— — — . 4.
B l(n) b(a + b)> M2 (a) S {M2B)12 —{T B)Y? | (la)? 0 ((laﬁ) @obh

(4.60)
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_ 2aM° (a) elbl
(@a+b)M2a) (M2 (B2 — (TP (B
i ( 3 )1/2 b —~a)’M° (a)
sz )
2t)  bla+bM(a)

2a T (b) 1 1 )
B4 = 4 X l:l — & —a) {Mg(b)}z _ {Tl()(b)}zil (la)? +0 ((la)3 forb > 0, (4.62)

3\ a=b1L%@) 1 1
—i (2—7[-) 5 Lg_(a) (a2 +0 <(la)3) forb < 0,

1/2 p0
1(;—) P(‘)(“) ! 5 +0 (—1—3) for |b] = oc.

| \27 P (a) (a) (a)
In the expressions for Ay and B; (i = 2,3, 4), MY (a), M.(b), PY(a) are given by (3.29).

It may be noted from (2.6a) that B> and Bz exist only for b > 0. It is observed from (4.57) that in the region
0 < x < I, progressive waves exist only for b > 0, and these consist of transmitted and reflected waves. In this
case the incident wave from the region x < 0 undergoes partial transmission below the edge at x = 0 which then is
partially reflected by the edge at x = [. For b < 0 or |b| = o0, there is no progressive waves in this region. (4.58)
shows that in the region x > [, there exist progressive waves due to transmission of the incident wave field through
the region below the inertial surface even though there may not be any progressive wave in the region 0 < x < [.

5. Reflection coefficient in the region x < 0

The quantities ¢ and b are related and for deep water the relationship can be expressed as
_a
1-lpa’

where Iy (= o/p) can be interpreted as the height of a vertical cylinder containing the fluid whose mass is the
same as that of the floating matter distributed over the cross-sectional area of the cylinder at the inertial surface. In
order that there exist time-harmonic progressive waves at the inertial surface, b must be positive, as is mentioned
in Section 1. Hence if the frequency w of the incident wave in the region x < 0 is kept fixed, then b > 0 implies
that o < pg/w?, which is usually interpreted as the inertial surface to be lighs. However, if b < 0 or |p] = oo, then
o > pg/w? and the inertial surface is then interpreted as heavy since it does not allow propagation of time harmonic
waves, as was pointed out earlier. Again, biO also implies w j wp where wy = (pg/0)V/?. This means that wg
represents a kind of threshold frequency, since if the frequency of the incident wave train exceeds this frequency,
then the inertial surface does not allow propagation of any time-harmonic wave. This phenomenon is well known
in the literature (cf. [1,2,4]).

‘When the inertial surface is in the form of a semi-infinite plane (y = 0, x > 0, —~00 < z < o0) as in BVP I, the
incident wave field undergoes reflection into the region x < 0 by the edge x = 0 and transmission into the region
x > 0 provided the incident wave frequency w is less than the threshold frequency wp. However, when w > wy
the incident wave field from the region x < 0 is totally reflected back into the region x < 0 by the edge x = 0. Of
course, there are local excitations by the edge x = 0 and these do not propagate as waves and die out away from
the edge.

‘When the inertial surface is in the form of a strip (y = 0,0 < x <[, —00 < z < o0) as in BVP I, there are
now two edges, one at x = 0 and another at x = /. Expressions (4.56) show that the incident wave is reflected back

b
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Fig. 1. Reflection coefficient due to a semi infinite inertial surface.

into the region x < 0 by the left edge of the strip. Expressions (4.57) show that for & > 0, there is a transmitted
wave and a reflected wave inside the strip, the transmission being through the edge x = 0 and the reflection being
by the edge x = [. For b < 0 or |b| = o0, no wave propagates inside the strip apart from some local excitations
by the two edges. Finally, (4.58) show that in the region right of the strip, progressive waves exist which are due to
transmission of the incident wave field through the region below the inertial surface.

The reflection coefficient JA1| for b > 0 is depicted graphically in Fig. 1 against the wave number a L where as
mentioned earlier, L is a characteristic length used to nondimensionalise a, b (> 0) and o/ p (= ly) for deep water,
choosing Ip/L = 0.01, 0.1. It is observed from this figure that for fixed Ip/L, |A1| increases uniformly with the
wave number a L.

This is expected since, as the wave number increases, the incident wave remains confined within a thin layer below
the free surface in the region x < 0 and as it encounters the edge x = 0, reflection by the edge becomes more. It is
also observed that for fixed wave number, |A | increases as lp/ L increases, i.e., as the surface density of the material
of the inertial surface increases. This means that as the inertial surface becomes heavier, more energy is reflected
by its edge, provided of course the inertial surface is ‘light” enough to allow progressive waves to propagate on it.

When the inertial surface is in the form of a strip of finite but large breadth /, the reflection coefficient [A;| for
b > 0 in the region x < 0 is depicted graphically against the wave number aL in Fig. 2 taking I/L = 10 and
lp/L = 0.01 and 0.1 and in Fig. 3 taking lp/L = 0.01 and /L = 10, 20. It has been observed from Fig. 1 that
in the presence of the semi-infinite inertial surface, the reflection coefficient | A;| steadily increases with the wave
number. However, when the inertial surface is in the form of a strip, this qualitative behaviour of the reflection
coefficient (|A2|) is lost. In this case, the behaviour of |A;| changes significantly against the wave number. Each
graph of the reflection coefficient has the same basic feature, consisting of a series of concave curves which meet
the wave number axis at their ends, so that total transmission occurs for a sequence of discrete values of the wave
number. It is observed that larger values of lp/ L leads to higher maxima in |A2| (cf. Fig. 2) and larger values of [ /L
leads to more number of zeros of [Az| (cf. Fig. 3). The oscillatory behaviour of | A;| against the wave number may
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be attributed due to multiple reflections of the wave by two edges of the strip.

6. Discussion

Two mixed boundary value problems arising in the linearised theory of water waves have been solved by using
Wiener—Hopf technique. The first problem involves water wave scattering by a discontinuity on the surface arising
due to the presence of a semi-infinite inertial surface while the second problem is a generalisation of the first after
introducing a second discontinuity at a distance / away from the first, the two discontinuities arising due to the
presence of an inertial surface in the form of a strip of breadth / instead of the semi-infinite inertial surface. The
BVP I is reduced to a two-part Wiener—Hopf problem whose solution is obtained in closed form. The reflection and
transmission coefficients for this BVP are then obtained in closed form also. The BVP II reduces to a three-part
Wiener-Hopf problem whose solution is obtained asymptotically for large /. This produces approximate analytical
expressions for the reflection and transmission coefficients in the appropriate regions whereever they exist.

The behaviour of the reflection coefficient in the region of the free surface for light inertial surface is depicted
graphically against the wave number in a number of figures and appropriate conclusions are drawn.

It may be noted that by increasing the breadth of the strip for the BVP II indefinitely, the results of BVP I cannot
be recovered. This is because the two BVPs are basically different in the sense that BVP I involves only one edge
while the BVP II involves two edges, and by increasing the distance between the two edges, the second edge can
never be eliminated.
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