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The problem of oblique wave scaering by a sabmerged thin vertical wall with a
gap in finiee-depth water and its modification when another identical wall is
introciuced, pre investigated in this paper. The techniques of both vae-terrs and multi-
term Gaderkin approximations bave been utilized in the mathematical amalysis, The
multi-term approximations in terms of appropriate Chebyshey polynomials provide
extrenely accurate numerical estimates for the reficction coefficient, The reflection
coefficient is depicted graphically for a number of geometries. Tt is Found that by the
introduction of another identical wall, there oecurs zero reflection for certain wave
numbers. This may have some beanngs on the modelling of a breakwaier.
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1 INTRODUCTION

Breakwarters are usefui to protect & harbour from the rough
sea, Their models in the form of thin verticed bartiers src
important mostly becagse of their simplicity in the engineer-
ing design and also in the related mathematical analysis. A
thin vertical barrier is perhaps the simplest madet of a
breakwaler. The problems of wave scattering by a thin verti-
cal barrier in deep water have received much attentzon in the
literature on the linearised theory of water waves due 10 the
ability to solve them explicitly for the case of normal inci-
dence of a train of surface water waves (cf. Ursell' for a
partially immersed vertical plate on a submerged vertical
barrier extending infinitely downwards, Evans” for a sub-
merged vertical plate, Porter” for a wall with a submerged
gap, Banerjea® for a surface piercing wall with muliple
submerged gaps, Banerjen and Mandal® for a submerged
wall with & gap, and others). Howeaver, for oblique incidznce
as well as for finite-depth water, these problems do not possess
explicit solutions and can be handled by some approximate
methods W estimate quantities of physical interest such as
the reflection and transmission coefficients. For example,
for oblique wave scatienng by a surface-piercing vertical
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barrier in deep water, Evans and Momis” used one-term
Galerkin approximaation for two integral equations obtained
for the problem, one in terms of the difference of veloeity
potential across the barrier and the other in terms of the
heorizontal component of velocity across the gap below the
barrier. They then used Ursell's' exact solutions for nor-
matly incident waves in deep waler as the one-term Galerkin

-approximations and obtained reflection coefticient in lerms

of defimte integrals which can be evaluated numerically.
The average of the upper and lower bounds then produce
very accurdte estimates for the reflection coefficient.
Mandal and Das’ used this technique to tackle the problem
ol oblique wave scattering by a plate submerged in deep
water, where the onc-lerm approximations are taken in
terms of the exact resulis for normally incident waves
given by Mandal and Kundu”® {for the ditference of potential
across the plate) and Banerjea and Mandal® (for the bori-
zontal velocity above and below the plate). Earlier Mandal
and Dalai'® obtzined very accurate npper and lower bounds
for the reflection coeflicients for oblique wave scallering
problems involving four types of vertical barrier confipura-
lions in fnite-depth water by the same technique. For each
configuration ihe ope-term approximations ave taken in
terms of the corresponding known results for normally inci-
dent waves in deep water. Recently, Kanoria and Mandal''
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used this {echmque to investigate the oblique wave scalter-
ing problem involving two thin vertical walls with sub-
merged symmetnical gaps in finite-depth water. choosing
the vne-term approximations in tenms of exact solutions
for normally incident waves in the presence of a single
wall with a pap in deep watet,

However, when the above onre-ferm techaique is applicd
to the problem of oblique wave scattering by a submerged
wall with a gap in finiw-depth water by utilizing the konown
exact solutions for normally incident waves in deep water
recently obtained by Banerjea and Mandal,” it is observed
that the numerical bounds fur the rellection coefficient are
el very close and as such their averages cannot seTve us
good estimates for the reflection coufficient. Also these
exuct rexults involve complicated expressions which require
careful handling for sumerical compuotations. 1t is then felt
that pechaps the rechnique of multi-term Galerkin approxi-
mations will provide aceurate bounds, Recently Porter and
tivans!” used suitable molti-term Galerkin approximaticons
involving Chebyshey polynomials we obtain very accurate
hounds lor the reflection coefficients for 2 number of water
wave scattering problems invalving vertical bamers in
finite-depth water. The theory of mubli-term Galerkio
approximations is best described in Porter and Evans.'? In
the present paper this techmigue of mult-term Cralerkin
approximations is successfully wiilized o investigate the
protlem of obligue water wave scattering by a submerged
vertical wall with o gap in finite-depth water, and also its
modification when an idenneal wall is inteoduced. Very
accurate upper and lower bonnds of the reflection coefficient
for a nummber of geontetries involving one wall or two walls
have been computed numerically. Their averages produce
very accurale nurnerical estimates for the refiection coeffici-
enl, It is observed that a six-figure accuracy in the results is
achieved by taking anly four terms in the {haerkan approsi-
mations. The refleciion coeflicient is depicted graphbically
against the wave oumber for a nomber of geometries. The
figures shorw that the hehaviour of the reflection coefficient
for the problem involving a single wall differs significantly
froin that when an identical wall is introduced. In the
double-wall case, zeros of the reflection coefficient occurs
at certain wave nurnbers.

In Secticn 2 we consider in some detail the problem of

oblique wave scatteriog by o submerged wall with a gap in
finite-depthwater and v Sectdon 3 is modificaion when an
identical wall is introduced. The numerical results are given
in Section 4.

2 SCATTERING BY A SUBMERGED WALL WITH
A GAP

A submerged thin vertical wall with a gap occupies the por-
tion x=0, yEL=(a.)+{c.ft), —x<s<=a<b<
£ << i) where ¥ = 0 is the mean {ree sorface. .0 and ¢ are
the depths of the submerged edges of the upper and lower
parts of the wall sespectively below the mean free surface and

f is the depth of water. The positivn of the gaps of the wall
is represented by x = 0, v £ L' = (0] + {b.c) s thal
£+ Lf={0, k). Assuming linear theory. a train of progressive
waves represented by Reldg(xy)e™ "} is obhiguely incident
from very larpe distances on the right side of the wall, wher:

dolx, yh=pivle ™

wilh

1 sinh 2k,h

Loy = Ny Pcosh Eglh — ¥), No= | 1+ 2.

woly) 1 Folft — ¥), N, 3 Yk
and &y being the unigue real positive root of

kranh kh =K,
p=kycos o, r=kysin ek = a*fe.z being the ucceleration
due 1o gravity, @ being the angle of incidence of the wave
train. Due to the geomatricel symmetry of the problem. the
z-dependence can be eliminared by assuming the velocity
potential to be of the form Relfix,yie™ ™'} Then olx, 1)
saisfes the following boundary value problem:

T =0in0=r=h N
Ko+, =0omy=0 2)
$.=0onx=01for y S L, i3
d.=0ony="h, 4]
#""Tah ix bounded as r— 0 5]
where # 15 the distunce from the submerged edees ol the wall,
Sl v+ Ry — 1,91 as y— _

i, ¥ — s (6}

Tz, v) as x— —

where £ and 7 are respectively the reflection and transmis-
sion coefficienes and are part of the BYP. These will be
determined in the course of the analysis. We follow the
method of Porter and Evans'? to tackle the problem.

A representation of Glx,y) satislying (1}, (2). (4) and (&) is
pven by

Bx, v =

(e ™"~ R Ho(r) + D Ane T (1) for x =0,

=1

for x =20

Te el 4+ D Bue T, ()

r=1
(7

where
Y (¥) = N, Poos ko (h — ),

1 sin 2R, R :
ani(|+ anh ), ﬂ—].,

k, heing the positive roots of
K+ktankh=0

and s, = ka + 79 with v, = &, when » = {0
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Hom o 0¥ {r = 1,2...) ate orthonormal over (O b)) and
An B e =12, arz unknown constants,
Lt us denote

=g = O, ¥) for 0= ¥ =<7k, (%)

Viii=g{ + 0.3 — 0, v Fr <y T B, (]
theo

=0t vel, (1N

Vit for v E L (IE)

It is easy to see that fhe unknowh ¢onstants B,7A, and

Bina= 120 are related o Uix) and Viyy given by
1
— il - Ry=—iul = & [; e iy, (12}
1
= Faily = 5efe = L L (v {13
1
K= [f Vil v iy, {F
q]
17, et Mol . L4
A, -4 Vv, vidy. 15)

Alro, the fupctions 0y} and ¥y} can be shown to satisfy
the Indegral equations

J LA, e = Rifyix). yE L (16)

L VINA (v jde == — 2iph®(1 — Rifgly), v 4L (17}

where
Ltv, t)= Z ’*’“i‘_)."'"“} =N (18
ki %,
MO =8 Y sbaliid 0 vi S L (19}

=1

wiv that Z4v sy and MV are synoetric in oy and ¢,
Now, we define the inner products

AR HES | L0 (207

when the functions f{y)gly) are defined for v & L1
Obviowsly, these inner products are lingar and symmetric,
We also deiine the operalors

{£f My} = l AN O de= L [l > ()
' {21)
() = J-:.‘"" (v T = ERL (-, 1), FIRN)

It is easy 1o verify that these operalors sre symmetrc, self
adjoint and positive semi-definite, If we now define wiy) (¥
E L) wly) (¥ € L) and the constant A ay

l
#{¥)= féU{}'}. Ykl {27

l
| e T VL = v
W= i oRy ok A S f23t
phtl — R)
A= i
Tk &
then afy), (v} satisfy the mtogral cquations
Loy = hyiy). v =L {25
iy =dylr), yE L (28)
and A js related to x and v by
{H,ﬂ:’v):.."‘l tz?}
1
‘:ft‘,ﬁ‘ﬂ}}=’," 28

It s inpportant Lo note fhat the functions w(y). (v and the
comstant A are eeal.

For the solution of the integral eqn (25), If w(y) is approxi-
mated by Fiyhfor y € L' then doe Lo symmetry snd posidve
semi-dafiniteness of the operator £. it can be shown that jof.
Jones, p. 269)

{F, b = (ot = A, 29y

Simtkar]y Eor the solutton of the integral eqn (26} if viy) is
approximated by {Fy) for v £ £ then

!
QG ol = (G gk = T (30
Comnbining (20) and (360} we find

A ZA=A,
where
Ay =A{F ) Ar = {{G 1.!:1,| (2

w0 that A, aned A5 are lower and opper bounds for the real
goantity 4. Then wsing (24), apper and lower bounds R
and 8, for the reflection coefficient IR can be obisined
once Foatd £ gre chosen soitdbly foo the satotions of
the integral Eqs. (23] and (26) respectively. Here Foand
7 are chosen as suitable one-term o mult-lerm Galerkin
appToximaions.

2.1 One«term Galerkin approximation

We choose Fivk and GOy ia teems of exacl selutions for the
hortzantal velocity fiv) in the paps and gfy), the difference
of potertial scross the wall, respeetively for the problem of
wiler wave scattering by a submerged wall with 4 gap in
desp water when 4 train of progressive waves 1% nommally
incident on the wall from a Targe distance on its right

Thesv.:: exact solutions arc given by {of, Banegfea and
Mandul"}

Wvi=h (e forQ e e
f{_}"]:{fj('v' 1y for ¥
Fipi=8"{y) forb-Cy<lye
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and
gy for a<y=<bk
gyi= {33}
g0} for y=e
where
— v EJ(-! : Kh'
h](}'}Zé‘ k [ K J_'| {‘ jlln{a]"'ﬁzu
12
- —I ulp(v]:‘ } ]fﬂrﬂ <y<a, [34)
-

g T ;
Aoy =g~ Uf Wfﬁ'{ﬁi + dau”

I
[ vl.rl(v}l }d"l forb<y<c.
i 1.'"- —

with p(y)= (1’ — @’ Hu® ~ b5)u® — %, and

g =(-1"*1e K"’J—: —Ip:::ﬂm

Ku

|]n'1

i
|
% {ﬁl+52u1- _I %v}du, i=1,2
Tha 15 -—-n

{35)

with [ = a. [; = ¢, the inner integral in g,(¥) being taken in
the senise of Cauchy principal value. The constant &, and &,
appearing in (34) and (35) are defined by

£ ab

. ¢
12{T2—T1]Wt+?‘r| .1_131ﬂ2—ﬂ|.'32—?|3|
Bivr— vl B By — v
(36}

where

L Kie 142
2 I
{l|,u1=—J J E — [ P";U]I dv >,
mha Jo| a0l v -
the inner integral being in the sense of Cauchy principal
value for o,

B e Ko
By = [ I IL}—m!. (37}

daltb |p{u]|”2

quKu
Y T2= J blp{“}llﬂ

It may be noted that while the expression for f¥) is given
by Banerjea and Mandal’ the expression for g{v} can be
deduced from their results.

The one-term Galerkin approximations Fiv) y € L' and
G} y = L are chosen as

{.ﬂ'lfl{}']s O<y<u
Fiy)= (38)
p2aily), b<y<c

ang

fii¥), a=y<bh
Giy) = { (39)
gVt e<ly<h

where p, p1 and g4, ¢ arc constants. Now using (38} in the
integral eqns (25} and (39} in (26) respectively, we find

P Jnﬂ (NLly, e + pzll‘ SO, dr=gy(y), yEL
(40)
r L]
g I S1{OM(y, ) + GEJ-EHE{QM (v s =y}, yE L
(41}
Multiplication of hoth sides of (40) by f(y) {j = 1,2) and

integration over L,'( f = 1,2) where L," = (0w) and L, =
(o) produces two linear equations for py and p; as

ZPl = j J_J 2 {42}
i=1

where
fj J ( SOGGILC Dy, £, f=1,2 G

P_r — Jiﬂ,:ﬁflulm{‘_v.}dj': .f= ],2

Similarly, (41) produces the two linear equations lor g,
and g as

X
D 40y=0, j=12 (44)
=1
where
;= L J [ &g MLy, Ndvde, i j=1.2 (45)

0= _I-Lf‘ui'ﬂf_?}gj{_}r}f—?}'- =12

with £, =(a, b), L1 = (c.h).

The constants p; and g, (f = 1,2) are obtained by solving
the linear Eqs. (42} and {44). Then the bounds A | and A - for
A are ohtained as

2 2 -1
A= ZF;Ph Ay = {Z E]}Q,] : (46}
;

j=| Tl

Once these are evaluated numerically, the bounds &, and
R for iR| can be obtained numerically.

2.2 Multi-term Galerkin approximation

For the solution of the integral egn (25) an appropriate
multi-term form for F{y), following Porter and Ewvans'*
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involving Chebyshev polynontials, is chosen as

.
S by for O<y<a,

F=1" @
S iy for b<y<e
a=0
where
i [ Jﬁ”{;)e"”df]
with
T 2-1F
f;{:]—r};:}mz'r:lﬂ( ) ﬂ"'w'l-{ﬂ {48:]
aml
e 1 Zv—b—c
h = w{zy—bm.-—y}:'”T“( c—b )

belv=lp [ELT)]

Here T, ix} {n = 0.1.2.....N) denote the Chebyshey poly-
nomils of first kKindd, and b, ¢, (m = 0,1,... N are unknown
constants 0 be determined. To hnd these constants we Arst
substitnte (477 in the integral eqn (25) to obtain

i

o ke ;
Z L fr}ﬁ I}{T)-I'--{J"-_ pde + Z (?N'[;?ff]ﬁ]&{y1 i
: K=t

r=A
=fuly). for ve LY, (500
Multiplying both sides of (50) by £ (2 (v0im =
0L and integrating over (Qad(b.c)) we obtain the
linear system

N

z LENE + Zf{;:’r”:ﬂ;, I=1,2; m=0,1,....N

H= a=1
(51)
where

= Fagh
=3 S G j= L% ma=00, N (52)

F=1

£ = J-f;,“mt.lrn Dy = N Peos kot baa),  (53)

Frn= Lf,.’f’trm (y)dy

htr mnE c—f
o e oo )

m.a=012__ K

The linear system (51) can be sobfved by standard numeri-
cal methods. Then A |, a lower hound for A, is obtained us

Ll
Ar={Folol= X (b Fo + e, Fa). (54

a=10

Similarly, W solve the integral eqn (26), an approprizte
multi-term form of G{y) is chosen as (of, Porter and
E\'anﬁu}l

»
Z dﬁgﬁ,”{y} for g < v-2 h,
. LR
{Fy¥d= 5 (55)
z 2.2 () for e <y <k
n=Au
where

oy 2 1 =aib =3}'"=, (ﬁy—a—b)
£ 0b=1 wre—ar '\ e )

[T U 8 (56)

RL::I{‘_IL!} Py E{ - | :'R {{h = C:Iz a (h — 1':.? } eru f]'_—"}-' ;
T (Zn+ 13-~ oW -y

ol sl

Uiy being Chebyshey polynomials of second kind. and
i o el =101, N} are unkoown constants. Proceeding a5 in
the case of &, and ¢, these constants «,, ¢, dn = 11,1, &)}
salisly the lincur system

) o
> M d,+ 3 Mite =Gl

A= n- N
i=1.2; m=01,...% (57}
where
M= 3 AsGRGE, i j=1,2; mp=0,1,2..¥

r=1

(58]
L
6t = | a6p.00s

, [}
=N "2 cos {k,, (h— f;) _ ?}Jm_l

b —
X (ku - ”) (39)

G = J i b lvidy
=N, Ih(kﬂh] IJEr.'I—|{.kL'{'&_

ey, mon=0,1.. N

The system of (28 + 2] linear equations i o, und e,(n =
0.1,...) can be solved by standard methods and then an
upper bound A, for A is obtaned as

A =G B = lz (dGhi + en it (60}

1=1

Since A, <2 A4, we lind that
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where

ph 2= ph
(kP +ATV™ 2T i + AT?

so that K| and . can be easily computed,

(al)

l=

3 SCATTERING BY TWO SUBMERGED
IDENTICAL WALLS WITH GAPS

In this section we consider oblique wave scattering by two
identical submerged vertical walls, sach having & pap at the
same level, in finite depth water. The walls occopy the
positions ¥ = * dy & [, }d being the distence between
the wo walls. Due to peometrical symmetry, it is possible to
sphit ¢z, 3] in this case into its symmetric and asyminetric
parts such that

iz, ¥h=&"(x, ¥1 4+ ¢"(x, ¥} (62
where
', M =¢' — 5 vy = — N — .y (62

We need to consider only the region x = {, and nse of (63}
wil] extend the solution into x <2 ¢ Then é"“(x,¥) satisfy (1}
to (5) with the additional condition
gy U, ¥ ="l 3 =0 {6d)
and the requirement that
¢a,uur}.} R {i-.’ i =il +Rv,a€fp.{:-—r-l}]¢ru(},j a5 ¥ — 2
55)

where £7 and K7 are related o the reflection and transmis-
sion coefficients R and T (cf. eqn {67} below).
An gppropriate representation for ¢ {x,yix = 0) s

¢'lx,¥) = (64)

ﬁ'l}(}l}lf fely (JI.I+R€-PHH-U' 1'1’1]’ + ZA;IPHLP}e—M.I:I—J].

n=I

4 =,

Afdpl¥Icos pr + z Bid(vicosh s, 0= x =4,
L R |

where Ay, AL, B {# = 1,2,...} are unknown constants, A
representation for ¢%(x,») differs from ¢'(xy) only in
replacing B by R, cos px and cosh s.x by sim gz and sin
hs,x respectively with different coeflicients AJ, A7 and A,
I ix now easy to see that

¢D(—xs.}'-} + %{Rr +Ru:]¢lllz =, .}I:}
T'lr__{R'r i Rujﬂ'-'u[x-_'l’)

G X 5

AL = — ot

Pz, v — {

Tt thus follows thal
R= %{RF_'_R{-'}! I= ;‘:R: ""Ru} {ﬁ_"']
The A in (24) is replaced by A™ and A” in the symmatric and

asvmmetric case respectively where

v _ iph( R — 1)
TO(RSeTE L 1) 4 (R — ook pd

(68

o__ EM(RGPHMJ I 1}
T (R L 1) — HRYeP _ tan pdd

The quamiities A™ are real and their upper and lower
bounds can be obtained in the same way as for A in Section
2. Tt may be noted that fior the symmetric case the factors (1
+ coth s,d) and {1 + coth 3,4 )~ are to be incloded respec-
tively in the expressions for £(v) in (18 and Afv.f) in
(19). For the ssymmeirc case the cormesponding factors
are (1 + tanh sfy and (1 + tanh 5,&H"'. It is then easy
o modify the expressions for Py In (42}, @, n (45}, L85
(52) and Mﬂ‘,;’} in (38) for the symmetmic and asymmetric
casgs. Now £ can be expressed in terms of A% as

; 1 —i% ; 1 +i5
-, dindt 1 = _ g i 2
Koo —e (I+1'S,)’ Ki= e (l—fsz)

{69}

(70
where
& = oot pd — ii:, Szztanpd+f;—f. (71
Thus
1 [1— 55
IR = IR + K| = — 72
3 N T TS s L
I Sy + 8,1
I7l=zIR — Rl = LERS
2 (145t + 55+ 51517
ey Lhal
BE 4 17F =1
which also follows from other principle of conservation of
energy.

Using the upper and lower bounds for A™ with appro-
priate case, upper and lower bounds R and R- for [R| can be
obtained.

4 NUMERICAL RESULTS

It 15 sufficient 1o only concentrate on obtaining numerical
estimates for the reflection coefficient |RI. For the une-term
technigque, the varous intlegrals oocuring in £y, F;and ¢y, O
A= 1,2y in (42) and (45} respectively for the single wall
problem are numerically evaluated by standard techniques
for vanous values of the different parameters after taking
into account the Cauchy principat value integrals, Then the
coefticients p; and g4f = 1,2} are computed by solving the
linear equations (42) and (44) respectively. Onee the bounds
A, and A for A are computed from (46), the bounds R, and
R for IR are evaluated nomerically. For the double wall
problem similar procedures have been adopted. In the
evaluation of the bounds for |R|, proper care has been
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Table 1. Reflection coefficient ath = 0.2, Mh = 0.4, ofh = L6,

kh = 0.6
Single-wall Double-wall (i = 3}
L L3 | R: £ | R;
" b 14525 163642 00140684 0275302
HF EWED24 (143073 [ 13:95] 0246698
&0 MLOSENZT  OOM2000 DR 0. §52289

taken. In Table 1. a representative sel of values of #) and B
for both single-wall and double-wall problems computed
through the ‘one-term technique’ are presented taking
wh =102, bfh = 4, o/h = 6 (dfh = -3 for the double-
wall case), £k = 06 and o = 0F, 30° and 60°. L is obseryed
from this table that for both the problems the numerical
bounds Tor IR are oot very close, particularly for the
double-wall case, and as such their averages cannot serve
as good estimates for [R]L

l7or the mulii-term technigue with {N 4+ T)-lerm approxi-
mation, we have to first compute Lo and MUH i, j =
.2:pee = 0,12, M) given respectively by {32} and {38}
{with appropriate modifications for the two-wall problem).
These zre compuled by runcation of the corresponding
infinite series. The accuracy in the compmations of these
types of scries has heen discussed by Porter and Bvans'™
in some detnil. Each series is first computed taking 300
terms. Then, these are improved hy using the asymptotic
values of the Bessel functions and the &, in each case. It
is found that by taking 10* terms in the computations of
these  improvements, o six-figure  sceuracy  is finally
achieved. Because of the limitations in the computational
facilities at our disposal, we could not go beyond 10° terms.
However, eight-figure accuracy could have been achicved
had we taken 10° terms in these computations, as has been
tollowed hy Porter and Bvans.” In the single-wall case, each
sel af the 20V 4+ 1) constants b, o, and 4., &, (0 =
0.1,...N) satisfies 2(N 4 1) linear equations given in (513
and (37), which have been solved aumerically taking & =
0.1,2....5. The computed values of the constants, b, e, and
d g ey (R =10,1,.. N} are used to compute the bounds 4, A:
for A from (54} and (60, and the bounds B |, &+ lor iR iTom
{61} In Table 2 a representative set of values of R and K-
for ¥ =1,1,2, 5 ix prosented aking afh = 02, hfs = 044,
offp = 0B, Kh = 040 for o = 07, 307 60° 1 is obscrved

0.2

[LR]

oo

[LLFL]

Kh

Fig, 1, Rellection coeflivienl vs wave oumber Kk, Single wall
(th =01, bR = (-4, otk = 06

from this table that a six-fizure accuracy io the oumerical
estimates for [R is achieved when & = 4,

Similarly, for the doubleswall case, opper and lower
bounds for A are computed. Then upper and lower bounds
for 'Rl are computed using (72), taking extra care since
upper (lower) bounds for A™ do not necessarily correspomd
to upper flower) bounds for [R . In Table 3. a representative
set of values of B and & for N = 0,15 is presented for
i = 0.2, bt =04, ofh = 0-6, dth = -3, Kh = 060 for =1,
307, 60F. From this table it is observed that in this case also,
a six-Agure accuracy in the numerical estimates for 1R has
been achieved for N = 4. Tables 2 and 3 show thal the
hounds tor |R| become extremely accurate with the increase
of M For ¥ = 4, u six-ipure acenracy in the numerical
estirnates for K| is achieved in all the cases.

The results presented w1 Tables 2 and 3 correspond to
sone parncular geometnics af the single #nd dowsble walls,
a particular value of the wave number and particular values
wl the angle of incidence. For other geometries of the single
and double walls. other values of the wavenumber and angle
of ingidence, very accurite estimates (six-figure) for 8] are
obiained and these ame illustrated by plorting curves for |R!
against the wave number KA. Figures 1-3 depict |R| against

Tabde 2. Reflection voefficient for single wall afk = b2, Ml = 04, clh = 0.6, Kk = 0.6

o= o = HF o = B

."\" H 1 R: R| R; R 1 R:

(b 0. 129695 (131414 1125 0113491 N.G4333 HAes17T2
L (129614 b 12908 1114957 0.1 120 (1.0 3005 1064334
2 129625 129620 (111958 (L11196] 0,054 304 ERILEXIN
3 fr 129636 129628 111955 .11196] [1.30d305 0,064 305
4 (L2068 (L 129628 111980 01119640 (.M 3015 0004 305
5 129628 (1 Jratl ek N RRET 0.1 194G ({64305

110305
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Table 3. Reflection coefficlent for donble wall afk = 0.2, blh = 0.4, c/h = 0.6, Kh = 1.6

o =" o= IF o = Y

N R R R R R R

] 19 TS 193674 L.175169 0178046 113703 ([ RRE] s
| 1905046 191072 L175663 0176067 113825 0.113833
2 191014 0.191022 L175729 0.175735 113827 ([RR)
3 (L191019 0. 191021 2175731 0175734 0113827 G TARD
4 (L 1910321] . 191021 Q175733 0175733 (113829 113820
3 (L1921 L 191021 Q175733 0175733 113829 0113820

KR for a single submerged wall with a gap. The Fig. 1 shows
the variation of R against Xk for ¢ = O°, 30° and &0°,
It is observed froun this fpgure that for a fixed wuve
number, the reflection coefficient decreases with the
increase of the incident angle, which is plausible since
more energy is ransmitted throuph the gaps as the incident
angle increases. Figure 2 depicts |R| against KA for b/h =
0-2, (-4 and -6 keeping other purameter fixed. This figure
shows that for a fixed Kh, |K| increases with the increase of
Al demonstrating that more energy is reflected with the
decrease of the length of the gap in the wail, which is also
plausible. In Fig. 3 |R| is shown against K# for ath = 040,
0-1, 0-2 keeping Bh, off and e fized. This figure shows that
IRl decreases with the increase in the depth of the upper
edge of the wall below the free surface which is equivalent
t the fact that more energy in fransmitted as the depth of
submergence of the upper edpe of the wall increases. Alsa,
the qualitative teatures of the curves for [R| depicted in Figs.
13 are almost similar in the sense that they steady decrease
with the increase of the wave number and asymproticalty
become zerc for large Bk, The latter is plavsible since for
large wave number, the waves are confined to a thin layer
below the free surface and the submerged wall does not
“feel” them.

015

1.1} *u

L

.05

[+ L8] 1.3 1.3 n 2.5 .
Eh

Fig. 2. Reflcetion cocfficient vs wave number Kh. Single wall
{ofh=0-1, offt = 08, o = 3,

When another idenbica] wall with a gap of same length at
the same level of the first wall is introduced, the aforesaid
qualitative feature of steady decrease of |R| with wave
number in moderate wave number range is no longer
visible, Figure 4 depicts |R| against &k for a double wall
configuration for affr = 02, Bfh = 04, ofh = 06, dfh=0-3
and w = {F, 3, 60°. This figure shows the onset of change
i the above qualilative features, particularly the appearance
of zeros values of the reflection coefficient in the moderate
wave number range. This iz more apparent from Fig. 5
which depicts |R| agminst K# for different separation para-
meters g with afh = 0.2, Bh = 04 and o =06 and
o=30F I ix observed from Fig, 3 that the number of
zeros of the refection coefficient increases with the incregse
of scparation parameter &f, It is ioteresting 1o note that
when the separation lenpgth is small {&fh = 0-01), the quali-
tative feature of the curve for R is similar (o that for a
single wall, The appearance of zeros of IR is attributed to
multiple reflections by the two walls, a phenomenon always
associated with a dooble barrier configuration. The first
fundamental zero of & can he obtained with siz-digit accu-
racy using the same method used by Porter and Evans.’
However, this 15 not porsued bhere, although from Fig. 5
these can be estitnated to at least one decimal place,

0.2%

(L) Bz

(L13

il 05 1.0 L5 Fdl] 5 50
Kh

Fig, 3. Reflection coeflicient vs wave aumber Kf. Single wail
(A =1h, cth = (h, 0 = "
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KFig. 4. Reflection veeliivienl vs wave number £, Double wall
(ot =(+1, bfh = -4, ofh = 06, dfh = 0-3).

5 CONCLUSIONS

One-term, as well as multi-term Galerkin, approximations
have been wrilized 1o oblsin upper snd bower bounds for the
reflection coefficient for two problems of oblique wave
scattering by a syubmerged single wall with a gap and two
submerged double walls each with a gup at the same level in
finite-depth water. The one-term approximations involwe
exact known results for the corresponding deep water prob-
leins for aormal incidence, and the numerical bounds for the
refiection coefficient obtained therein are seen to be not very
clise. However, the multi-term Cralerkin approximations
involving appropriate Chebyshev  polynomials  prodoce
very accurate upper and lower bhounds for the reflection
coefficient for both the problemy. In fact by choosing four
termis a six-figure accuracy in the numerical estimation for
the reflection coefficient s achieved,

The feature of the curves for the reflection coefficiant for
the double wall problem is seen to be significantly differemt
from the comesponding curves for the single wall problem
in the moderate wave number range. The double wall con-
fguration results in the occorance of zero reflection fur
cerlain wave numbers, This may have some bearings on
the modelling of break walers by thin vertical bartiers.

It should be mentioned that becanse of complete submer-
gence of the single or double walls, wave energy will always
be transmitted through the gap below the free surface and no
Ler0 ransmission gecors for any wave oumber, This is also
apparent from the differenl curves for the reflection coeffi-
cicnt, which show fhat |[R1 never becomes unity,
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