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Abstract

We present in this paper a rather general method for the construction

of so-called conditionally exactly solvable potentials. This method is based

on algebraic tools known from supersymmetric quantum mechanics. Various

families of one-dimensional potentials are constructed whose corresponding

Schrödinger eigenvalue problem can be solved exactly under certain conditions

of the potential parameters. Examples of quantum systems on the real line,

the half line as well as on some finite interval are studied in detail.

1 Introduction

Since the advent of quantum mechanics there has been interest in quantum models
whose corresponding Schrödinger equation can be solved exactly. To be more precise,
by exactly solvable we mean that the spectral properties, that is, the eigenvalues
and eigenfunctions, of the Hamiltonian characterizing the quantum system under
consideration can be given in an explicit and closed form. The most important
examples are the harmonic oscillator and the hydrogen atom. An first attempt
in finding such systems has been initiated by Schrödinger [1] himself and is now
know as the factorization method [2]. This factorization method has been revived
during the last two decades in connection with supersymmetric quantum mechanics
[3]. In particular, the factorization condition which is a condition on the quantum
mechanical potential for its exact solvability has been rediscovered and is now known
as the so-called shape-invariance condition [4]. In fact, there have been several
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attempts in finding additional shape-invariant potentials besides those already given
by Infeld and Hull [2].

Other methods which are also closely related to supersymmetric (SUSY) quan-
tum mechanics are based on the idea of finding pairs of (essentially) isospectral
Hamiltonians [5, 6, 7, 8, 9]. One of these methods, the Darboux method, is based
on the existence of an operator A and its adjoint A† which act as transformation
operators between a pair of self-adjoint Hamiltonians H± [10, 11]:

AH− = H+A , H−A
† = A†H+ . (1.1)

Obviously, H+ and H− are essentially isospectral, that is, there spectra coincide
except of a possible additional vanishing eigenvalue. Knowing, for example the
eigenfunctions of H+ one can immediately obtain those of H− with the help of the
transformation operator A†. This Darboux method, which has originally been ap-
plied with linear first-order differential operators A, has recently been extended to
higher-order differential operators where it is called N -extended Darboux transfor-
mation (with N standing for the highest order of the momentum operator appearing
in A) [12, 13].

Another different method for constructing exactly solvable systems has been
suggested by Abraham and Moses [5] and is based on the inverse method. As in the
Darboux method one starts with a given exactly solvable Hamiltonian and constructs
a new one whose spectral properties follow from those of the starting Hamiltonian.
Applying this approach to SUSY quantum systems it is equivalent to the Darboux
method [7].

In this paper we develop yet another method for constructing so-called condi-
tionally exactly solvable systems [14]. This method, which is based on the SUSY
formulation of one-dimensional quantum systems has recently been suggested by us
in [15]. It is the aim of this paper to present the detailed ideas of this approach
and to apply it to various physically relevant model systems on the real line, the
half line and those on a finite interval. In particular, we will show that many of the
newly found exactly solvable potentials contain as special cases also those found by
the other two methods mentioned above.

In the next section we will briefly review the basic algebraic tools of SUSY quan-
tum mechanics [3], which will be used in the general construction method presented
in Section 3. The remaining three sections present a detailed discussion of examples
on the real line, the half line and finite intervals. To be more explicit, in Section 4
we construct the most general class (within our approach) of SUSY partner poten-
tials for the linear harmonic, the Morse and the symmetric Rosen-Morse oscillator.
Section 5 contains the corresponding results for the radial harmonic oscillator and
the radial Coulomb problem. In Section 6 we consider the symmetric Pöschl-Teller
oscillator as an example on the finite interval [−π/2, π/2].

2



2 Supersymmetric quantum mechanics

In this section we briefly review the basic concepts of Witten’s model of super-
symmetric quantum mechanics [16, 3]. This model consists of a pair of standard
Schrödinger Hamiltonians

H± = −1

2

d2

dx2
+ V±(x) (2.1)

which act on the Hilbert space H of square integrable functions over a given con-
figuration space. In this paper we will consider systems on the real line R, on the
positive half line R

+, and on the finite interval x ∈ [−π
2
, π

2
]. In the latter two cases

we will impose Dirichlet boundary conditions, that is, the Hilbert spaces are given by
H = L2(R), H = {ψ ∈ L2(R+)|ψ(0) = 0}, and H = {ψ ∈ L2([−π

2
, π

2
])|ψ(±π

2
) = 0},

respectively. The so-called SUSY partner potentials in (2.1) are expressed in terms
of the real-valued SUSY potential W and its derivative W ′ = dW/dx,

V±(x) =
1

2

(

W 2(x) ±W ′(x)
)

. (2.2)

Introducing the supercharge operators

A =
1√
2

(

d

dx
+W (x)

)

, A† =
1√
2

(

− d

dx
+W (x)

)

(2.3)

the SUSY partner Hamiltonians factorize as follows

H+ = AA† ≥ 0 , H− = A†A ≥ 0 (2.4)

and obviously obey the relation (1.1). As a consequence H+ and H− are essentially
isospectral, that is, their strictly positive energy eigenvalues coincide. In addition
one of the two Hamiltonians may have a vanishing eigenvalue. In this case, SUSY is
said to be unbroken and by convention [3] (via an appropriate choice of an overall
sign in W ) this ground state then belongs to H−. This convention implies that
exp

{∫

dxW (x)
}

/∈ H.
Let us be more explicit and denote the eigenfunctions and eigenvalues of H± by

ψ±
n and E±

n , respectively. That is,

H±ψ
±
n (x) = E±

n ψ
±
n (x) , n = 0, 1, 2, . . . . (2.5)

For simplicity we consider only the discrete part of the spectrum here. However,
relations similar to those given below are also valid for the continuous part. In
the case of unbroken SUSY (within the aforementioned convention) the zero-energy
eigenstate of the SUSY system belongs to H− and the corresponding ground state
has the properties

E−
0 = 0 , ψ−

0 (x) = C exp

{

−
∫

dxW (x)

}

∈ H (2.6)
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with C denoting the normalization constant. The remaining spectrum of H− coin-
cides with the complete spectrum of H+ and the corresponding eigenfunctions are
related by SUSY transformations which are generated by the supercharge operators
(2.3):

E−
n+1 = E+

n > 0 , ψ−
n+1(x) = (E+

n )−1/2A†ψ+
n (x) , ψ+

n (x) = (E−
n+1)

−1/2Aψ−
n+1(x) .

(2.7)
In the case of broken SUSYH+ andH− are strictly isospectral and the eigenfunctions
are also related by SUSY transformations:

E−
n = E+

n > 0 , ψ−
n (x) = (E+

n )−1/2A†ψ+
n (x) , ψ+

n (x) = (E−
n )−1/2Aψ−

n (x) . (2.8)

With the help of the relations (2.6) and (2.7) or (2.8) it is obvious that knowing
the spectral properties of, say H+, one immediately obtains the complete spectral
properties of the SUSY partner HamiltonianH−. These facts will be our basis for the
general construction method of conditionally exactly solvable potentials, by which
we mean that the eigenvalues and eigenfunctions of the corresponding Schrödinger
Hamiltonian can be given in an explicit closed form (under certain conditions obeyed
by the potential parameters).

3 The construction method

In this section we present a rather general method for the construction of condi-
tionally exactly solvable potentials using the SUSY transformations between the
eigenstates of the SUSY partner Hamiltonians H±. The basic idea is as follows. Let
us look for some SUSY potential W such that under certain conditions on its param-
eters the corresponding partner potential V+ becomes an exactly solvable one. For
example, one of the shape-invariant potentials known form the factorization method
[2, 3]. As a consequence the spectral properties of the associated Hamiltonian H+

are known exactly. From the given SUSY potential W also follows the corresponding
partner potential V− and its associate Hamiltonian H−. As we will see below, this
potential is in general not shape-invariant but still exactly solvable via the SUSY
transformations (2.7) or (2.8).

In order to find an appropriate class of SUSY potentials we make the ansatz

W (x) = Φ(x) + f(x) (3.1)

where Φ is chosen such that for f ≡ 0 the corresponding partner potentials V± belong
to the known class of shape-invariant exactly solvable ones. For a non-vanishing f
we have

V+(x) = 1
2

[

Φ2(x) + Φ′(x) + f 2(x) + 2Φ(x)f(x) + f ′(x)
]

. (3.2)

If we now impose on f the condition that it obeys the following generalized Riccati
equation

f 2(x) + 2Φ(x)f(x) + f ′(x) = b , (3.3)
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where, for the moment, b is assumed to be an arbitrary real constant, then the two
partner potentials take the form

V+(x) = 1
2

[

Φ2(x) + Φ′(x) + b
]

, (3.4)

V−(x) = 1
2

[

Φ2(x) − Φ′(x) − 2f ′(x) + b
]

. (3.5)

Obviously, V+ is, up to the additive constant b/2, a shape-invariant potential and
therefore exactly solvable. With the help of the SUSY transformation we can now
also solve the eigenvalue problem for H− for the above given potential V− which,
due to the additional x-dependent term f ′ will in general be a new non-shape-
invariant potential. At this step we already realize that the free parameter b has
to be bounded below, as SUSY already requires a strictly positive Hamiltonian H+.
This is a first condition on a parameter contained in V− and already justifies to call
it a conditionally exactly solvable (CES) potential.

The crucial problem in finding new CES potentials is to find the most general
solution of the generalized Riccati equation (3.3). For this reason we linearize this
equation by making the ansatz

f(x) =
d

dx
log u(x) =

u′(x)

u(x)
. (3.6)

which brings it into the form of a homogeneous linear second-order differential equa-
tion

u′′(x) + 2 Φ(x) u′(x) − b u(x) = 0 . (3.7)

The general solution of this equation is given by a linear combination of two linearly
independent fundamental solutions

u(x) = αu1(x) + β u2(x) . (3.8)

Hence, besides the parameters contained in Φ and the parameter b the new CES
potential V− will also depend on the real parameters α and β. Note however, that
only the quotient α/β or β/α will enter V− as a relevant parameter. In other words,
depending on the actual situation one of these two parameters can be chosen (with-
out loss of generality) to unity. The remaining parameters, however, will in general
be not arbitrary real numbers and have to be chosen such that the corresponding
supercharges

A =
1√
2

(

d

dx
+ Φ(x) +

u′(x)

u(x)

)

, A† =
1√
2

(

− d

dx
+ Φ(x) +

u′(x)

u(x)

)

(3.9)

are well-defined operators leaving the Hilbert space invariant, A : H → H, A† : H →
H. A sufficient condition for that is to allow only for nonvanishing solutions (3.8).
Thus the parameters have to be chosen such that u is (without loss of generality) a
strictly positive function. Indeed, this condition also guarantees us that the potential

V−(x) =
1

2
Φ2(x) − 1

2
Φ′(x) +

u′(x)

u(x)

(

2 Φ(x) +
u′(x)

u(x)

)

− b

2
(3.10)
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does not have singularities inside the configuration space. So H+ and H− have
indeed a common domain H. This condition is actually the most difficult part in
our approach.

For all shape-invariant SUSY potentials, which we have considered, eq.(3.7) can
be reduced to a hypergeometric or confluent hypergeometric differential equation.
That is, the two fundamental solutions u1 and u2 in (3.8) are expressed in terms
of hypergeometric or confluent hypergeometric functions. Finding the proper linear
combination leading to a strictly positive solution is very difficult and in general can
be obtained only by inspection (numerically and/or via the asymptotic behaviour
at the boundaries of the configuration space).

Besides the above mentioned necessary conditions on the potential parameters
b, α, β and possible additional ones contained in Φ, we will further restrict these
parameters in the following respect. Let us assume that the SUSY quantum system
(2.1) is unbroken (broken) for f = 0. Then we consider only those values of the
parameters for which the system with f 6= 0 remains to have unbroken (broken)
SUSY. Hence, due to our ground-state convention, we have the following additional
conditions:

exp

{
∫

dxW (x)

}

= u(x) exp

{
∫

dxΦ(x)

}

/∈ H for broken and unbroken SUSY ,

exp

{

−
∫

dxW (x)

}

= [u(x)]−1 exp

{

−
∫

dxΦ(x)

}

/∈ H for broken SUSY ,

exp

{

−
∫

dxW (x)

}

= [u(x)]−1 exp

{

−
∫

dxΦ(x)

}

∈ H for unbroken SUSY .

(3.11)
In the following we will consider several examples on the real line, the positive

half line and a finite interval. Both, unbroken as well as broken SUSY systems will
be discussed.

4 Quantum systems on the real line

In this section we will consider two examples on the real line in some detail. These
are the linear and the Morse oscillator, which both have a unbroken SUSY. Note
that there are no known shape-invariant potentials on R which allow for a broken
SUSY. Finally, we also briefly summarize some results for the symmetric Rosen-
Morse oscillator.

4.1 The linear harmonic oscillator

The first SUSY system we are considering is characterized by a linear SUSY potential
Φ(x) = x which gives rise to a unbroken SUSY with potential

V+(x) = 1
2
(x2 + b+ 1) . (4.1)

6



The energy eigenvalues and eigenfunctions of the corresponding Hamiltonian read

E+
n = n+ b/2 + 1 , ψ+

n (x) =
[√
π 2nn!

]−1/2
Hn(x) exp{−x2/2} , (4.2)

where Hn denotes the Hermite polynomial of order n ∈ N0. Clearly, positivity of
H+ implies the condition b > −2.

The general solution of (3.7) can be given in terms of confluent hypergeometric
functions [17],

u(x) = α 1F1

(

− b
4
, 1

2
,−x2

)

+ β x 1F1

(

2−b
4
, 3

2
,−x2

)

, (4.3)

and has the following asymptotic behaviour for x→ ±∞

u(x) = |x|b/2

(

α
Γ(1/2)

Γ( b+2
4

)
+ β

Γ(3/2)

Γ( b
4

+ 1)

)

(1 +O(|x|−1) . (4.4)

Here and in the following Γ denotes Euler’s gamma function. From this asymptotic
behaviour the condition on the parameters α and β for a strictly non-vanishing u
reads |β/α| < 2 Γ( b

4
+ 1)/Γ( b+2

4
). Note that the right-hand side of this inequality is

positive as b > −2 and that α must not vanish, that is, it can be chosen equal to
unity, α = 1.

The potential V− can be obtained from (3.10) and explicitly reads

V−(x) =
1

2
x2 − b+ 1

2
+
u′(x)

u(x)

[

2 x+
u′(x)

u(x)

]

(4.5)

where u is given in (4.3). The eigenvalues and eigenfunction for the associated
partner Hamiltonian H− are found via (2.6) and (2.7) as SUSY remains unbroken:

E−
0 = 0 , ψ−

0 (x) =
C

u(x)
exp{−x2/2} ,

E−
n+1 = E+

n , ψ−
n+1(x) =

exp{−x2/2}
[
√
π 2n+1n!(n + b/2 + 1)]

1/2

(

Hn+1(x) +Hn(x)
u′(x)

u(x)

)

.

(4.6)
Figure 1 presents a graph of this family of potentials for b ∈ [−2.5, 3], α = 1
and β ≡ β(b) = 1.5 × Γ( b

4
+ 1)/Γ( b+2

4
). It clearly shows singularities for b ≤ −2

as expected. In Figure 2 we keep b = −1.9 fixed and display the potential V−
for various values of the asymmetry parameter β. Again singularities appear for
|β| ≥ 2Γ( b

4
+ 1)/Γ( b+2

4
) ≃ 0.08569. Let us note here that the potential (4.5) has

previously been considered by Hongler and Zheng [18] in connection with an exactly
solvable Fokker-Planck problem, which is closely related to Witten’s SUSY quantum
mechanics [3].

Special cases of V− have also previously been found with the methods mentioned
in the introduction. For example, the special values b = 0, α = γ and β = 1 lead
to u(x) = γ + (

√
π/2)Erf(x) (Erf denotes the error function) which is the result of
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Mielnik [6]. For b = 4N , N ∈ N, α = 1 and β = 0 the conditionally exactly solvable
potential reads

V−(x) =
x2

2
+ 8N(2N − 1)

H2N−2(ix)

H2N(ix)
− 16N2

(

H2N−1(ix)

H2N (ix)

)2

+ 2N − 1

2
(4.7)

which has previously been obtained by Bagrov and Samsonov [13] via the N -order
Darboux method. See also [15] where, in particular, the cases N = 1 and 2 have
been discussed.

4.2 The Morse oscillator

As a second example we consider the Morse oscillator which is characterized by the
SUSY potential

Φ(x) = γ − e−x , γ > 0 , (4.8)

where the condition on the parameter γ results from our ground-state convention
(see Section 2). Changing from parameter b to

ρ =
√

γ2 + b (4.9)

the corresponding potential (3.4) reads

V+(x) =
1

2

(

e−2x − (2γ − 1)e−x + ρ2
)

. (4.10)

The (discrete) spectral properties of the associated Hamiltonian H+ are

E+
n = −1

2
(γ − n− 1)2 + ρ2

2
, n = 0, 1, 2, . . . < γ − 1 ,

ψ+
n (x) =

[

(2γ − 2n− 2)Γ(n+ 1)

Γ(2γ − n− 1)

]1/2

2γ−n−1 exp{−e−x − x(γ − n− 1)}L(2γ−2n−2)
n (2e−x) ,

(4.11)
with Lν

n denoting the generalized Laguerre polynomial of order n [17]. Obviously,
positivity of H+ implies the condition

ρ > γ − 1 . (4.12)

With the above SUSY potential (4.8) the differential equation (3.7) can be reduced
to that of the confluent hypergeometric equation and in turn the general solution
reads

u(x) = αe−x(γ+ρ)
1F1(γ + ρ, 1 + 2ρ,−2e−x) + βe−x(γ−ρ)

1F1(γ − ρ, 1 − 2ρ,−2e−x) ,
(4.13)

which has the following asymptotic behaviour for x → −∞:

u(x) = α
Γ(1 + 2ρ)

2γ+ρΓ(1 − γ + ρ)
+ β

Γ(1 − 2ρ)

2γ−ρΓ(1 − γ − ρ)
+O(ex) . (4.14)
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From the asymptotic behaviour of u for x → +∞, which can trivially be extracted
from (4.13), and the form of the SUSY ground-state wavefunction

ψ−
0 (x) =

C

u(x)
exp{−γx− e−x} (4.15)

one finds that SUSY remains unbroken iff β 6= 0. Hence, we can set it equal to
unity, β = 1. The positivity condition of u can, with the help of the relation (4.14),
be translated into conditions on the remaining parameters. These are

ρ > γ − 1 ,
Γ(1 − 2ρ)

Γ(1 − ρ− γ)
> 0 , α > −22ρ Γ(1 − 2ρ)Γ(1 + ρ− γ)

Γ(1 + 2ρ)Γ(1 − ρ− γ)
, (4.16)

which have to be obeyed simultaneously.
In Figure 3 we have shown the family of potentials

V−(x) =
1

2
e−2x −

(

γ +
1

2

)

e−x + γ2 − ρ2

2
+
u′(x)

u(x)

(

2γ − 2e−x +
u′(x)

u(x)

)

(4.17)

for α = 0, γ = 1 and ρ ∈ [0, 4]. Note that from (4.16) the allowed values of ρ for the
given α and γ are ρ ∈ ∪∞

k=0]2k+ 1
2
, 2k+ 3

2
[. These admissible ranges of ρ are clearly

visible in Figure 3. Figure 4 shows the graph of V− for the cases α 6= 0 and γ = ρ = 3.
Note that the last condition in (4.16) now explicitly reads α > −4/45 = −0.08889.
The violation of this condition is also clearly visible in Figure 4 via the singularities
in V−.

To complete the discussion of this example we finally give the discrete spectral
properties of the corresponding partner Hamiltonian H−. As SUSY remains unbro-
ken the ground-state energy vanishes, E−

0 = 0, and the corresponding eigenfunction
is given in (4.15). For the excited states the discrete spectrum is given by E−

n+1 = E+
n

and the associated wavefunctions explicitly read

ψ−
n+1(x) =

[

(2γ − 2n− 2)Γ(n+ 1)

(ρ2 − (γ − n− 1)2)Γ(2γ − n− 1)

]1/2

2γ−n−1 exp{−e−x − x(γ − n− 1)}

×
[

(n+ 1)L
(2γ−2n−2)
n+1 (2e−x) +

u′(x)

u(x)
L(2γ−2n−2)

n (2e−x)

]

.

(4.18)

4.3 The symmetric Rosen-Morse oscillator

As a last example on the real line let us briefly discuss the symmetric Rosen-Morse
potential (sometimes also called modified Pöschl-Teller potential) which is charac-
terized be the SUSY potential

Φ(x) = γ tanh(x) , γ > 0 . (4.19)

The corresponding potential V+ reads

V+(x) = −γ(γ − 1)

2 cosh2 x
+
γ2 + b

2
(4.20)
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and for γ ∈ N is known to belong to the class of reflectionless potentials, which are,
for example, important for the construction of explicit solutions of the Korteweg-
deVries equation [19].

For the above SUSY potential (3.7) can be reduced to Legendre’s differential
equation and the general solution is given by

u(x) = cosh−γ(x)
[

αP
(γ2+b)1/2

γ−1 (tanhx) + βQ
(γ2+b)1/2

γ−1 (tanhx)
]

(4.21)

where P µ
ν and Qµ

ν denote Legendre functions as defined in [17]. We leave it to
the reader to investigate the proper admissible ranges for the potential parameters
b, α, β and γ, and only remark that the family of partner potentials

V−(x) = −γ(γ + 1)

2 cosh2 x
+
γ2 − b

2
+
u′(x)

u(x)

(

2γ tanh x+
u′(x)

u(x)

)

(4.22)

will contain new reflectionless potentials (via the choice γ ∈ N) and thus may, for
example, allow to find new explicit solutions for the Korteweg-deVries equation.

5 Quantum systems on the positive half line

As examples of new CES potentials on the positive half line we consider in this
section the radial harmonic oscillator, which allows for unbroken as well as broken
SUSY, and the radial hydrogen atom problem.

5.1 The radial harmonic oscillator with broken SUSY

The SUSY potential for the radial harmonic oscillator is given by

Φ(x) = x+
γ

x
. (5.1)

This SUSY potential leads to an unbroken SUSY system (f = 0) if the parameter γ
is negative. This case, which has already been discussed in some detail in [15], leads
to rather strict conditions on the potential parameter b and in turn gives rise to a
very limited class of new CES potentials. Therefore, we discuss here only the case
of broken SUSY, that is, γ > 0.

The potential for the partner Hamiltonian H+ reads

V+(x) =
x2

2
+
γ(γ − 1)

2x2
+ γ +

b+ 1

2
(5.2)

and gives rise to the following spectral properties

E+
n = 2n+2γ+1+

b

2
, ψ+

n (x) =

[

2n!

Γ(n+ γ + 1/2)

]1/2

xγ e−x2/2 L(γ−1/2)
n (x2) . (5.3)

Positivity of H+ leads us to the condition b > −4γ − 2.
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The general solution of eq. (3.7) is expressed in terms of the confluent hyperge-
ometric function and reads

u(x) = α 1F1(− b
4
, γ + 1

2
,−x2) + β x1−2γ

1F1(
1
2
− b

4
− γ, 3

2
− γ,−x2) . (5.4)

For small 0 < x ≪ 1 this solution behaves like u(x) ≈ (α + βx1−2γ)(1 + O(x2))
and as a consequence we have to set β = 0 for SUSY to remain broken. Note that
exp{−

∫

dxW (x)} = exp{−x2/2}/xγu(x) and cf. eq. (3.11). Therefore, without loss
of generality we set α = 1 and consider from now on only the solution

u(x) = 1F1(− b
4
, γ + 1

2
,−x2) = e−x2

1F1(γ + b+2
4
, γ + 1

2
, x2) (5.5)

leading to broken SUSY. This solution will have no zeros if b > −4γ−2, a condition
which we have found before from the positivity of H+.

The partner potential reads

V−(x) =
x2

2
+
γ(γ + 1)

2x2
+ γ − b+ 1

2
+
u′(x)

u(x)

(

2x+
2γ

x
+
u′(x)

u(x)

)

(5.6)

and is shown in Figure 5 for γ = 0.5 and various values of b. As expected there
are singularities in V− for those values of b which violated the above condition. The
eigenvalues of the corresponding Hamiltonian H− are identical to those of H+ given
in (5.3) with eigenfunctions

ψ−
n (x) =

[

2n!

(n+ γ + 1
2

+ b
4
)Γ(n+ γ + 1/2)

]1/2

xγ+1 e−x2/2

(

L(γ+1/2)
n (x2) +

u′(x)

2 xu(x)

)

(5.7)
which follow from the SUSY transformation (2.8).

Finally, we note that for unbroken SUSY (l = −γ > 0) the special case b = 0 of
(5.4)

u(x) = α+ 2 β x2l+1

∫ x

0

dt t2le−t2 (5.8)

has, in essence, been discussed before in [20, 21].

5.2 The hydrogen atom

The SUSY potential for the radial hydrogen atom problem is given by

Φ(x) =
a

γ
− γ

x
, a, γ > 0 , (5.9)

and leads to the partner potential

V+(x) = −a
x

+
γ(γ + 1)

2x2
+

1

2

(

b+ a2/γ2
)

. (5.10)

11



The spectral properties of the associated partner Hamiltonian H+ are well known.
For simplicity we give here only the discrete eigenvalues

E+
n = − a2

2(n + γ + 1)2
+

1

2

(

b+ a2/γ2
)

, n ∈ N0 . (5.11)

Then the positivity of H+ leads to the condition

ρ =
√

b+ a2/γ2 > a/(γ + 1) . (5.12)

In the present case the general solution of (3.7) is again given in terms of confluent
hypergeometric functions

u(x) = e−(a/γ+ρ)x
[

α 1F1(−γ − a/ρ,−2γ, 2ρx) + β(2ρx)2γ+1
1F1(γ + 1 − a/ρ, 2γ + 2, 2ρx)

]

(5.13)
and has the following asymptotic form for large x

u(x) = (2ρx)γ−a/ρe(ρ−a/γ)x

[

α
Γ(−2γ)

Γ(−γ − a/ρ)
+ β

Γ(2γ + 2)

Γ(γ + 1 − a/ρ)

]

(1 +O(x−1)).

(5.14)
In order to find all conditions on the potential parameters we first note that

ψ−
0 (x) =

C

u(x)
xγe−ax/γ (5.15)

and, therefore, the parameter α must not vanish in order for SUSY to remain unbro-
ken. Hence, without loss of generality we may put α = 1. From the above asymptotic
form (5.14) we can now also deduce further conditions on the parameters from the
positivity restriction on u. Summarizing all conditions we have

ρ >
a

γ + 1
,

Γ(−2γ)

Γ(−γ − a/ρ)
> 0 , β > − Γ(−2γ)

Γ(−γ − a/ρ)

Γ(γ + 1 − a/ρ)

Γ(2γ + 2)
. (5.16)

In Figure 6 we give a graphical representation of the first and second condition. Here
the grey area shows the forbidden region due to the first condition and the black
area the forbidden region due to the second condition. In other words, the allowed
region of the two parameters γ and ρ for a given coupling constant a, which is set
equal to unity in Figure 6, is the white area.

The CES potential for the hydrogen atom problem reads

V−(x) = −a
x

+
γ(γ − 1)

2x2
+
a2

γ2
− ρ2

2
+
u′(x)

u(x)

(

2a

γ
− 2γ

x
+
u′(x)

u(x)

)

. (5.17)

Figure 7 shows this potential for a = 1, β = 0 and γ = 2.8. According to (5.16) the
allowed region for ρ with the others as fixed above is given by ] 5

16
, 5

11
[ ∪ ]5

6
, 5[. The

singularity appearing for ρ ≥ 5 is clearly visible in Figure 7. The other singularities
are outside the plotted range of 0 < x < 2 and therefore not visible. In Figure 8
we keep γ = 2.8, a = 1 and ρ = a/γ fixed and show the potential (5.17) for various

12



values of β. Note the singularity appearing for β ≤ −4.39554 × 10−4 according to
the violation of the last condition in (5.16). Finally, let us also remark that for the
special case ρ = a/γ (i.e. b = 0) we have

u(x) = α + β(2γ + 1)

∫ 2ax/γ

0

dt t2γe−t (5.18)

a result, which has previously been found in [21].

6 Quantum systems on a finite interval

As example for a quantum system defined on a finite interval we will consider here
the symmetric Pöschl-Teller potential, whose SUSY potential is given by

Φ(x) = γ tan x , γ > 0 , (6.1)

leading to a unbroken SUSY with

V+(x) =
γ(γ + 1)

2 cos2 x
+
b− γ2

2
. (6.2)

This is the well-studied Pöschl-Teller potential, which gives rise to the following
spectral properties of H+:

E+
n =

1

2
(γ + 1 + n)2 +

b− γ2

2
, n ∈ N0 ,

ψ+
n (x) =

√

(γ + 1 + n)Γ(2γ + 2 + n)

Γ(n+ 1)
cos1/2 xP

−γ−1/2
γ+n+1/2(sin x) .

(6.3)

Again, positivity leads to a condition on the parameter b, b > −2γ − 1. However,
for later convenience we introduce another parameter ρ =

√

γ2 − b and in terms of
this, the above condition reads

0 ≤ ρ < γ + 1 or ρ ∈ iR . (6.4)

The general solution for the corresponding differential equation (3.7) is given in
terms of hypergeometric functions

u(x) = α 2F1(−γ+ρ
2
, γ−ρ

2
, 1

2
, sin2 x) + β sin x 2F1(

1−γ−ρ
2

, 1−γ+ρ
2

, 3
2
, sin2 x) . (6.5)

Obviously, as a necessary condition α must not vanish in order to have no zeros in
this solution. Hence, we will set α equal to unity in the following discussion. From
the values of u at the boundaries of the configuration space,

u(±π/2) =
Γ(1

2
)Γ(1

2
+ γ)

Γ(1+γ+ρ
2

)Γ(1+γ−ρ
2

)

[

1 ± β

2

Γ(1+γ+ρ
2

)Γ(1+γ−ρ
2

)

Γ(1 + γ+ρ
2

)Γ(1 + γ−ρ
2

)

]

, (6.6)
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we also deduce a condition for the remaining parameter β:

|β| < 2
Γ(1 + γ+ρ

2
)Γ(1 + γ−ρ

2
)

Γ(1+γ+ρ
2

)Γ(1+γ−ρ
2

)
. (6.7)

Finally, let us note that SUSY remains unbroken and the ground-state wave
function for H− is given by

ψ−
0 (x) = C

cosγ x

u(x)
. (6.8)

Hence, (6.4) and (6.7) constitutes the complete set of conditions on the three pa-
rameters β, γ and ρ. The corresponding partner potential is given by

V−(x) =
γ(γ − 1)

2 cos2 x
− γ2 +

ρ2

2
+
u′(x)

u(x)

(

2γ tanx+
u′(x)

u(x)

)

, (6.9)

which is shown in Figures 9-11 for some special cases. In Figure 9 and 10 we have
set β = 0, γ = 2 and chosen real (0 ≤ ρ ≤ 3.25) and purely imaginary (0 ≤ ρ/i ≤ 4)
values for ρ, respectively. Figure 9 exhibits singularities for ρ ≥ 3 as expected from
(6.4), whereas Figure 10 does not have singularities for the same reason. Finally,
Figure 11 shows the potential (6.9) for fixed γ = 2, ρ = 1 and various values of the
asymmetry parameter β. Here due to condition (6.7) we expect and actually see
singularities for |β| ≥ 2.35619.

7 Concluding remarks

In this paper we have presented a method for constructing conditionally exactly
solvable potentials starting from the known SUSY potentials of shape-invariant (ex-
actly solvable) potentials. This method is more general then those given in the
literature before. In particular, most of the previously constructed CES potentials
correspond to the special case b = 0 of our method.

There are several ways to generalize the present approach. Obviously, one can
now choose the newly found SUSY potentials of this paper as input and try to
construct further CES potentials from these. In general we expect to find a hierarchy
of new families of CES potentials belonging to the initial shape-invariant one. In
the present paper we have restricted ourselves to those parameter values which
conserve the nature of SUSY, that is, SUSY remains unbroken or broken by adding
the f = u′/u term to the SUSY potential. This condition can certainly be relaxed.
Some of the conditions on the potential parameters have been extracted from the
asymptotic behaviour of the solution u of (3.7). Hence, these conditions are only
sufficient ones. In most cases we expect them to be also necessary, but there may
be exceptions. In any case, if one wants to construct some exactly solvable model
potential via the present method a detailed analysis of the allowed parameter values
is advisable.

We should also note that the present approach can be utilized to construct new
drift potentials for which the associated Fokker-Planck equation allows for an explicit
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and exact solution. This would be similar to the discussion of the linear harmonic
oscillator by Hongler and Zheng [18]. Let us also mention that one may choose
complex values for the parameters α and/or β. This will lead to complex partner
potentials V− whose associated non-hermitian Schrödinger Hamiltonian will have a
real spectrum [22, 23, 24]. Finally, we note that all the known shape-invariant po-
tentials give rise to a dynamical group structure [25]. This group structure induces,
via the SUSY transformations (2.7)-(2.8), a related structure for the corresponding
CES Hamiltonian H−. For example, one can construct from the well-known ladder
operators of the linear and radial harmonic oscillator via the supercharges (2.3) lad-
der operators for the corresponding partner Hamiltonian H−. It turns out that these
operators close a non-linear algebra [15]. A detailed discussion, in particular, of the
coherent states associated with these non-linear algebras will be given elsewhere [26].
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Figure Captions

Fig. 1: The potential (4.5) for fixed α = 1, β = 1.5 × Γ( b
4

+ 1)/Γ( b+2
4

) and vari-
ous ranges of the parameter b. Note that for b ≤ −2 the potential exhibits
singularities due to the existence of zeros in u as given in (4.3).

Fig. 2: The potential (4.5) for fixed α = 1, b = −1.9 and various values of the asym-
metry parameter β. Here values of β with |β| ≥ 0.08569 violate the positivity
condition for u (see text) and thus lead to singularities in V−.

Fig. 3: The CES potentials of the Morse oscillator. Here V− is shown for α = 0,
γ = 1 and ρ ∈ [0, 4]. The corresponding solution u is given in (4.13). Note the
appearance of singularities in V− due to the violation of the conditions given
in (4.16).

Fig. 4: Same as Figure 4 but now for fixed γ = ρ = 3 and various values of α. Again
singularities appear for α ≤ −4/45 = −0.08889 due to the last condition in
(4.16).

Fig. 5: The CES potential (5.6) of the radial harmonic oscillator for γ = 0.5 and
various values of b. Note that the allowed range for this parameter is given by
b > −4γ − 2 = −4.

Fig. 6: Allowed ranges for the parameters γ and ρ of the hydrogen atom problem
according to the first two conditions given in (5.16). For details see the text.

Fig. 7: The CES potential (5.17) of the hydrogen atom problem for a = 1, β = 0,
γ = 2.8 and various values of ρ.

Fig. 8: Same as Figure 7, but for fixed a = 1, γ = 2.8, ρ = a/γ and various values of
β.

Fig. 9: The CES potential (6.9) of the Pöschl-Teller problem for β = 0, γ = 2 and
0 ≤ ρ ≤ 3.25.

Fig. 10: Same as Figure 9 but for complex ρ, 0 ≤ ρ/i ≤ 4.

Fig. 11: Same as Figure 9 with γ = 2 and ρ = 1 and various values of β.
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