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Abstraer The lonpnudmal dispersion of pussive contaminanl moleculss celessed in wnsteady
vizcoclastic floid Sowing through 2 tebe is examined A linile difference inplicil schieme iy adapled to
golve the Ars inteyral momend squations ansng from the unsteady convertne—diRusion cquation
fer all titne period Here it is shown how the ingecled matenial spresd due o the shear effect in the
wisooelunbic Dd caused by the combiced action of porodie fiowr and lateral ditfusion abour its mean
positicn, centre of peaviry of rmass moves and the mean soneenirativn dikinbulion approachss to
Clawsianity, when the cortgminant s initially wniformo over the cross-section of the tube and 1he
Peclet nunber is lurge. The analvsis reveals thal for wiscoelastic floid the dispersion cocficiens
changes vyclically wath adouhle fregueney period and reaches seymptotically s seationaty siate afler
4 certain time a3 in the case of 2 Mewtonian Jwid, and s inersgses with Lhe viscoelistic paoamicter,
FCurther, it shows thal (there iz a remarkahble similarity berereen the mean concatration disteibution
of salure in 2 Mewionian and non-Mewipnian faoid,
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I IWTRODLSTION

The study of dispersion of contaminants in & fluid is a part of Environmental Fluid
Mechunics which has become essential in controlling pollution of rivers, enviromment, etc.
due to the release of contaminating matenuls from diffirent sources. Now-a-days this study,
which gives an invight into dispersion phenomena of passive contarmmants in sobvents, has
pritnaty snportance in industriat and technological fields,

In his classic paper, Taylor [1] pointed out that in longitudinad dispersion of soluble
matter in a moving Huid. solute is more slowly dispersed by molecular or turbulent difliasion
alone than the dispersion doe to *shear effect’ caused by combined effects on convection and
luteral ditfusion. Ariz [2] subsequently proposed an idey of moment methed in solving the
model removing the restrictions imposed by Tayler and studied the asymptotic behaviour
of second maoment about the mean. Barton [3] resolved certain technical difficulties in Aris’
methed and obtained the solutions of seeond and third moment equaiions of the distribu-
tion of solute which are valid for all time, All the work mentinned aboye was bused on
steady flow.

The longtudinai dispersion of a soliwie m time-dependent fow due 1o peniodic pressure
gracient in an infinite tube was first studied by Acis [4] using his method of momenty, und
his analysis was limited to asymptotically farge time after the imjection of the solute.
hMukherjee and Mazumder [5] extended the Aris—Barton theory ot stodyimng Lhe all-time
evaluton of the second central moment of dispersion of passive contaminant in the shearing
curreat due to the combined effect of steady and pericdic lows withio a conduit of uniform
crows-section. The solution was bused on the method of separation of variables, which
depends on a certain cigenvalue prablem with a discrele speetrum of eigenyalues. Marnm-
der and Das {6] extensively studied the efiecl of boundary absorplion on Lthe axial
dizpersion of contaminant cloud released in pulsatile tube flow. Using a numetical scheme
they computed the elfeetive diffusivity for different values of absorption purameter for all
limg perods. The problem of dispersion phenomenon in limc-dependent flows within
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conduits has been studisd by Chatwin [7], Smith [8], Jimenaz and Sullivan [¥], Yusuda
[10], Mazumder gnd Das [1i] and others.

Fan and Hwanp [12] first extended the analysis of Taylor to the dispersion of solute in
non-Newtonian {Ostwald- de Waele) fluid and they showed that Taylor's methed can be
apphicd in the case of non-Newtooian Auid. Fan and Wang [13] also swadied Taylor's
analysis of dispersion inn the flow of 4 Bingham plasic and an Ellis model fluid and showed
that Aris’ modilication of Taylor's analysis cun be applied in the case of non-MNewtonian
Mluid. Using the Taylor conceptual model, Erdogan [14] studied the dispersion in non-
Newtoniun flow at low Mow tates. He showed that the longitudinal dispersion coeflicient
depends oo the ratio of the yicld stress 1o ibe wall stress, When the ratio is zero ic s
cquivalent to a Newtonian Quid. For o ratio greater than zero, the dispersion coefficient first
inereases und then decreases with (he inerease of the ratio, and the longitudinal dispersion
poeflicieni becomes zero when the value of the ratio reachas 1. He also studied the effect of
a Bingham plastic and Ostwald—de Waele fluids on dispersion and observed that mitially
the dispersion coefficient increases upto a certain value and then it decreases with an
increase in the non-Newtonian parameter. Dispersion in Eyring and Reiner Philppol
maodel fuids has heen studied by Ghoshal [157 usiog Taylor's analysis but he did naot
discuss anything in dispersion phenomenon as in his study some inleprals were un-
evalnated. Shah and Cox [16] and Gupta and Muzumder [17] solved the problem
cotnpletely and showed that the dispersion coefficient decreases with the increase of the
Eyring model parameter. However, all the investigations on non-Newtonian fuid models
mentioned above were asymptotically valid for a lazge time afier the imection of 1he solute.
Subramanian and (Gill | 18] explored the generalized dispersion model valid [or all time
peried to study the spreading of solutes in non-MNewlonian Ruid (Osiwald—de Waele), but
thev confined their analvsis 1o the steady laminar Aow in a wbe. They lound that the
dispersion coetlicient uf any piven time decreases with increasing the non-Newtonian
pardmeter.

Te the best of our knowledge, the dispersion of a sedute in oscillating ow of a viscoclustic
fluid has not been studied in the literature. Our main objeclive of the present paper i3 to
cxplore the disparsion phenomenon of 4 solute in Maxwell lincar model of viscoelystic fluid
{Bird et @l [19]) within & tabe when the flow 14 oscillatory due to the periodic pressare
gradient, More preciscly, it is shown for all tirme pericnd how the spreading of tracers is
influenced by the combined action of characteristic relaxation me and the frequency of
oscillation about the mean pesition, the center of mass of shig moves and the behaviour of
mean concentration distributions approaches 1o normality, when the contamizant ts
initilly uniform over the eross-scetion of the tube and the Péclet nomber iz large, The
monvation of the swudy of viscoelastic oscillatory flows stems mainly from the important
application, namely the dispersion of tracers in puolsatile blood streams and the mass
transfor in polymer solutions. In particular, 2 water-solution of polvacrylamide is o well-
known viscoelasiic Auid.

2, MATHEMATICAL FORMULAT|OXN

If the convected derivative is written in full then the constitutive cquation of the Muxwell
model of a viscoelastic fluid which is a superposition of the Hookean solid and Newtonian
figuid with rero retardation time is given by (Oldroyd [207),

R
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Here £y 05 acharacteristic relaxglion time for the Boid, i 14 the velocity in the fth direction,
g+ 1 the coeflicient of viscosity of the fluid, and 1;, 15 the shear stress.

Consider an oscillatory lully developed ncompressibie laminar fow of the ubove tled in
a straight circular pipe with uniform cross section of radius B, As the fow is induced by the
pericdic prossure difference along the axdal direetion, the flow wilt be unidirectionsl 5o the
velocity has only ania) component &, depending on radial coordinate » and time £, Also the
stresses have r—z component 1., oaly. Takmg ths oo account further simplincation is
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possihle if we take the linearized equation as well as il we consider slow motion of the fluid.
S0 the proper invatiant derivative in cquation {13 reduces to the partial time derivative.

Neplecting the convective term 4’ V' of the momenium eguation, the lincanzed equa-
tion of metion in two-dimensional cylindtical form iz given by, (see Bund g ol [19])

£, apt L
Por =T rpal =
and linearized Maxwell model is
A1, Ira

el = — = i3
T Har !
where p is the density of the fluid, p is the pressure and &, = /G, @ is the modulos of shear
rigidity.

Eliminating t,_ from equations (21 and (3) we have
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The boundary conditions are,
=0 at r=2~x (5}

and the velocity at the center of the pipe 1= fnite.
As the flow is oscillatory, velocity and pressure of the luid can be wrtlen as of the
following form.,

&)

r

w; = Real [ugirje™ ], T by Real {"} (6}
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Using the expression of (&), the solution ol equation (4] subjeet 1o the boundary condition

(5) for pericdic flow is:
"By Tolkr )
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where & = —fwpll T+ imntgliu, and e is frequency of oscillation when the local flnid motion
is a smusoidal funclion.
The velocity from equation (7} can by written in dimensionless form as;

a LI RS 1) (e
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u; = Real

where &, = V-’——Ix{l + 2Tyl & = eR%v 15 the dimensionless oscillation Reynolds oumber
or frequency parameter, 5 = /D is the Schmidt number, Ty, = vt/ R¥ is the dimensionless
clasticity parameter, u, = u./T7 is axial velocity in which U = R%b/u is the ime averaged
velocity, and » = r'/R is the dimensionless radial distance. Tf the dimensionless elasticicy
number Ty is zero, the velocity cquation (8] corresponds to the oscillatory Wewtonian fluid
flow through o tube (Uchida [21], Schlichting [22]) The oscillating fiow of a viscoelastic
fluid 15 chatacterized by dimensionless number = § and T, Here z = cR?/v is a measure of
the ratic of time necessary [or shear-wave propagation across the lube section to the period
of osciliation or the ratio of pipe radius to the Stokes-layer thickness. The Schmidt numbser
X 15 the ratio of viscous diffusion and molecular diffusion; and 5 is the measure of 1he ratio
ol the characteristic time of transverse diffusion to the period of oscillatinn. The dimension-
less viscoelastic parameter T, (=1 ARZ v} is the ratio of the fluid relaxation time to the time
taken for shear-wave propagation over the cross-section of the tube. Figure 1{a—d) presents
the veloeity profiles against the frequeney parameter = in differen fow phases for vanous
values of T, and r = 0.5, For a Newtonian fluid (T = 0}, velocity decreases with increass
in w, whereus for a viscoclastic fluid (T, = 0, il increascs upte a corlain o, then decreases
(Khabukhpashevs pt al [23]) for the phases wbt = 0, = The mcrease of velociiy with
visgaclastic perameter Ty scems o be due to the proscnee of clasticity in the Liguid {Beard
and Walters [247). For phases 25t = n/2, and 3r/2, it is oscillavory in nature upto a certain
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Fig. 1. Oscillatory velocity 4, of a viscoelastic fluid against frequency parameter = for different
phase: fa) xSt =0, (h)] a8 =22, () afr = n, (d) a5 = 3In2, at r = 0.5

value of «, then it increases with increase in T, at large . It may be mentioned here that the
velocity profile for a pulsating Poiseuille How of a non-Newtonian fluid studied by
Rajagopal and Sciuba [25] is somewhat consistent with the present velocity profile for
a small value of frequency parameter. It is also obscrved from the figure that the velocity
profile in the flow phases is more flattened with deceleration than in the phases with

acceleration,

Il a slug is released in the above mentioned periodic flow in a tube, the concentration
Clt, r, z) of the solute, with constant molecular diffusivity D, satisties the non-dimensional
convective—diffusion equation of the form

aC ac [1é u{“) d2C

—+Peu—=|-— 9

G 7z [_rﬂr( )t a ] ®)
where z = /R and Pe = RU/D, u, = /U, t = Dr'/R*, r = ¥/R. Here u, is the periodic
velocity due to imposed periodic pressure gradient, L7 is the reference velocity, and Pe, the
Péclet number is the ratio of the characteristic time of the diffusion process (R*/D) to the

convective process (R/L7).
The initial and boundary conditions are

Ci0.r, 2} = 8(z),
oc
o =0 at r=1,
C finite at all points,
10)
i {
z ——rl] as [z]=o for mn=0,1,2..

in
II J rC(0,r,z) dr df dz = 1,

where &z} is the Dirac delta function.
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Following the Aris [2] method of moments, the pth integral moment of the concentration
distribution can be defined as

CF:J Cit,r, 2V dz, {11
=
and
l ix
- F 12
Co=3= dﬁ) LA r)dr. {12)

S0 using equations (11) and (12), the diffusion equations (9} and (10} can be written in the
form of ', and M, separately which are

dc, 1 r"*
~L—= PPE”U”(:- 1+P“’-’_1}(—a s (13a)
£t r :r (r
with
iC
G0A=1 and Z7=0 at r=1, (13b)
o
and
dM, _ ——
E' = PP'E H,ELJ"}E.F 1+ P[P T ]}Cp—ls [.]-4}
with

Mm=1, for p=0, and M,=0 for p=0

overbar denotes the cross-sectional mean.
The pth central moment of concentration distribution about the mean can be written as,

B e a;‘J’c‘m r.z) dr dé dz

Velt) = =
where

ENESR"]
s Cde ~ My

is the centroid or first momeni of the solute which measures the location of the cenire
of gravity of the slug with the mean velocity of the viscoeiastic fluid ipitiaily located at
the source, and M, represents the total mass of inert solute io the whole volume of the
tube.

Putting p = 2, 3, 4 in {15) we get the central moments as,

s .I’Efz 2

vaft) = M, °®
M

11(1}—-—3—3112 —z i {16)
) fn
M

volt) = H—* — 42,4 — bz, — zf
L

Here v, represents the variance of the distribution of solute about the centre of the slug.
Third {v4) and fourth {v,) central moments represent the symmetry and peakedness of the
distribution of the slug about its mean (z,), respectively. Ms are calculated from equations
{13a) and (14).

i3, NUMERICAL PROCEDRURE

Because of the complexity of the analytical solution of the moment equation {13a} with
the expression of u, given by equation (8} subfect to the initial and boundary conditions
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specified in [13k), 11 95 solved numercally. A fmte-difference scheme based on the
Crank-Nichalsan implicit method has been adopted to stndy this problem. A marching
Lechnigue for tirne bas been used in this cyuation as the indtial condition is specified and the
derivatives along the marching direction have been eeplaced by backward differencing with
second order accuracy. whereas the third-order accuracy in central differencing sloog the
radial direction has been used for the diffusion term. and the resuding difference scheme
becomes implicit. The scberne hus been discussed i deeail in the work of Masumder and
Das [6, 117. The denvatives and all the other torms have been wridlen al the mesh pont
(i + L, where i = { corresponds to the titme ¢ =0 and ;= 0 1o the axis of the pipe r = 0.
The mesh poio (4, /) indicares 4 poinl wher: ¢+ = At =7 and r = Ar . A and Ar are the
increments of t and v, respectively. The diseretized eguatioms are a system of linear alpehbric
cyuations with a {ridiagonal coefticicnt matrix,

PO~ 10+ 0~ QUi+ L+ RCii+ 15— 1) =5 (17
whers
1 1 )
Ps =3 (\2;‘ 1
1 L
GTE Ay
L 1
S B Wi
RJ zfﬁr‘}z (2}- ):l
and

o o { 2y sy I o s
5 _E'Cy{*:.” +W' {Cplhf+ 11 = Cp{ij - 1} + A LOMEATE S |

Pe \ el fem ; ;
= 20,00+ Cylif — I + %—{uti + L+ uli ) G- + L)

nie — 1)

s {Cp-sll+ L j} + Cp alijl]

+ O+

and the matrix clemenis,
The Anite-difference fomm of the initial and boundary conditions are.

I for p=10
Cpflf) = {
- 0 for p?ﬁl 15

Cpli+ LLy=0Cqi+ 1, -1)
at the axs, and
Coli+ N+ D=0+ 1L N-1) i1

at the boundary for p = 0, ¥ is the value of j at the boundary.

This tndiagonal coefficient malrix has been solved by the method of the Thomas
algorithm with the help of prescribed initial and boundary conditions. The integration for
calculation of M, from equation (14} has been pedormed cmploying Simpson's ane-thind
rule. Initially, velocity is computed from equation (8). Using the values of veloeity i, at the
grid (i 4+ 1, f} in equation (13a), the congentration ¢, is calculated at cach pod peinl of
computational domain, Finally, with the help of Simpson’s one-third rvie. M, is cvaluated
using the values of &, and C,, in the corresponding point, The values of the variables can be
cialcutated for all time iteratively in the marching direction. The present scheme is lineacly
stable for a finite value of s, where 1 = At/{AFE = 0 because of its implicitness, For
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lcequency parameter a = 0.5, 4.0 m oscillatory How, mesh size has been taken ay At =
OO0 and Ar = 001, and it gives a good accuracy and no considerable difference in
results for smaller mesh size.

4, DISCUSEION OT RESULTS

In ordder the validate the numercal scheme, the values of C, and M, have been caleulated
analytically wang the moment method and nomerically using the present scheme. The first
moment of concentration distribution of solute C, has been studied from equation {1 3a). So
the diffusion equation for 74 is

{‘](:I] 1 & ( EC] o
5 e ol Peu O

This is a one-dimensional diffusion equation having a souree term Pew,Cp. The tirst
moment £, can eastly be solved using the method given by Mukhetjes and Mazumder [3]
and the expression for ) is given by,

. ZFPIE kl‘;l{klj Jn{'xr] ' — oyt
Cyir, 1} = Real Erew S
(r. 1) €al [ x dolk) ;lkf _ 'TIEHI}? 4 {28) Jofa ) rha e }
Pe 2.!1[3':.} P
e i I | P aEE s
12‘5{ liU{kl]} te 1}}1 A

where Jo, J; are the 14t kind Besscl functions of zeroth and first order respectively. o5 are
the zeros of J,.

The values of ) calculated from the numerical scheme as well as from (he analytica)
method piven by Mukherjee and Mazumder [5] have been compared and it is found that
the analytical and nurnerical values are in good agreement, The vatjation of distribution of
£y against r for different phase valves has been plotted in Fig 2 for T, =0.1,0.3 and

‘—ﬂ_ﬁ L i L 1 1 ] 1 1 1 -

Fig, & First order moment £ aguinst rading e for different pheses, when Pe = 5 = 1000,
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Fig. 3. First order moment Cy againgt fregquency porameter o when Pe = § = 100 ao0d 7 = 05 for
aSt=m.

¥ =05 40 (; reveals its periodicity with fow phases because of the oscillatory nadure 14
velogity u,. Fipure 3 shows the variation of C, agaiost  for different values Ty, » = (.5, and
%51 = a1, Tt is interesting 10 note that in the cuse of 1 Mewtonian fluid (T = 01 the ¢Bect of
the frequency parameter ¢ on (0, is not significant, whereas with the increase of the
visco-glastic parameter Ty = U, € decreascs for 4 certain range of %, then it increascs,

The first moment M, indicates the mean concentration distribution over the cross-
section of the tube. Putting p = 1, the equation of M, gives,

dM :
? = Puw, ).
with M, () =10
Similar to (), M, can be obtained as
Pc 2F (k) - ;
Mtl= ———Real| 1 ——" .=l _ 1] |
0= = o] {1 g - .

The mean longitudinal displacement Z; { =M /M) of the sulute moving with the mean
periodic velocity of the solvent mainly depends on = ¥, and ¢ Figure 4a_ b} shows the
displacement of centredd (z,) for different values of Tp and 4 = 0.5, 4.0. 1t s scen that the
centroid of the slug moves eyelically with the oseilkatory nature of the Mow, und 1L changes
asymptatically over a period. For low frequency of oscillation (x = 0.5), the amplitude of
oscillation decreases in the {irst part of the period and inereases in the secomd part with the
inerease in ¢lastic parameter Ty, whereas for a large frequenecy (¢ = 4.4, the ampliude of
oscillation increases in the both parts [Fig. k)] For both low and high values of
frequency, it is scen that there is a phase shilt which decreases with an increase in Ty It is
alse obscrved that the amplitude of positive pulsation i more prominent than that of
negative pulsation for bigh frequency.

Owing to the complexity of anaiytical solution of equations (13a)-( 14} for p = 2, subject
te the initial and beundary conditions, we have solved numenically, and henge the varlanee
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v; and dispersion coefficient due to shear effect have been evaluated. The plots of second
central mmoment v, (vananee) of the longitudinal concentration distribution against disper-
siontime t for Ty = 0,01, 0.3, Pe = £ = 0% have been presented in Fig, 5 when x = 0.5 and
in Fig. 6 when & = 40. It is essentially the dispersion due to both the longitudinal diffusion
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and interaction of the periodic curreal and lateral diffuston, At low frequency of oscillation,
Fig 5 shows that for a given valee of T, the variance increases with time in a wavy pattern.
In a complete paried, variance decreases in the first parl of oscillation. and then incregses in
the gecond parl with increase in relaxation ume Ty [Fig Xa}], but this behaviour com-
pletely diminishes for large time where variance incresses at a fairly eniform rate with Ty
[Fig. 5(b)]). The increase of variance (v;) about the mean {z;} with T can directly be reiated
to the increase of flund velocity with clasticity in Auid. 1t also reveals that with an increase of
z{i.e. increase of frequency of oscillation) the variance of distribution decreages. For o = 0.5
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i

the wavy nature of the variance (v;) of Lhe solute distribution is almost the same for all time
peniod, whereas for 2 = 4.0 (Fig. 6) it shows double frequency oscillation in a complete
petiod upto a certain time, and it reaches asymptotically a steady state for Jarge time.
Further. it may be mentioned here that the amplitude of variance increases for all time
period with the relaxation time T,
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Aris, in his method of maoment, found out that the rate of change of variance is
proporticnal to the sum of the molecular diffusion coefficient and the Taylor diffusion
coedlicient. Therefore, avcording to Ans [2] the rate of growth of variance is defined as:

?;T =24 2Pe D (S, % To. 1} (22)
whete 12, is lhe apparent dispersion cocllicient depending on parameters 8 . T and 1. The
first 1grm on the mght band side of the above cxpression represents the longiludinal
diffusion, whereas the second tenm represents the interaction betwecn the convection and
lateral diffusico. Therefore, the apparent dispersion cocfficicnt D, & (hscussed, Taking
Pe = 5 = 107 the variation of D, against dispersion time ¢ has boen presented for various
values of T in Fig 7 for 2 = 0.5 and Fig. 8 for 2 = 444 The variation of &, in oscillatory
flow changes cyclically with a double freguency and reaches a stationyry stale ufier a certain
time, which is related to the cross-sectional mixing time. The amplitudes of oscillstion of
D, during the first and second half of a complete pericd of oscillatory How are almosi
symmettical for low frequency (Fig, 7)., whereas for the high requency parameter, By is
raore significant duriog the first balf of the period than the second one (Fig, 8). However,
thiz situation completely stabilizes after a certuin time and then the solule disperses at
a fairly uniform rate (Marunuder and Dus [6], Yasuda F10]). The apparent dispersion
coeficient 12, in the low lreguency of oscillation reaches a stationary state earlier than for
the high frequency. The dispersion cocicient £, changes cyclically with time even in the
stationary state.

The longitudinal dispersion of solute strongly depends on the visco-elustic purameter T,
The effect of Ty for a small value of & is small compared to that for a large value of 2.
Figure 7{a, b) shows the increment in phase lag of D, with increase of Ty, due (o a decrease
ol the modelus of clasticity. Initially, at the low frequency of ascillation the amplitude of
B, decreases during the first half of the period of oscillation and then increases in the scecond
hall with increase in Tp; at large time [Fig. 7(b)] it becomes slable with the flow.
Figure Ria, b} shows the variation of £, with time when a = 4.0 for different T, Tnatiadly,
a douoble-frequency oscillalion s observed and the difference between two consecutive
oscillations ineredscs with increase in =, ic increase s frequency of oscillation, and for this
il lakes a larger time to eeach the steady state, The amplitude of the oscillation increases
with inerease in ¥y which is comparable with the study made by Erdegan [14] For siall
vilues of 1 non-Newtonian pacametel n asvmrptoteally large time.

Ouce the central momenis vy, ¥3, ¥a. . - . . 870 knewn, i 18 possible to compute the mean
concentration distribution i, 71 devialed from Gaussianity in terms of Hermite poly-
nomial representation (Chatwin [26], Andyrsson and Bergiin [27]) and is given by

- i
Cuif, 2] = Moftle * ¥ aduH,(x) (23)
n=1
where
T o8y, o

Mt =

J Cdi XS AT,

and H, the Hermijte polynomigls, sabisfy ithe recorrence relation with Haix) = 1.0 as
I gfx) = 2xdixy — 26 (x), =012, .. {24y
The coaflicients ; are
g — L2mva)'™, gy =4 =0, ay = 2",/ 24, a4 — apfiy /96

Coefficient of skewness fi; = vy/vy’?, and that of kurtosis g = vi/vi — 3 represent the
degree of symmetry and peakedress of the distribution of solute respectively. These indicate
basically the nature of the distribution and the devialions from Gavssianity, If the distribu-
tion is exactly Guaussian, both coefficicnts will be zero.
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Fig. 7. Thedisperien coefficient £, for(a) small ime. (b] large lime, when Pe = 8 = 1000« =05

Table 1 shows the variation of §; and §4 with the requeney of oscillation 2, viscoclastic
parameter T, and the dispersion time 1. Tt is seen from the table that thers is a small
deviation in f; from zero, which increases with the inerease ol T, The variation for T,
becomes oscillatory for large values of @ which is clear from the table when a = 4.0. §,
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Fig. 8. As Fip. T hul = - 440

0.3 .10

increases with increase of Ty s well as x With increase of time, §; decreases steadily for
small  and for large values of % it decreases in oscillatory pature. Buat f, decreases steadily
for all & with increase of time . So it ix reyealed that if we increase the non-Newtonian

parameter, ie, increase the elastic property ic fluid, it takes much time to reach the
Crausstanity.
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Fig. 10, The mean concentration dirtribution €, along the pipe lor Pe = 5 = 1000, and 2 = 4.0

Table 1. Varation of coefficients of skewness (f,) and kurtosis (3,)
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In Figs 9 and 10, C.te, 2) has been plotted against axial distance (£ — o} for different
values of time r and Ty when o = (L5 and 4.0), respectively. From Lhe lgares 1 is observed
that rthe peak of the concentration distribution gradeally decreases with increasc of
dispersion time ¢ as well as increase of relaxation time Ty, which implies the distribution
gradually tends to become flat. It is also seen that the mean concentrulion distrbution due
to unsteady How of viscoelastic fluid is essentially symmetnical. From the above observation
it is noted that there is a1 remarkable similarity between the mean concentration distribetion
of solute in an unsteady non-Newtonian (viscoelastic) Quid and in periodic Qow of a Newto-
nizn fluid discussed by Muzomder and Das [6]. Mean concentration distribution profiles
shaw how fast the slug’s centre of gravity moves, how il disperdes due to shear effects and
how the distribution deviates [rom the Gaussiynity due to the viscoclastic parametet.
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