RESTRICTED COLLECTION SOME ASPECTS OF ESTIMATION IN SAMPLING FROM FINITE POPULATIONS By M. P. SINGH RESTRICTED COLLECTION A Thouse submitted to the Indian Statistical Institute in partial fulfilment of the requirements for the degree of Doctor of Philosophy. #### ACKCIO WLEDGEMENTS I have great pleasure in expressing my deep gratitude to Dr. M. N. Murthy. Read of the Sampling Division of the National Sample Survey Department for his guidance and valuable suggestions in the preparation of this thesis. I am also grateful to Dr. J. N. K. Rac, Dr. D. Basu and Prof D. B. Lahiri for their encouragement and helpful discussions I have had with them and to Prof. C. R. Rac, F.R.S., Director of the Research and Training School of Indian Statistical Institute for the keen interest he has taken in my research work. Thanks are also due to Shri T. J. Rao and Shri A.S.Rey for their comments on the draft of a part of the thesis and to Shri G. H. Das for his elegant typing of the manuscript. H. P. SINCH ## RESTRICTED COLLECTION ## CONTRACTS | | | | Pege_ | | | | |-----------------|------|-----------------------------------|---|----|----|----| | OHAPSUER: | I. | INT | RODUCTION | 1 | ** | 12 | | GHAPI TR | II. | FE | LIMINARIES | 13 | - | 27 | | | 2.1 | Sem | ple Design | | 13 | | | • | 2.2 | Bet | ination | | 17 | | | CHAPTER | III. | OPT | BESTMESS, AUMISSIBILITY AND
IMALITY OF ESTIMATORS IN SAMPLING
ITS POPULATIONS | 28 | | 85 | | | 3.0 | Sun | mary | | 28 | | | | 3.1 | . Introduction | | | 31 | | | | 3.2 | Bes | tnose and Admissibility | | 36 | | | | 5.3 | Admiesibility of Estimators | | | 41 | | | | 3.4 | Non-oxiatence of a Best Betimator | | | 80 | | | | 3.5 | Bay | osnoso | | 54 | | | | 3.6 | Hyp | er-admissibility | | 60 | | | | 3. | 6.1 | Hypor-admissibility of the H.T. | | | | | | | | Ectinator . | | 64 | | | | 3. | 6.2 | Hypor-admissibility of a Variance | | | | | | | | Estimator | | 70 | | | | 3.7 | Noo | onerry-Bost Batimator | | 78 | | | | 3.8 | Con | oluding Romarks | | 82 | | | OHAP TER | IV. | SOM | E THO-PHASE VARYING PROBABILITY | | | | | | | SCH | engs | 86 | * | 9 | | | 4,0 | Shire | mary | | 86 | | | | 4.1 | The | oo Two-phase Schopes | | 86 | | | | 4.2 | Est | inetors and Variances | | 89 | | | | 4.3 | Bff | icioncy Comparison of the Estimators | | 94 | | | | | | Page | |---------|------|---|-----------| | CHAPTER | V | RATIO AND PRODUCT METHODS OF | | | | | RETINATION | 99 - 120 | | | 5.0 | Surnary | 99 | | | 5.1 | Use of Supplementary Information | 99 | | | 5.2 | Rathe and Product Hothods of | | | | | Estimation | 100 | | | 5.3 | A General Criterion for Proference | 104 | | | | An Empirical Study | 110 | | £ | 5.4 | Estimators in Systematic Sampling | 113 | | | 5.5 | Unblased Sstimators | 120 | | CHAPTER | VI. | MULTIVARIATE RATIO AND PRODUCT METHODS | | | | | OF ESTIMATION | 121 - 140 | | | 6.0 | Summery | 121 | | | 6.1 | Multivariate Product Method of | | | | | Betimation | 121 | | | 6.2 | Multiveriate Ratio Method of Estimation | 129 | | | 6.3 | Comparison of Estimators | 131 | | | | An Empirical Study | 134 | | | 6.4 | Betimators in Two-phase Sampling | 136 | | CHAPTER | VII. | SOME RATIO OUM PRODUCT ESTINATORS | 141-180 | | | 7.0 | Summery | 141 | | | 7.1 | The Non-Linear Peremetric Function | 141 | | | 7.2 | Retimators for Ratio and Product | 145 | | | 7.3 | Comparison of Estimators | 150 | | | 7.4 | Configurational Representation | 152 | | | | An Empirical Study | 155 | | | 7.5 | Almost Unbiased Estimators | 157 | | | 7.6 | Use of Two or More Supplementary | | | | | Cheracters | 159 | | | 7.7 | Betimetors of the Paramotric Punction | 170 | | | 7.8 | Comparison of Satinators | 172 | -111- | | | | Page | |----------|-------|---|-----------| | CHAPTER | VIII. | SOME GEOGRALISED RATIO BETTATORS | 181 - 193 | | | 8.0 | Summer | 181 | | | 8.1 | Introduction | 181 | | | 8.2 | The Botimator, its Bias and Moon | | | | | Square Frrer | 183 | | | 8.3 | Concredised Multiveriate Ratio | | | | | Betimators | 186 | | CHAPTER | | ON A MEDICO OF USING AN APRIORI VALUE
OF THE PARAMETER IN THE ESTIMATION | 194 - 213 | | | | PROUSING | | | | 9.0 | Sumacry | 194 | | | 9.1 | Introduction | 195 | | | 9.2 | The Bettlator, its Bias and Moon | | | | | Squaro Berror | 197 | | | 9.3 | Use of Approximate Optimum Wolght | 200 | | | 9.4 | Use of Blaged Batimator | 207 | | | · À | An Empirical Study | 576 | | Minnerin | ross | | 214 - 227 | | | | | | #### OHAPTER I #### INTRODUCTION Interest in the use of sampling methods for obtaining the statistical data was discernible towards the end of time last contary itself, but sampling then had a somewhat different meaning from to-day, the primary difference being the absence of mechanism of randomisation in the samle selection and the probabilistic interpretation of the data collected. The cutstanding contributions of Mahalanobis. Neyman and Sukhatme during the thirties marked a turning point in the history of the sampling theory and opened-up now avenues for valuable researches in the theory and philosophy of - sample surveys. It was not until the advent of large-scale surveys carried out under the guidance of Professor Mahalamobis during the late thirties that the philosophy of 'efficiency per unit cost' came to be realised and in its train were explored many new methods of selection and estimation procedures. During the next decade followed some significant developments in the sampling theory of finite populations. mainly relating to the use of supplementary information at different stages, through the notable contributions of Cochran, Hansen, Hurwitz, Yates, Madow, Dalenius and others. These developments gave rise to a number of techniques of sampling and estimation procedures appropriate to various situations in practice to estimate the population total of a real-valued characteristic defined for the units in the population. with the availability of various selection and the corresponding estimation procedures, the need was felt to evolve a unified theory of sampling and steps in this direction were taken by Hervits and Thempson (1952), Codambe (1955), Koop (1963) and Murthy (1963), and consequently generalised linear estimators were also proposed. Under this unified set-up, search for an optimum estimator was made by several authors and the following results are available in the literature for the homogeneous linear and the entire class of unbiased estimators, for any design P: (a) non-existence of a uniformly minimum variance (best) estimator in the class of all homogeneous linear unbiased estimators $L_{\bf u}^*$ of the population total (Godenbo, 1985; Koop, 1963) - (b) admissibility of the Horvitz and Thompson estimator (the H.T. estimator) of the population total Y in Lu (Godanbo, 1960; Roy and Chakravarti, 1960). - (c) extension of the results in (a) and (b) to the entire class of unbiased estimators (Godambe and Joshi, 1965) of the population total. - (d) edmissibility of the variance estimator (of the H.T. estimator) provided by Horvitz and Thompson (1952) in the entire class of unbiased estimators (Godembe and Joshi, 1965). - (c) non-existence of the best estimator in the entire class of unbiased estimators of the variance of the H.T. estimator (Codembo and Joshi, 1965). Joshi (1965a, 1966) removed the unbiasedness condition of estimators and proved that the sample mean and the usual ratio estimators are admissible in the class of all estimators for any design with respect to variance as loss function and a generalisation of this result is given by him (Joshi, 1968) showing the admissibility of these estimators for any convextors function. Further, Joshi (1965b) has also shown an estimator, which includes the H. T. estimator, to be admissible for fixed sample size designs in the class of all estimators of the population total. Apart from the above results in this direction, Murthy (1957) and Basa (1958), respectively proved that any estimator which depends on the order of selection and the repetition of units in the sample, is inadmissible. Basa also introduced the concept of 'sufficiency' in sampling theory, which was later developed by Pathak (1962, 1964) and others. The result mentioned in (a) led to the choice of estimators from the class of comissible estimators and various criteria were then put forward to arrive at an optimum choice, nevely (1) Bayesmess (Godambe, 1955), (11) invariance and regular class (Roy and Chakraverti, 1960) (111) hyper-admissibility (Hamirav, 1965, 66, 68) and (1v) necessary bestness (Prabin Ajgaonkar, 1965). We shall briefly mention below these criteria and reserve a detailed discussion on them for Chapter III. Bayes approach, introduced in sampling theory by Cochran (1946), assumes the existence of some knowledge about the population prior to construction of the design and that with the help of this knowledge it is possible to formulate a prior distribution for the character under study. With the help of a specific form of an apriori distribution Godambo (1955) proved that the strategy consisting of the H. T. Getimator and a design with constant effective sample size having the inclusion probability of a unit propertionate to the corresponding value of the supplementary character, known apriori, is optimum in L. Afterwards Godambe and Joshi (1965) did away with the linearity restriction on the estimators, and Hamurav (1962) and Vijayan (1966) showed that the result is true oven for designs with expected effective sample size being constant for the linear and entire class, respectively. As regard the second criterion no further work is traceable. The criterion of hyper-admissibility (h-admissibility, for short), which is based on the concept of admissibility, requires an estimator to be admissible not only in the whole space R_N
but also in each of its principal hyper-surfaces (pha's), which are (2^N-1) in number. It was shown by Hamurav (1968) that the H. T. estimator is the unique h-admissible estimator for any non-unicluster design in the class of all polynomial unbiased estimators of Y. The necessary best criteries for choice of an estimator takes into account only the first part of the variance of an estimator t, namely $\sum_{i} A_{i} Y_{i}^{2}$ (leaving aside the second part $\sum_{i} A_{i} Y_{i}^{2}$) and an estimator t is said to be the necessary best in a class of unbiased estimators if the coefficient A_1 (i = 1,2,..., II) of Y_1^2 is least among the coefficients (of Y_1^2) for any other estimator in that class. Frabbu Ajgaonkar proved that the II. 7. estimator is the necessary best in a sub-class T_5 of homogeneous linear unbiased estimator T_1^2 of Y and Hege (1967) has extended this result to the class T_1^2 itself. Another side of development, as pointed out earlier, was with regard to the use of information on supplementary character at the estimation and selection stages. Cochran (1942) apveloped ratio method of estimation using information on a single supplementary variable which was later extended to an outlinator using the or more such variables by Olkin (1950). The product method of estimation, complementary to the ratio method, was considered by Murthy (1968) and conditions for choosing any of the unbiased. Fatic or product estimator was given for a specific class of designs. Koop (1964) obtained similar conditions for ratio estimator applicable to any decign. Recently, Srivestave (1967.1969) has proposed a generalisation of the usual ratio estimator. Olkin's miltivariate ratio estimator and the ratio our product estimator, given by the author (1967b, discussed in Chapter VII). J.H.K.Rap (1968) has however given another generalisation of the usual ratio estimator which is obtained as a linear combination of the unbiased estimator and the ratio estimator and homes simple to compute. These estimators are discussed in Chapter VIII and compared with an ostimator suggested there in. Attempts were also made to make the ratio estimator unbiased (ar elmost unbiased), by medifying the sampling schemes by Lahiri (1981), Midsano (1982), Sen (1982), Murthy, Manjaman and Sothi (1989) and others, or by adjusting for its bias by Martley and Ross (1984), Quencuille (1986), Durbin (1989), Murthy and Manjama (1989), Rac (1986) and others. Harren and Herwitz (1943) introduced probability proportionate to size (pps) sampling with-replacement, the size being the value of the supplementary variable, which was later extended to pps - without replacement and to inclusion probabilities proportionate to size schemes by Horvitz and Thompson (1952), Durbin (1953), Des Raj (1956), Hurthy (1957), Stevens (1958), Hajok (1959), Hartley and Rab(400), Hertley and Cochran (1962), Follogi (1963), Brewer (1963), Seth (1966), Hanuray (1967), Sampford (1967) and others. Singh (1956), Dos Raj (1964) and D, Singh and B.D. Singh (1965) considered pps with replacement selection of the second-phase sample using the information on the supplementary variable collected in the first-phase sample in two-phase sampling. Comprehensive reviews of the developments in sampling theory have been given by Yates (1946), Sukhatme (1959), Seth (1961), Dalonius (1962) and Murthy (1963), besides the author (1966, in collaboration with Murthy). To shall now give a brief summary of the author's contributions to the theory of sampling from finite populations. The thosis is divided into nine Chapters. After the first introductory chapter, the present one, we explain in Chapter II the basic concepts and definitions which will be used in this thesis. and definitions of bestness and admissibility as applied to sampling theory of finite populations and give some basic results in this direction. Definitions are given for a best, the best and the uniformly best estimators and for admissible and essentially admissible estimators, and the possible inexactitude in the use of these definitions in the current literature have been pointed out. It is, however, shown that for the H. T. estimator (and some other estimators) the two definitions of admissibility are identical and that this is not so ingeneral is also established. Then removing the unbiasedness conditions as has been done by Joshi, it is shown that any "constant" is essentially admissible for estimating the population total Y. Sufficient condition for the non-existence of a best estimator for a class of estimators is obtained and it is shown that there does not exist a best estimator and hence the best and the uniformly best detimator of the population total in the class of all linear estimators and the class of all linear Parther, some aspects of the optimality eritoria, montioned terlier have been studied in this chapter, giving the earlier developments on them. As regards Bayesness it is noted that for a more realistic apriori distribution then that considered by Godembe, there does not oxist an optimum strategy. Choice among some strategies have been given in the next chapter. In commection with h-admissibility of an estimator, Hangrar's result of unique h-admissibility of the Here estimator has been extended to a wider class of unbiased estimators of Y. The concept of headmissibility is then extended to estimation of the variance of the H. T. estimator and it is shown that the variance estimator (vht) proposed by Horvits and Thompson (referred in (d) of page 3) is the unique h-admissible estimator . The necessary bestness of the H. T. estimator and its variance estimator have also been established and it is then shown the necessary bost estimator of Y and the variance of the H. T. estimator are unique headmissible estimators for the corresponding parameters in a wide class of estimators. Importance of the vectors y belonging to the principal hyper-surfaces of one dimension in proving the above results has been emphasised and some suggestions for the modification of the existing criteria and use of cost function and stability of the optimator and the variance estimator for the choice of reasonably good estimator(s) have been suggested. Chapter IV is devoted to extension of some well-known uni-phase pps without-replacement schemes to two-phase sempling scheme, where data on the size measure is not at hand and is collected in a large first-phase sample and later utilised for pps selection of the second-phase sample which is a sub-sample of the first-phase sample. These schemes are then compared among themselves under an appropriate super-population model. in Chapters V to VIII we consider the use of detailed information on one (or more) supplementary character x in the estimation procedure for estimating the parametric function to and some non-linear for parametric function $\eta(\theta)$. Chapter V deals with usual ratio and product estimators. Here general conditions than Murthy's, for choosing either ratio, umbiased or product estimator are obtained and their use in systematic sampling is discussed. Some empirical studies are included for illustration purpose. Chapter VI extends the univariate product method of estimation to a multivariate product method for estimating and compares this estimator with Olkin's multivariate ratio estimator demargating the regions for their preference. An extension of this method to two-phase sampling is given and the manner in which multi-supplementary information may be used is explained. An empirical study is also included. Chapter VII deals with estimation of a non-linear parametric function $n(\theta)$ in general and in particular with the estimation of ratio (R) and product (P) of the parameters θ_0 and θ_1 . Two estimators for each R and P have been proposed, which utilize information on a supplementary character, and compared with the usual estimators for ratios and products. Configurational representations for the regions of preference for these estimators are also given. Two combinations of the proposed estimators, one of which gives the usual double ratio estimator as a particular case, are then considered for estimating R and P, and compared with other estimators. Some almost unbiased estimators are also suggested and a method of using information on several characters is also considered. Later, those estimators are extended to estimate the parametric function Θ_0 itself and compared with other known estimators of Θ_0 such as unbiased, ratio, product, STATISTICAL INSTITUTE multivariate ratio, product estimators etc. Some empirical studies are also included for illustration. In Chapter VIII a generalised ratio estimator, as an alternative to the estimator suggested by Srivastava, has been proposed. This estimator is quite simple to compute, unbiased for large sample sizes and has variance equal to that of the usual regression estimator. Two multivariate estimators corresponding to the suggested estimator have been proposed and compared with other known estimators, which is more estimators. information is not available about any related character and is costly to collect as well but on the other hand an apriori value (0) of the parameter 0 is known from previous consus or surveys or even from expert guesses. And in Chapter IX we suggested an estimator of 0 which utilize 0 and is given by the weighted average of 0 and the umbiased estimator t of 0. Bias and masse of the estimator are obtained. It is noted that the optimum weight is a function of the relative difference between 0 and 0 and relative standard error of t which may not be known in practice. Hence the suggested estimator is modified to use approximate optimum weight. This estimator is then compared with the usual unbiased estimator and table showing its efficiency is given. Some special cases of this estimator are then pointed. ## orapter ti #### PRELIMINARIES In this chapter we
explain some basic concepts and definitions which will be used in this thesis. ## Ed Sample Designs A collection of known finite number N of identifiable and distinct units U_1 , U_2 ,..., U_4 ,..., U_N is called the 'finite population' and it will be denoted by where U_i corresponds to the i-th unit of the population U and it will be sometimes denoted by its subscript i only, such that, U may be represented as a set of integers 1,2,...,i,...,N. A list of units in U is termed the sampling frame' and the number N is called the 'population size'. A 'sample' from U is an ordered finite sequence of units from U and is denoted by s. Thus $$s = U_{1_2}, U_{1_2}, \dots, U_{1_{n(s)}}$$ (2.1.2) where n(s) <= and 1 1 1 1 1 for 1 1 t 1 n(s). The it's need not necessarily be distinct and the interchange of U_{1_t} and U_{1_t} for it \neq it, results in a new sample. That is in such a sample s repetition of units is allowed and different samples are obtained corresponding to different orders in which units can be arranged. For a sample s, n(s) denotes the sample size and $\mu_{(g)}$, the number of 'distinct' units in sample s, denotes the effective size of s. We define S, the collection of all possible samples s from U as the basic 'sample space': $$S = \{ s \},$$ (2.2.3) Byldently, S contains a countably infinite number of samples. The sample space 8 with the probability measure P defined on it, such that corresponding to every se8 is a probability P(s) attached, where $$P(s) \ge 0$$ and $\Sigma P(s) = 1,$ (2.1.4) is called the "sample design' and is denoted by $D(U,S_{\phi}P)$ or briefly the "design P". The design P is completely specified by a list of all possible samples including all permutations and repetitions of the units in a with their respective probabilities of selections. In practice, however, samples are not drawn by listing all possible samples and corresponding P(s)'s due to the fact that for large values of N and n it becomes quite difficult and unmanageable tank. Instead they are drawn by some workable procedure termed as sampling scheme. Any sampling scheme in which the samples are ordered samples as in (2.2) gives rise to a unique design. Elaborate sampling schemes to implement a given design D(U.S.P) have been suggested by Lahiri (1951), Midsuno (1952), Norvits and Thompson (1952), Durbin (1953) and many others. Among those satisfing schools the unit drawing mechanism. which consists in solecting units from U one by one, is of special interest. The drawing machanism quq(u,k,s,1) denotes the probability of drawing unit u from U at the keth draw which depends on u and k and also on the outcome skel of the previous (k-1) drays. In this connection an important regult due to Hamuray (1962) and Subrahmanya (1965) is that of one-one correspondence between a completely specified design and the drawing machanism q. Because of this one can always work within the unified from work of the designs for seath of an optimum optimutor. However, the cituation with partially specified designs is different as in such cases there does not exist a unique mechanism. Examples of guch designs ere (1) specification of samles without considering the perautations and repetitions of units, (ii) specification of only the inclusion probabilities. Given a design P the inclusion probability n_1 of the unit $U_1 \in V$ in the sample s is $$x_1 = \sum_{a} P(a)$$ (2.1.5) where summation is taken over all samples containing U_1 . Similarly the joint inclusion probability of units U_1 and U_3 is $$R_{i,j} = \sum_{a \in A} P(a) \qquad (2.1.6)$$ where summation is over s containing the pair U1 and U1. For a given design P both \$\pi_1\$ and \$\pi_1\$ are constants, some inter-relationship between them are mentioned below: (1) Yates and Trundy (1953): For a constant effective sample size design P_{μ} , for which $$P(a) = 0$$ if $\mu(a) \neq \mu$ for all ass, (2.1.7) whore a lia constant) is the second of s wa have $$\Sigma_{1 \neq 1}^{\Sigma_{1}} = (\mu - 1) \pi_{1}$$ (11) Godesbe (1955): For any design and (111) Hamurey (1962): For any design P $$\sum_{i\neq j} \pi_{ij} = \mu(\mu_{ij}) + V(\mu(a))$$ $$= \mu(\mu_{ij}) \cdot \text{if } P \text{ is } P_{ij}$$ where $$M = \sum_{i \in S} \mu_{iS} P_{iS}.$$ Por details of internal consistency of the inclusion probabilities reference may be made to Hamurav (1966). ## 2.2 Batinations Let \mathcal{J} be the real-valued variable defined on the units (integers) of U taking value Y_1 on U_1 (i = 1,2,..., N). Then the space of all possible vectors $$y = (X_{1}, X_{2}, x_{2}, x_{1}, X_{1})$$ (2,2,1) of the variate \mathcal{Y} is the N-dimensional Euclidean space R_N and any function $$\Theta = \Theta(Y) = \Theta(Y_1, Y_2, \dots, Y_N)$$ (2.2.8) of 'y is called to the parametric function (pf) defined on Rw. A parametric function of particular interest is the population total, a function defined on Rys given by $$2(y) = \sum_{i \in V} Y_i$$ (2.2.3) for every $y \in R_N$. It is sometimes denoted by just Y_* A general problem in sampling is to estimate $\Theta(y)$ by observing the values of Y_* for just those units which belong to the specified sample Y_* from Y_* selected through the design Y_* . We define an <u>estimator</u> t(s,y) as a real-valued function t defined on the space SX R_H , depending on y through only those Y_d 's for which is as Obviously the estimator t(s,y) need not be defined over those a for which P(s) = 0 and hence we tasisfully assume that the sample space S is such that P(s) > 0 for all s. Also we note that, given the design, for any two vectors y and y^* for which $Y_d = Y_d$ for is s, $t(sy) = t(s,y^*)$. The value realised by an estimator is called an estimate of the parameter. Although there is no means of ascertaining the error in an individual estimate, the average error over all possible estimates may be determined with the help of the probability distribution, usually termed as its sampling distribution. Specifically, the degree of concentration of the sampling distribution about the parameter to be estimated represents a probabilistic measure of the degree of precision. The more the concentration is, the greaterathe probability of the estimate being nearer to the parameter, that is the procise is the estimator. Thus, error resulting from a particular estimate t(s,y) will be given by the difference $(t(s,y)=\theta(y))$. A convex function L of this error is called the loss-function and E(L), the expected value of L, is called the expected loss. A commonly used loss-function is the <u>mean-square error</u> and will be denoted by mae or simply M. Thus by definition, we have $$H(t) = H(t(s,y)) = E(t(s,y) = \phi)^2$$ $$= \frac{\Sigma}{ses} (t(s,y) = \phi)^2 P(s) \qquad (2.2.4)$$ for every ye RH+ The M(t) is a real-valued non-negative function and is taken as the exiterion for the choice of estimators. (denoted by the symbol >) and better then (denoted by >) as applied to two estimators $t_1(s,y)$ and $t_2(s,y)$ for a given design P. It may be mentioned that these concepts play an important role in choice of estimators and help in pointing out the possible impractitude present in the liturature on sampling from finite populations regarding the formulation and application of the definitions of best and admissible estimators, a detail discussion about which is given in the next chapter. For a given design P, an estimator to is said to be at least as said as an other estimator to if $$M(t_1) \le M(t_2)$$, for all y. (2.2.5) Suppose the estimator t_2 is also at least as good as the estimator t_1 , then $$N(t_2) \le N(t_1)$$, for all y. (2.2.6) Now if (2.2.5) and (2.2.6) hold simultaneously then they imply that $$M(t_1) = M(t_2)$$, for all y. (2.2.7) Hence, we have, $\mathbf{t_1} \succ \mathbf{t_2}$ and $\mathbf{t_2} \succ \mathbf{t_1}$ if and only if (iff), $\mathbf{H}(\mathbf{t_1}) = \mathbf{H}(\mathbf{t_2})$ for all ye $\mathbf{R_N}$. Again, from (2.2.5), $\mathbf{t_1}$ is not at least as good as ($\not\succ$) $\mathbf{t_2}$ if $$H(t_1) > H(t_2)$$, for at least one y, (2.2.8) and minilarly from (2.2.6) $t_2 \not \to t_1$ if $$\mathbb{N}(\mathbf{t}_{2}) > \mathbb{N}(\mathbf{t}_{1})$$, for at least one ye (2.2.9) Thus from (2.2.8) and (2.2.9) \$1 + \$2 and \$2 + \$1, that is not ther \$1 mor \$2 is at least as good as the other if $$H(t_1) \geqslant H(t_2)$$ (2.2.10) for all $y \in R_N$ with each inequalities (>, <) holding true for at least one y_* the estimator to is said to be better than (>) an other estimator to if $$t_1 > t_2$$ but $t_2 \neq t_2$. other words from (2.2.5) and (2.2.9), ty -tg 11 $$M(t_1) \le M(t_2)$$, for all y (8.2.11) and Similarly, $t_2 > t_1$ if $t_2 > t_1$ but $t_1 \neq t_2$. and the expression similar to (2.2.11) is obtained from (2.2.6) and (2.2.8). Thus this not better than (*) to if or $$N(t_1) > N(t_2)$$, for at least one y. (2.2.12) The estimator t_1 is said to be uniformly better than another estimator t_2 if $$M(t_1) < M(t_2), for all y.$$ (2.2.13) The following remarks, which are outcomes of the above concepts are to be noted to facilitate the discussion in the next chapter. Bernet Refell to > to does not necessarily imply that to > t1. Remark Relati Prom (2.2.5) and (2.2.11), $t_1 > t_2$ is stronger emiterion than $t_1 > t_2$ for choosing an estimator t_1 , since in the former case the inequality, $\mathbb{M}(t_1) < \mathbb{M}(t_2)$, must necessarily hold for at least one $y \in R_M$. Remark 2.2.3: From (2.2.8) and (2.2.12) it is obvious that $t_1 \not\succ t_2$ is stronger criterion than $t_1 \not\succ t_2$ for Choosinging the estimator t_1 since in the former case t_1 is discarded (1.c. t_1 is bad) only if (2.2.8) (which the second part of (2.2.12)) holds while in the latter case t_1 is discarded if either of the two conditions in (2.2.12) is satisfied. Remark 2.2.4: The two criteria $t_1 \neq t_2$ and $t_1 \neq t_2$ are equivalent iff $M(t_1) = M(t_2)$,
for all $y \in R_H$ implies t_1 and t_2 are identical for all y. That this is not so, in general, will be shown in the next chapter. Anlother eriterion for choosing an estimator is its umbiasedness which is nearly always taken for granted in the field of sample surveys, due to its intuitive appeal and statistical interpretibility. For a given design P, an estimator t will be said to be unbiased for the pf * if $$E(t) = E t(s,y) P(s) = 0$$ (2.2.14) for all ye Rne The catimator t will be binged if (2.2.14) is For a given design Pp the class of all estimators will be denoted by A and the classical such estimators satisfying (S.R.14) will be denoted by A₂₁. A parametric function 0 will be said to be <u>estimable</u>, with respect to a given design P, if there exists an estimator which is umbiased. If an estimator t is unbiased for Θ (i.e., to $A_{\mu\nu}$) then H(t) in (2.2.4) is equal to the varience of t (denoted by V(t)), given by $$V(t) = \sum_{s \in S} (t(s,y) + E(t))^{2} P(s)$$ $$= \sum_{s \in S} t^{2}(s,y) P(s) - e^{2} \qquad (2.2.15)$$ for every ye Rus Remark 2.2.5: If we are considering the two estimators to an and the both bolonging to Au then we can replace mean square error by variance in the above discussion. Remark 2.2.6: A design P together with an estimator t defined over P is called a sempling strategy for the estimation of 0 and is denoted by H(P.t). Hamurav (1966) brought into light the necessity of this definition which is due to Hajok (1966). Unbiasedness of a strategy depends upon the umbiasedness of t. The typechation, mean square error or variance of a strategy are defined as the expectation, mean square error or variance of the estimator tower the design P. And the choice between the two strategies H₁ and H₂, in both of which 9 is estimable should be based on the joint consideration of the variance and the cost per unit. Now we shall consider a class of relatively simple estinatore what are called an bonegeneous linear estimators devised as linear functions of the sample observations and therefore guite provolent in practice. The theory of linear estimation in olasmical theory of estimation for the case of infinite populations is quite different from the one which we use in sample surveys. The essential difference of the populations encountered in gample surveys from those considered in classical theory is that the survey populations (finite) are composed of unite which ere 'identificable' and in studying the population it matters whether a set of identical values relate to the same units renested, or to different units of U. This fact was brought to light by the regults of Basu (1958) and Dos Raj and Khamis (1958). This necessitated a fundamental change in the formulation of general linear estimators. The first attempt in giving generaliged estimators was made by Horvits and Thompson (1952) who defined three classes of linear estimators: where β_1 is a constant to be used as weight for the unit selected at the 1-th draw. where C_1 is constant for a given design P and is attached to the 1-th unit (i = 1,2,..., N) whenever it is selected in the sample and where Y_s is the coefficient to be used as a weight whenever s^{th} sample is scalected. Godenbo (1985) generalised these classes and defined the homogeneous linear estimators by $$t(s,y) = \sum_{i \in s} \beta(s,i) Y_i$$ (2.2.16) where the coefficients β 's depend both on the sample and the units to which they are attached, but do not depend on the variate values Y_1 's. The condition for t(s,y) in (2.2.16), to be unbiased for T(y) is given by $$\sum_{s \geq 1} \beta(s,1)P(s) = \lambda, \quad 1 \leq 1 \leq N. \quad (2.2.17)$$ We shall call the estimators satisfying (2.2.16) as the homogeneous linear estimators and the class of such estimators will be denoted by L^* . The corresponding unbiased estimators (satisfying (2.2.17)) will be denoted by L^*_{ii} . The variance of an estimator to L^*_{ii} is given by PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompresso $$V(t) = \sum_{i=1}^{N} Y_{i}^{2} \left(\sum_{i \in I} \beta^{2}(s,1) P(s) = 1 \right) + \sum_{i \neq j} Y_{i} Y_{j} \left(\sum_{i \in J} \beta(s,1) \beta(s,j) P(s) = 1 \right)$$ $$(2.2.18)$$ It is portinent to mention in this connection that Murthy (1963) has developed a technique of generating estimators for any design for the class of parameters that can be expressed as sum of single valued set-function defined over a class of sets of units belonging to the finite population and a number of possibly different estimators are generated. Further Koop (1963) has proposed seven classes of linear estimators by making the coefficients of sample observations depend upon, what he calls as the 'axioms of sample formation' based on (1) order of selection of the unit, (11) its occurrence in the sample and (111) the sample as a whole. However, recalling that the estimator in (2.2.16) is defined for the ordered sequence, it can be seen that the most general homogeneous linear estimator proposed by Koop is, infact, identical with the in (2.2.16). Further, in the class A of all estimators of T(y), any estimator t expressible as $$t(s,y) = a(s) + \sum_{i \in s} \beta(s,i) Y_i,$$ where a(s) and $\beta(s,i)$ do not depend on y, is said to belong to the class of <u>linear estimators</u> and this class of estimators will be denoted by L and the corresponding class of unbiased estimator by L_{n} . Obviously, if a(s) = 0, for all ses the class L* and L (or La and Lu) ere identical. Higher order polynomial estimators can be defined similarly. ### CHAPTER III ## ON RESTRESS. AIMISSIBILITY AND OPTIMALITY OF RETINATORS IN SAMPLING PINITE POPULATIONS and definitions of bestness and admissibility as applied to the theory of sampling from finite populations and the practical utility of some criteria put forward for the choice of an optimum estimator from among the class of admissible estimators, have been critically examined and some basic results have been given. In section 3.1 a brief historical back-ground for the origin of admissibility concept in statistical theory and developments in this direction in the field of sampling theory are mentioned. In section 3.2 the definitions of best and admissible estimators are enumerated. Definitions are given for a best, the best and the uniformly best estinators and for admissible and essentially admissible estimators using the concepts of 'at least as good as' and 'better than', developed in the previous chapter. The possible inexactitude in the use of these definitions in the current literature have been pointed out in section 3.3. It is noted in this section that the two definitions (3.2 at and 3.2.5) of admissibility are equivalent iff the equality of mean square errors of two estimators t and to for all vectors y implies that the are identical for all ye And in this connection it is shown in theorem 3.3.1 that the two definitions are equivalent if either to or to is the estimator proposed by Hervits and Thempson (the H.T.eestimater, for short) for estimating the population total Y. Certain other estimators are also shown to possess this property. And that this is not so, in general has been pointed out on the basis of a simple illustration. Further, it is shown, in theorem 3.3.2, that if we remove the unbiasedness condition, as has been done by Joshi in recent papers, any 'constant' becomes admissible for estimating T. In section 3.4 the sufficient condition for the non-existence of a best estimator in a class of estimators has been obtained and it is shown in theorem 3.4.3 that there does not exist a best and hence the best and the uniformly best estimator for the class of all linear estimators and all estimators of Y for any design. Some specialised designs and the classes of unbiased estimators are then recalled where the best estimator descript. The discussion upto this section is based on results obtained by the author in collaboration with nurthy (1968). eftions 3.5 to 3.8 are devoted to some aspects of three optimality criteria namely Bayesmess, hyperadmissibility, for short) and necessary bestness put forward in the literature. It is noted in section 3.5 that the H.T. estimator ceases to be Bayes solution (3-optimum) if the parameter g of the apriori distribution deviates even slightly from 2, and that no optimum solution exists in such cases. section 3.6 deals with the h-admissibility of an estimator (the criterion introduced by Hamuray). In section 3.6.1, which is based on the results obtained by the author in collaboration with Remakrishna, we have (in theorem 3.6.2) extended the result (mentioned in theorem 3.6.1) obtained by Hamurav regarding unique h-admissibility of the H.T. estimator to a wider class of unbiased estimators for any non-unicluster design. We follow an alternative method for proof which pin- pin-points the vital role played by the vectors y belonging to the principal hyper-surface's (phs) of one dimension. In section 3.6.2 we extend the criterion of h-admissibility to estimation of the variance of the H.T. estimator and following the same approach, we prove that the variance estimator proposed by Horvits and Thompson (vht) is uniquely h-admissible in wide classes of unbiased estimators (theorems 3.6.3 and 3.6.4) for any design in which the variance is estimable. In section 3.7 we discuss the oritories of noccessary bestmoss, introduced by Probhu Afgeonkar. It is noted that this criterion is equivalent to the criterion of the best estimator when the parameter is restricted to the phate of one dimension, the pha which played the vital role in the proof h-admissibility of the H.T. estimator and the variance estimator v. . It is further shown on the banks of lemmas 3.6.1-3.6.4 that those estimators are necessary best (theorem 3.7.1-3.7.2) for a wide class of non-homogeneous estimators. That a necessary boot estimator is h-admissible is also shown.
Some practical simificance of these optimality criteria and then mentioned in the lest section and some suggestions have also been made for choice of reasonably good estimators under different situations commonly met with in proptice. The discussion from section 3.6.2 onwards are based on the results obtained by the author in collaboration with J. M. Rao. ## 3-1 Introduction: During the last two decades the concept of admissibility has been increasingly applied to the problems of estimation, testing of hypothesis, etc., in statistical theory. Lehmany (1947) introduced the concept of admissibility in the field of statistical testing of hypothesis. Vald (1947) has also used this concept for defining an admissible decision function in relation to the decision theory. Since then several contributions have been made in this direction in these fields. In the field of sampling theory for finite populations, however, the work in this direction started much latter and at first the steps were taken by several authors more or less the same time to characterise the class of estimators which were inadmissible. Murthy (1957) proved that when the design is one generated by the customary 'probability proportionate to size (pps)' sampling without replacement, estimators that take into account the order in which the units occur in the sample are inadmissible and homee can be uniformly improved upon. He also furnished a method of getting uniformly better estimators in such cases. Another important contribution in this direction was due to Des Raj and Ehanis (1958) and Basu (1956). They proved that in simple random sampling with-replacement the sample mean which takes into account the repetition of units in the sample is inadmissible being inferior to the mean over <u>distinct</u> units direct calculation of the variances of the two estimators. Basu, extended the result to pps sampling with-replacement and proved that the customary estimator of the population total for this design also is inadmissible. He introduced the fruitful notion of 'sufficient statistic' in the field of sampling theory and proved his results by using Ras-Mackwell theorem. A statistic (say function of sample values of the variable under study) is called sufficient statistic if it yields all the information in the sample concerning the parameter. A sufficient statistic for estimating the population total was thus defined to be the unordered set of distinct units in the sample s obtained from a design P, together with corresponding real-valued variable. Excidently it is sufficient because say two 'effectively equivalent' samples, together with the real-valued variable pields the same information about the population parameter. For a given design P, two samples 31 and 32 are said to be 'effectively equivalent', in symbols $$s_1 \sim s_2 + P(s_1) > 0, P(s_2) > 0$$ Iff every unit belonging to s_1 belongs to s_2 and conversely. Thus given any one of such samples one can always construct the class of effectively equivalent samples by repetition or arrangement of the units in it. Thus the value of the sufficient statistic is some for any sample belonging to the class of effectively equivalent semples and the conditional distribution of any other statistic given the sufficient statistic, will tell us nothing further about the parameter to be estimated. Pathak (1962) 1964) has carried out a series of investigations in this connection for different sampling schemes. Roy and Chakraverti (1960) proved that for any design on unbiased estimator of the population mean which is either ordered or depends on the repetition of the units in the sample is inadmissible. In fact, as pointed out by Hanuray (1966, 1968), Basu gave the first clues to the generality of this musely while introducing the notion of sufficiency in this theory and proved the following. Theorem S.l.l (Basu). Given a design P in which T(y) is estimable, if t is an unbiased estimator of T(y) then the estimator to defined by $$t*(B,y) = \frac{\sum t(a_0,y) P(a_0)}{\sum P(a_0)} * if \sum P(a_0) > 0$$ $$= 0 * otherwise (3.1.1)$$ where ϵ ammation (ϵ) is taken over all samples as effectively equivalent to a, is unbiased for $\Gamma(y)$ and for any convex less function a $$\partial(t^*) \leq \partial(t)$$, for all $y \in R_{N}$, (3.1.2) with strict inequality holding for at least one y iff $$P(s_1 \sim s_2, t(s_1) \neq t(s_2)) > 0.$$ Thus it is necessary for an estimator t of T(y) to be admissible in any class of unbiased estimator, that for all a and so for which $$P(s_1) > 0$$, $P(s_2) > 0$ and $s_1 \sim s_2$. (3.1.3) In fact this is true for any estimable parametric function. We shall consider this aspect further in section 3.6 in connection with hyper-admissibility of an estimator. Bosides wooding out certain inadmissible estimators attempts were also made to provide admissible estimators due to non-existence of the best estimator (Godambe, 1955, Keop 1963). Godambe (1960) and Rey and Chakravarti (1960), independently, applied the admissibility concept to the sampling theory by defining and searching for admissible estimators. Since then contributions in this direction have been made, among others by Godambe and Joshi (1965), Hamuray (1966, 1968) and Joshi (1965a, b, 1966, 1968). It is interesting to note that the definitions of best and admissible estimators used in the papers relating to sampling from finite populations are not always exactly the same and that there appears to be some possibility of inexactitude about their formulation and application. Further, the definitions, that are used, have been sometimes treated as equivalent, and even in cases where the difference in the definitions has been noted, the significance of this difference is not fully comprehended. In the next section we enumerate the definitions of best and admissible estimators and then comtain basic results are obtained in the sections 3.3 and 3.4. Scotions 3.5 to 3.8 are devoted to some aspects of the problem of choice of optimum estimator. ### 3.2 Bestmose and Adminstbility: Using the basic concepts, particularly at least as good as (> 1 and botter than (>), given in the earlier chapter we now give the definitions of best and admissible estimators for a given design 9. <u>Definition 3.2.1:</u> For a given design P, in a class C(P) of estimators of T(y), a member $t_1 \in C(P)$ is said to be the <u>uniformly best</u> estimator if it is uniformly better than any other member $t \notin t_1 \in C(P)$, that is if for every other $t \in C(P)$ H(t,) < H(t), for all y. (3.2.1) Definition 3.2.2: For a given design P, a member t₁ec(P) is termed the best estimator in C(P) if t₁>t for every other tec(P), that is if for every other estimator tec(P) $$M(t_1) \le M(t)$$, for all y. (3.2.2) with inequality holding true for at least one y. <u>Definition 3.2.3:</u> For a given design P_{ϕ} a member $t_i \in C(P)$ is said to be a best estimator in C(P) if for every other estimator t in C(P) $t_i > t_0$ that is if for every other $t \in C(P)$ Remark 3.2.1: The definitions 3.2.1 to 3.2.3 are practically the same, and the distinction made out are mainly of academic interest, especially since there does not exist any estimator, which is best according to any of the above diffinitions, even in restricted class of homogeneous linear unbiased estimators of T(y). Now, as the next stop, it is logical to attempt to reduce the class O(P) of estimators without loss of relevant information and in this context we have the following oritorion. Definition 3.2.4: For a given decign P_0 in a class C(P) of estimators of T(y), an estimator $t_1 \in C(P)$ is said to be admissible if there does not exist any other estimator $t(\not=t_1) \in C(P)$ which $x > t_1$, that is if there is no other t in C(P) for which $H(t) \leq M(t_1), \text{ for all } y,$ (3.2.4) with inequality holding for at least one y. A sub-class $C_{\mathbf{c}}(P)$ $\subset C(P)$ is said to be <u>complete</u> in C(P) iff for every estimator $t\in C(P)-C_{\mathbf{c}}(P)$ there exist an estimator $t\in C_{\mathbf{c}}(P)$ which is better than t, that is iff for every $t\not\in C_{\mathbf{c}}(P)$ there exist a $t'\in C_{\mathbf{c}}(P)$ such that ## H(t) & H(t), for all y, with inequality holding for at least one y. Evidently every unbiased estimator in the complete class satisfies the accessary condition, given in (3.1.3), for being admissible. A complete class is minimal complete if it does not contain a complete sub-class. Thus if a minimal complete class exists, as is usually the case, it exactly concides with the totality of the admissible estimators in the class C(P). Now, we define the following variant of the complete class notion using the concept of at least as good as instead of better than used above. A sub-class $G_0(P) \subset C(P)$ is said to be <u>escentially</u> complete in C(P) iff for any estimator $t \in C(P) - C_0(P)$ there exist an estimator $t' \in C_0(P)$ which is at least as good as t, that is, iff for every $t \notin C_0(P)$ there exist a $t' \in C_0(P)$ such that M(to) & M(t), for all y. Clearly a complete class is necessarily essentially complete, that is $C_o(P) \supseteq C_o(P)$ since 'at least as good as' is less restrictive criterien then 'better than' for choosing an estimator. The minimal essentially complete class is also defined similarly and this class will concide with the class of all estimators what may be termed as essentially admissible estimators, defined as follows: Definition 3.2.5: For a given dealgn P and the class C(P) of cetimators an estimator $t_1 \in C(P)$ is termed as <u>essentially admissible</u> if there does not exist any other estimator $t \neq t_1 \in C(P)$ which is $> t_1$ that is there exist no other estimator $t \in C(P)$ for which $$M(t) \leq M(t_1), \text{ for all y.}$$ (3.2.5) Further, it may be noted that if t_1 and t_2 are two estimators of T(y) both belonging to the minimal complete class then $t_1
\not\succeq t_2$ and $t_2 \not\succeq t_1$, that is either $M(t_1) \not\succeq M(t_2)$, for all $y \in R_N$ with each inequalities (>, <) holding true for at least one $y \in R_N$, or $M(t_1) = M(t_2)$, for all $y \in R_N$. Similarly, if t_1 and t_2 are two estimators both belonging to the minimula essentially complete class then $t_1 \not\succeq t_2$ and $t_2 \not\succeq t_1$, that is $M(t_1) \not\succeq M(t_2)$ holds for all y with each inequalities holding true for at least one $y \in R_N$. Thus it is seen that the difference between the minimal complete and minimal essentially complete classes is due to the estimators having equal mean square errors for all $y \in R_N$. Thus if an estimator t_1 belongs to the minimal complete class then all other estimators having mean square error equal to that of t₁ for all y, must also belong to this class but a minimal essentially complete class admits only one member from among the estimators having equal mean square error. And hence the essentially minimal complete class is further reduction of the minimal complete class in the sense that the former is included in the latter. In order to make these concepts clearer, we shall express the definitions 3.2.4 and 3.2.5 in a positive manner as the definitions 3.2.1 to 3.2.3. Definition 3.2.4: In estimator t₁ec(P) is admissible in C(P) if for every other tec(P) either $M(t_1) = M(t)$, for all y or $M(t_1) < M(t)$, for at least one y. 3.2.6) <u>Definition 3.2.5':</u> An estimator $\mathbf{t_1} \in C(P)$ is essentially admissible in O(P) if for every other $\mathbf{t} \in C(P)$ $M(t_1) < M(t)$, for at least one y. (3.2.7) The point y in the above inequalities may however depend on t_1 and t and possibly on the design P. From the definitions 3.2.4' and 3.2.5' it is clear that the only difference between the definitions 3.2.4 and 3.2.5 is that of the former allows equality of the mean square errors of the estimators where as the latter does not allow this. Remark 3.2.2: If an estimator is essentially admissible, it is necessarily admissible, but the reverse is not always true. This is elear from the following example. Let us consider a class $C_0(P)$ containing four estimators t_1,t_2,t_3 and t_4 , and let $\mathbb{M}(t_1)=\mathbb{M}(t_2)$ for all y and $\mathbb{M}(t_1)\stackrel{>}{\sim} \mathbb{M}(t_4)$, i=3,4 for all y with inequalities holding for at least some y's. In this situation both t_1 and t_2 are admissible according to definition 3.2.4, but none of them is essentially admissible (definition 3.2.5). However, if t_2 is excluded from $0_0(P)$ then t_1 becomes essentially admissible and if t_2 is excluded t_1 becomes essentially admissible. Thus only one of t_1 or t_2 can belong to the minimal essentially complete class whereas both t_1 and t_2 belong to the minimal complete class. Remark 3.2.31 If we are considering only the class of unblased estimators, then we can replace mean square error by variance in the above discussion. On the ether hand the less function need not be restricted to the mean square error only we can replace any less function 8 in its place and any parametric function 8(y) in the above discussions Remark 3.2.4: The definitions given above may be extended directly to other branches of statistical theory. For instance by replacing the estimator by test or by decision function and using the corresponding loss function (or power of test) we get admissibility and becomes of tests and decision functions. Remark 3.2.5: It is of interest to note that the definitions 3.2.4 and 3.2.5 have been arrived at by (i) adopting the definition of an estimator to being better then to namely to t but to to and (ii) taking the first part in (i), namely to to be valide by considering the second part in (i) namely to to be valide by considering the second part in (i) namely to to be valide by considering the second part in (i) namely to to be valide by considering the second part in (i) namely to to be valide by considering the second part in (i) namely to the definitions 3.2.4 and 3.2.5 and in fact reduces to the definition of a best estimator (definition 3.2.3) when expressed in its positive form. ### 5.3 Adminsibility of Entimators In this section we first point out the significance of the difference between the two concepts and then prove that any constant is escentially admissible estimator for estimating the population total. It may be pointed out that Wald (1947) has noted the difference between the definitions 3.2.4 and 3.2.5, that is between admissible and essentially admissible excepts while introducing them in decision theory in connection with choice of a decision function. Lehmann (1947) has also observed this distinction while formulating the sencept of minimal complete and minimal essentially complete classes of tests. To cite more recent reference, Burkholder (1960) and others have also used those concepts recognizing the difference. The term complete class has been used by Wald (1947), Hodges and Lehmann (1951) and some others in the sense of essentially complete. As mentioned carlier the difference between definitions 3.2.4 and 3.2.5 is however not guite apparent in the papers relating to sampling theory applied to finite populations. Godembe (1960) and Hamurev (1966) have used essentially admissible in the sense of admissible estimator while Roy and Chakravardi (1960), Godembe and Joshi (1965), Joshi (1965a, b, 1966, 1966) have used definition 3.2.4. The two definitions have been some times considered to be equivalent (Godembe and Joshi, 1965; Hamurav, 1968) without pointing out the significance of this equivalence. It is, however, clear from (5.2.6) and (3.2.7) that the definitions 3.2.6' and 3.2.5' are equivalent iff $M(t_1) = M(t_2)$, for all y, implies t_1 and t_2 are identical for all $y \in R_N$. In the following we give instances where equality of mean square errors implies identity of estimators for all y. Consider the estimators t_1 and t_2 both belonging to A_{ns} the class of all unbiased estimators, and let $$t_1(s,y) = t_2(s,y) + e(s,y)$$ (3.3.1) where c(s,y) is a function defined on SXR_{y} and depending on $y = (Y_{1}, Y_{2}, \dots, Y_{y})$ only through those Y_{1} 's for which is so then from the condition of unbiasedness of t_{1} and t_{2} $$\Sigma \ o(s,y) \ P(s) = 0$$, for all y. (3.3.2) Now the problem is to exemine whether $$o(s,y) = 0$$, for all ses and yes_{ij} (3.3.3) having given that $$V(t_1) = V(t_2)$$, for all $y \in B_N$. (3.3.4) Since $\mathbb{R}(\mathbf{t}_1) = \mathbb{E}(\mathbf{t}_2) = \mathbb{F}(\mathbf{y})$, (3.3.4) implies $$\sum_{\alpha \in S} \mathbf{t}_{1}^{\Sigma}(\mathbf{s},\mathbf{y}) \ \mathbb{P}(\alpha) = \sum_{\alpha \in S} \mathbf{t}_{2}^{\Sigma}(\mathbf{s},\mathbf{y}) \ \mathbb{P}(\alpha)$$ for all ye that is, $$\Sigma e^{2}(s,y) P(e) = +2 \Sigma t_{2}(s,y) e(s,y)^{p(s)}$$ (3.3.5) for all ye Thus having given (3.3.5) if (3.3.5) holds then the two definitions are equivalent. It seems that in general (3.3.4) and (3.3.2) together may not beault in (3.3.3). However, following the proof of the theorem 4.1 of Godembe and Joshi (1965) it is easily seen that (3.3.4) and (3.3.2) together imply (3.3.3) if $t_1(8.7)$ (or $t_2(8.7)$) in (3.3.1) is an estimator given by $$t_{\rm ht} = \sum_{i \in a} \frac{y_i}{x_i}$$ (3.3.6) where $n_i(>0)$ is the inclusion probability for ith unit of the population and summation is taken over the distinct units in the sample. Hence we have the following Theorem 3.3.1: For a given design P, if the is the estimator given by (3.3.6) and t is any estimator of Y belonging to A, then $$V(t) = V(t_{int})$$, for all yeR_{ii} (3.3.7) implies that t and tht are identical. Was suggested by Hervitz and Thompson (1952), as the unique unbiased estimator in his to class, while formulating three classes of linear estimators mentioned in the previous chapter. This estimator, which we shall call (as is usually called) as the H.T. estimator for brevity, has drawn considerable attention in sampling theory. The sampling variance of the is given by $$V(\hat{\sigma}_{1nb}) = \sum_{k=1}^{N} \left(\frac{1-\pi_{1}}{\pi_{1}} \right) Y_{1}^{2} + \sum_{k=1}^{N} \left(\pi_{1} J^{-\pi_{1}\pi_{1}} \right) \frac{Y_{1}Y_{1}}{\pi_{1}\pi_{1}}$$ As regards admissibility criterion, the H.T. estimator has been shown to be admissible in IQ, the class of homogeneous linear unbiased estimators, by Godambe (1960) and Roy and Chekravarti (1960), and also in the class of all unbiased estimators Au by Godambe and Joshi (1965) for any design, and in the class of all measurable estimators for fixed sample size designs (Joshi, 1965b). Some other results regarding Bayesmose and hyper-admissibility of the FF estimator will be discussed in section 3.5 and 3.6. Another situation where equality of mee's implies identity of estimators, is given by Joshi (1965, b). He has considered an estimator $$t_{\rm b} = \sum_{{\bf i} \in {\bf s}} b_{ij} T_{ij}$$ (3.5.9) where $\sum_{k=0}^{n-1} = n$ and $b_k > 0$, $i = 1, 2, \dots, N$ (3.3.10) and has proved it to be admissible in the class of regular estimators for fixed sample size designs and further it is shown that $M(\mathbf{t_b}) = M(\mathbf{t})$ implies t is identical with $\mathbf{t_b}$ for all y. It may be mentioned that the usual ratio estimator has also been proved to be admissible by Joshi (1966) in the class of all estimators for any design but no such result has been shownthold for this estimator. These examples, however, do not prove that equality of mean square error implies always the identity of estimators. We give below a simple blustration to support this assertion. Let us consider two estimators to and to such that $$t_1(s,y) = t_1(s,y) + a(s)$$ (3.3.11) mid $$t_0(s_2y) = t_1(s_2y) = o(s)$$ (3.3.12) where ti is an unbiased estimator of the population total T(y). The mean square error of to and to are, respectively, $$M(t_1) = V(t_1) + \sum_{n \in S}
e^2(n)P(n) + 2\sum_{n \in S} (t_1(n,y) - T(y))e(n)P(n)$$ and $$M(t_2) = V(t_2) + \sum_{a \in S} e^2(a)P(a) - 2\sum_{a \in S} (t_1(a,y) - T(y))o(a)P(a)$$. Now it is observed that $$H(t_1) = H(t_2), \text{ for all } y$$ (3.3.13) If $$\Sigma (a,y) + \Gamma(y)e(a)P(a) = 0$$, for all y* (3.3.14) Supposing that (3.3.14) is satisfied even then to and to need not necessarily be identical. Obviously (3.3.14) is satisfied whomever $$e(a) = c$$, a comptent. (3.3.15) But even then t₁ and t₂ are not identical. Hence the assersion is true in general. However, it is of interest to find exactly the situations under which the definitions 3.2.4 and 3.3.5 are equivalent. On the basis of above discussion and the theorem 3.3.1 we have the following remarks to make: Ecmark 3.3.11 The result obtained by Godambe (1960) and Roy and Chakravarti (1960) regarding the admissibility of the H.T. ostimator are equivalent. That is the H.T. estimator is essentially admissible. Remark 3.3.2: Hego's (1966) proof regarding admissibility of certain estimators in the class L_u^* infact establishes its essential admissibility. has investigated the admissibility of detinators by removing the criterion of umbiasedness and has proved sample mean and the usual ratio estimator towardmissible for any design. In the following we show that the criterion of samissibility leads toward when the umbiasedness condition is removed by showing any constant to be admissible for the population total. We prove the following Theorem 3.3.2: For any given design P, any constant is essentially admissible in the class L of linear estimators of the population total, except in a trivial case. Proof: Consider a design P and an estimator to the class L. given by \bullet = λ , for all YER, and SES, (3.3.16) where A is a constant not equal to zero. Further, let to be any other estimator belonging to L. then $$t_1 = \alpha(a) + \sum_{i \in a} \beta(a,i)Y_{i*}$$ for all y* (3.3.17) Suppose y(x) is the class of vectors in RN such that $$T(y) = \lambda, \quad \text{for all } y \in F(\lambda). \tag{3.3.18}$$ Then the mean square error of to $$H(t_0) = (\lambda - T(y))^2$$ $$= 0, for all y \in Y(\lambda) (3.5.19)$$ Whoreas $$H(t_1) = \sum_{s \in S} (t_1 - t(y))^2 P(s)$$ ≥ 0 for all $y \in R_N$. (3.3.20) Thus from (3.3.19) and (3.3.20), to is ossentially admissible unless $$\mathbb{N}(t_1) = 0, \quad \text{for all } y \in y_{(\lambda)}. \tag{3.5.21}$$ But it is observed that (3.3.21) is true only when Now the theorem will follow if we can that (3.5.22) is true for all ye Rue that to and to are identical estimators. To show this let $\gamma {1 \choose k}$ denote vectors belonging to $\gamma {1 \choose k}$ given by $$Y_1 = X_0 \quad Y_3 = 0, \quad J(\neq 1) = 1, 2, ..., N. \quad (3.3.23)$$ Them for all ye yet, $$a = \lambda = \alpha(a) + \beta(a,1)\lambda_0$$ for as $a = \alpha(a)$, for as $a = \alpha(a)$, (3.3.24) whore $$S = S_1 U S_2^*$$ and $S_2 = \{s, 10 s\}$. (3.3.25) Since i is arbitrary, (3.3.84) holds for $1 \le 1 \le 1$ and this gives $$\alpha(s) = \lambda = t_0 = t_2$$ for all ses, (3.3.86) except for $s_{\rm H}$, the sample containing all the units of the population and (3.3.86) implies from (3.3.84) that $$\beta(s,1) = 0$$, for all is Hence $\mathbf{t_1}$ is identically equal to $\mathbf{t_0}$ when $\mathbf{s_N}$ is excluded from the effective sample space. Honce the theorem. ## 3.4 Hou-existence of a Boot Satimator We first summerise the work done in this direction and point out the difference in the definitions used by the authors and then give some new results in this section. Godernbe (1985) proved the non-existence of the uniformly best estimator in $L_{u^*}^*$ the class of homogeneous linear unbiased estimators of the population total T(y), by attempting to minimise the variance of an estimator to $L_{u^*}^*$. The linearity restriction has been removed by Godernbe and Joshi (1965), who have proved non-existence of the best estimator in the entire class of unbiased estimators A_{u^*} It is partinent to note here that the non-emistence of the uniformly best estimator in Li has been interpreted as non-emistence of a best estimator (definition 3.23) by Godambe (1955) and as the non-emistence of the best estimator (definition 3.2.2) by Roy and Chakravarti (1960). However, it appears to be reasonable to be satisfied for all practical purposes with a best estimator (if it exist) in a given class provided mean square error is the only criterion for choice of an estimator. In the following theorems, however, we demonstrate its non-emistence for some classes of estimators of the population total. We first prove the following. Theorem 3.4.1: For a given decign P, if an estimator t_2 is admissible in class G(P) and if there exist another estimator t_2 in G(P) such that $t_1 \not \vdash t_{gp}$ then t_1 is not a best estimator in that class and this implies non-existence of a best estimator in the class C(P). Proof: Since t_1 is an admissible estimator, the relation (3.8.6) holds and further as $t_1 \not \perp t_2$, $H(t_1) > H(t_2)$, for at least one y also holds which contradicts the condition (3.2.3) required for t_1 to be a best estimator. This also evidently implies non-existence of a best estimator in the class C(P). Honce the Thoorem. Theorem 3.4.8: If there exist two (or more) admissible estimators in a class C(P), with unequal mean square errors for at least one y, for a given design P, then that class does not contain a bost estimator. <u>Proof</u>: Let t_1 and t_2 be two admissible estimators in O(P) then from definition $t_1 \not\succ t_2$ and $t_2 \not\succ t_1$, that is of ther $$M(t_2) = M(t_2)$$, for all y. (4.3.1) or $M(t_1) \ge M(t_2)$, for all y (4.3.2) with inequalities (>, <) being satisfied for at least one y. but under the assumption the relation (4.3.1) does not hold and whenever (4.3.2) is satisfied, neighbor to nor to is that the limited the object does not contain a best #### estimator. This completes the proof. Remark 4.3.1: If there are at least two essentially admissible estimators in a class then there does not exist a best estimator in that class. Remark 4.3.2: If t_1 is an admissible estimator in a class C(P) and if it is not a best in C(P) or even in a class $C^*(P) \subseteq C(P)$ then there does not exist a best estimator in C(P). Remark 4.3.31 Hon-existence of a best estimator in a class implies non-existence of the best or uniformly best estimator in that class. Theorem 4.5.2: There does not exist a best estimator, and hence the best and the uniformly best estimator in the class of all linear estimators (L) and all estimators (A) of the population total for any design P. Proof: Noting that any constant bolongs to the class L and that it is essentially admissible (Theorem 3.3.2) in L, the non-existence of a best estimator int follows from Remark 4.3.1. As regards the class A, the two admissible estimator with unequal mean square for at least some y for this class are and $$t_3 = \frac{\sum_{i \in S} Y_i}{\sum_{i \in S} X_i}$$ where $X_k > 0$, 1 = 1,8,..., $N_k X_k \neq X_k$ for at least one pair (i,j) and $X = \sum_{i \in U} X_i$, $X_k^{\circ} x$ being constants (Joshi, 1968), and hence the non-existence of a best estimator follows from Theorem 3.4.2: Homen the theorem. The non-existence of best estimator in L_u (Godambe 1965, Keep, 1963) and Ag Godambe and Jeshi (1965) is now well known. Though non-existence of a best estimator and hence that of the best and uniformly best estimators is individual in very wide classes of estimators for any design, there may be some special classes of estimators and/or designs (generally restricted in nature) which give rise to the best estimator. Examples of such classes of estimators and/or designs are those which result in a unique unbiased estimator. For instance, the H.T. estimator is the unique unbiased estimator, whatever may be the design, in Hervitz and Thompson's T₂ class, referred in Chapter II, of linear estimators. The unicluster design considered by Hege (1966) and Hamurav (1966) is an other example where the H.T. estimator turns out to be the unique unbiased estimator in the class of homogeneous linear unbiased estimator: It. It may be mentioned that no best estimator exist even for the unicluster designs when the class of unbiased estimators considered is linear unbiased estimators. It instead of It. This follows easily from Theorem 5.4.2 noting that there are more than one admissible estimators in this wider class (Hamurav, 1966, p. 1963). The example given by dedance and Joshi (1965, p. 1712) or a generalised form of it is emother instance of restricted class having minimum variance estimator. Roy and Chakravarti's (1960) balanced design admitting the best estimator in the restricted class of regular estimators is also an example of very restricted design. ness of the class of admissible estimators, certain criterian for reducing the class of admissible estimators (by use of our apriori knowledge or otherwise) to the point that it gives a unique estimator for a given class have been introduced in the literature. We shall discuss now in the remaining part of this chapter the theoretical significance and practical utility of three such criteria, vis., (i) Bayesness (Godambe 1955) (ii) Hyper-admissibility (Hamurav, 1966,658) and (iii) Necessary bestness (Prabhu Ajgaonkar, 1965), which have gained considerable importance in current researches in the theory of sampling from finite populations. We also give some basic results for each of these criterions ### 3.5 Becomesei Bayes approach to choose an optimum strategy for estimating the population total, is applicable when the same population U presents itself repeatedly and independently with a fixed but unknown apriori distribution of the parameter. Thus a finite population under study is by itself a random sample from this sequence of populations usually torsed as the super-population, the
concept originally introduced by Cochran (1946) and thereafter used by many others. However, not all populations in practice come to us imbedded in a sequence but when they do the Bayes approach offers certain advantages over any approach which ignores the fact that the parameter itself is a random variable, as well as ever any approach which assumes a conventional distribution of the parameter not subjected to change with experience. Thus if $y = (Y_1, Y_2, \dots, Y_N)$ is the random vector corresponding to the variable under study, having fixed but unknown approxi distribution then based on our experience and knowledge about a correlated vector $\mathbf{x} = (X_1, X_2, \dots, X_N)$, which in many cases is the value of y on some previous occasion, it would be possible for us to impose a realistic probability distribution of y given \mathbf{x} and call this distribution as an apriori distribution. This we shall denote by \mathfrak{d} . point on which opinions differ and since any statistical interpretation finds itself in and out of fashion as the doctrine belows, we shall not discuss these differences here, however, it has its own importance when one considers the prior knowledge about the variable under study, at least in the present set-up, to be formulated in some sort of a prior distribution 3, at least partially. It is important to note that the assumption of the existence of a prior distribution 3 is used only for choosing an optimum strategy and the ultimate inference about the parameter would explusively depend upon the observed sample and the variate values Y₄ for iss. Now for the determination of an optimum sampling strategy the criterion of bestness is slightly medified and instead of minimising the actual less function V(H), we minimise the expected less $E_{\bar{0}}V(H)$ over the distribution of for H varying over H_{μ} , the class of all equi-cost strategies. A H_0 which minimises E_0 V(H), uniformly with respect to all the parameters of the distribution θ is called a 'd-optimum strategy' in H_0 . Two important results in this direction with regard to the class of homogeneous linear unbiased estimators of the population total are due to Godambe (1955) and Hajek (1959). Godambe considered the class \triangle_1 of all apriori distributions ∂_1 for which 11) $$V_{0_1}(Y_1|X_1) = e^2 X_1^2$$ end 111) $$C_{\partial_1}(Y_{4} | X_{4}, X_{4}) = 0$$ (3.5.1) where E at Volume and Column respectively denote the expectation, variance and coverience over 81, and proved that any strategy Ho in Hi with i) $$\pi_1 = \mu \times_1 / x$$, $1 = 1, 2, ..., N$, iii) $$t_0 = t_{ht} = \sum_{i \in S} Y_i / k_i$$, (3.5.2) is ∂_1 -optimum for any $\partial_1 \mathcal{E} \triangle_{1\ell}$ where H^*_μ belongs to H_μ and contains estimators belonging to the homogeneous linear class (L^*_u) of unbiased estimators. This result has been extended to the class A_u of entire unbiased estimators by Godambe and Joshi (1965). Hamurav (1962) and Vijsyan (1966) showed that the result is two even for designs with expected effective sample size being obnatant for L^*_u and A_u classes respectively. Hejok (1959) considered the class \triangle_2 of distributions a_2 for which (111) in (3.5.1) is replaced by 111) $$C_{0,0}(X_1, X_1|X_1, X_2) = W(|j-1|)$$ (3.5.3) where w is single-valued convex function, and proved that any strategy H_0 in H_μ given by unequal probability systematic sampling with $\pi_1 \propto X_1$ and HT estimator is θ_2 -optimum for any $\theta_2 \in \triangle_2$. Thus the scheme of selection is also specified in this case, however, the draw back of the scheme is that the variance of the estimator is not estimable. Therefore our choice falls on \triangle_1 but this model is of merely theoretical interest as in most practical situations the model where (ii) of (3.5.1) is replaced by 14) $$V_{\frac{1}{2}}(X_{1}|X_{1}) = e^{2}X_{1}^{2}, \quad g \to 0$$ (3.5.4) PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompresso (11) $$\nabla_{0_g}(Y_1|X_1) = \sigma^2 X_1^g, g > 0$$ (3.5.4) is appropriate, where ε lies between 1 and 2 (Mahalamobis (1944), Joseph (1948)). The class of such apriori distributions δ_g will be denoted by \triangle_g . For this class of distributions we natural the following result which has, however, been mentioned by Hamuray (1966, 68). translation & - optimum sets of true axist if g + 2. And in this Connection it is easily soon from Godambe and Joshi (1965) that for any estimator to A $$E_{\partial_{\mathcal{S}}}V(2) = \delta^2 \sum_{i=1}^{N} x_i^2 (\frac{1-\pi_i}{\pi_i}) + \emptyset$$ (3.5.5) where ϕ is non-negative quantity and becomes zero only if the design is of constant sample size with $\pi_1 \ll X_1$ and the estimator t is the HF estimator. That is $$E_{\partial_{\mathcal{B}}} V(\theta_{ht}) = \mathcal{S} \sum_{k=1}^{N} \chi_{k}^{g} \left(\frac{1-\kappa_{k}}{\kappa_{k}} \right)$$ (3.5.6) for constant sample size designs with $\pi_1 \ll \chi_1$. But minimising the NMS of (3.5.6) under the condition $\Sigma \pi_1 = n$, we find that this term is minimised only if which is contradictory to the condition for \$\empty\$ to be zero unless \$g = 2. 1 1 1 1 1 1 This leads to the choice of the strategies for different values of g. This is imply illustrated by the results of empirical studies given by Rao and Bayless (1969). Comparison of some strategies for two phase scheme under the model \triangle_g is given in the next chapter. Linear invariance: This concept introduced by Roy and Chakraverti (1960) requires an estimator to remain invariant under linear transformations of the vector y. Rogular class: This class is also discussed by Roy and Chakravarti. An estimator was said to belong to this class if its variance is proportional to the variance of the character under study in the population. It is portinent here to note that the linear invariance, though a desirable criterion for an estimator, does not lead, to an optimum estimator and the demand for an estimator to belong to the regular class some to have no justification and no further work is traceable in this regard. ## 3.6 Hyper-adminability: This critorion for the choice of an optimum estimator was recently introduced by Renurav (1966, 68). It is based on the concept of admissibility of an estimator and requires an estimator to be admissible not only in the whole space $R_{\rm H}$ but also in each of its principal hyper-surfaces (phs), which are $(2^{\rm H}-1)$ in number. Let us denote the totality of the $(S^{H}=1)$ phase by \mathbb{R}_{p} and the phase of dimension r by \mathbb{R}_{p} . There are $\binom{\mathbb{N}}{r}$ such phase of dimension r for $1 \le r \le \mathbb{N}_{p}$. The hyper-admissibility is then defined as follows: <u>Definition 3.6.1</u>: In a class O(P) of unbiased estimators of Y, $t_1 \in O(P)$ is said to be hyper-admissible (h-admissible, for brovity) if it is admissible when the vector $y = (Y_1, Y_2, \dots, Y_N)$ is restricted to any phas R_p (not including any point of lower dimension) of R_p . Roplacing the population total Y by any estimable parametric function $\theta(y)$ in the above definition we get the corresponding definition of headmissibility of an estimator for estimating $\theta(y)$. We shall consider the headmissibility of a variance estimator in section 3.6.2. This criterion is evidently stronger than admissibility but is weaker than uniform minimum variance. We define below an estimator belonging to the class of polynomial unbiased estimators of y before giving the result obtained by Hanuray (1968). A polynomial estimator of nth degree is of the form $$t_p^*(ey) = t^{(1)}(e,y) + t^{(2)}(e,y) + \dots + t^{(n)}(e,y)$$ (3.6.1) where $t^{(1)}(s,y)$ is a homogeneous polynomial of dogree 1 (which may vanish identically for some or all s) in its arguments which are the \mathcal{J} -values of only those units that occur in s, and $t^{(n)}(s,y)$ is men-year for at least one sample s with P(s) > 0. Further $t_p^*(s,y)$ will be unbiased for Y if $$E(t^{(1)}(s,y)) = 0, \quad \text{for } 1 \neq 1$$ and $$E(t^{(2)}(s,y)) = Y, \quad \text{for all } y. \quad (3.6.1^{\circ})$$ Further a general polynomial estimator tp(s,y) is defined $$t_p(s_0y) = \alpha(s) + t_p^*(s_0y)$$ (3.6.2) where a(s) are some constants depending only on s and $t_p^*(s,y)$ is defined in (3.6.1). Thus $t_p(s,y)$ will be unbiased if, in addition to the condition (3.6.1'), we have $$\Sigma \alpha(a) P(a) \approx 0$$, (3.6.2') The class of unbiased estimators defined as $t_p^*(s,y)$ and $t_p(s,y)$ will-idenoted by P_u^* and P_u^* respectively. Hammer (1968) considered the class $F_{\mathbf{u}}$ and proved the following theorem. Theorem 3.6.1 (Hemurav): For any non-unicluster design P for which Y is estimable, the class Pu contains a unique h-admissible estimator, which is the H.T. estimator given in (3.3.6). The definition of uni-cluster design (which due to Henurav, 1966) is given below for ready reference. Definition 3.6.2: A design P is said to be unicluster design if any two samples with positive probabilities are either disjoint or effectively equivalent, that is $$s_1 \cap s_2 = \emptyset \text{ or } s_1 \sim s_2.$$ (3.6.3) $P(s_1) > 0, P(s_2) > 0.$ Remark 3.6.1: Proof of the Theorem 3.6.1 may be divided into two main parts, namely, - 1) For any non-unicluster design P, the H.T. estimator is the only possible h-admissible estimator of Y in the class P, and - ii) that in fact this estimator is h-admissible in $P_{\mathbf{u}}$. Hemory provided the proof of the first part by showing that for any non-unicluster design the H.P. estimator is the only estimator in the class P, which satisfies the necessary condition, mentioned in (3.1.3), for being admissible in each of the phase of R. And for the proof of the second part it is pointed out that the proof of Godambo and Joshi (1965.
Theorem 4.1) for admissibility of the H.T. estimator in class A. for say given design P, in the whole parameter space Rg, can be trivially modified to show that the H.T. estimator is admissible in each of the phats (not including points of lower dimensions) of R. which implies h-admissibility of the H.T. estimator in the class Au and hence in Pu. This completes his proof. Remark 3.6.2: It is important to note here that the proof of the first part may alternatively be accomplished by showing that for a given design P the H.T. estimator is the best estimator in the class C(P), in any one of the (2"-1) phase, as this will exclude the possibility of any other estimator being admissible in that plus and hence from boing h-admissible in the class C(P). In this connection it may be seen that Godambe (1960), while proving admissibility of the N.T. estimator in L_{ij}^* , the class of linear homogeneous unbiased estimators of Y, considered all vectors $y \in R_1$, the phs of dimension one, and in fact proved that $$V(t_{ht}) < V(t)$$, for all yeR₁, (3.6.4) where t_{int} denote the H.T. estimator given in (3.5.6) and t is any other estimator belonging to the class L_u^* . Thus Godenbe's proof (as such) of admissibility of the H.T. estimator in fact establishes a more general result, that is the H.T. estimator is the best estimator in all the pha's, of dimension one, which are N in number. And hence from Resark 3.6.1 and 3.6.2 the unique h-admissibility of the H.T. estimator in the class has follows for any design P. This result, however, is very much restricted as compared to Hanurav's result in theorem 3.6.1 in the sense that the class P. is much wider then L. In the following section 3.6.1 we shall, however, extend Hemurav's result of theorem 3.6.1 to a wider class of estimators than P_u following the alternative approach for proving the first part of the theorem, as mentioned in Romank 8.6.1. Then in section 3.6.2 we prove a similar result for a variance estimator of the H.T. estimator for a wide class of estimators. # 3.6.1 Hyper-admissibility of the M.T. Estimater: Let $t_h(s,y)$ be an estimator of the population total, continuous in its arguments which are the γ -values of only those units that escary in s, such that $$t_h(s,y) = 0$$, if $Y_1 = 0$ for all is s (3.6.5) and let the class of these unbiased estimators be denoted by $\mathbf{H}_{\mathbf{u}}$. Evidently, this class is wide enough to include the class of homogeneous linear, quadratic, polynomial etc., estimators of Y. That is $H_u \supset P_u^* \supset P_u^*$ where P_u^* is the class of polynomial unbiased estimators given in (3.64). The class H_{u} is however, restricted in the sense that it does not include all estimators of the class P_{u} (or even L_{u}). Therefore, we consider a wider class of estimators than H_{u} and denote it by A_{u}^{*} . An estimator t belonging to A_{u}^{*} may be expressed as $$t(a,y) = a(a) + t_h(a,y)$$ (3.6.6) where a(s) do not depend on y but on s and th(s,y) is an estimator belonging to Ha, given in (3.6.5). The condition for unblacedness of t(say) in (3.6.9 is $$\Sigma \alpha(s) P(s) = 0$$ $\sum_{\mathbf{s} \in S} \mathbf{t}_{\mathbf{h}}(\mathbf{s}, \mathbf{y}) \ \mathbf{P}(\mathbf{s}) = \mathbf{Y} \tag{3.6.7}$ for every ye Ry. and is wider then Put the class of general polynomial unbiased estimators considered by Hamurav while proving theorem 3.6.1, since R I Put Now we prove the following theorem for the class A. Theorem 3.6.2: For any non-unicluster design P_{\perp} which Y is estimable, the H.T. estimator is uniquely h-admissible in $A_{\rm u}^*$, the class of unbiased estimators given by (3.6.6). Proofs Lot us consider vectors yey(1), where $$y^{(1)} = (0,0,..., Y_1, 0 ... 0)$$ (3.6.8) for $1 \le i \le N$, then ovidently every $y \notin y^{(1)}$ is a point in R_1 , the phs of dimension one. Thus the population total and the unbiasedness condition in (3.8.7) for an estimator $t(s,y) \in A_n$ becomes $$\Sigma \quad \alpha(s) \quad \mathbb{P}(s) = 0 \qquad (3.6.9)$$ and $$\Sigma_{a\otimes 3_{\frac{1}{4}}} t_h(s,y) P(s) = Y_{\frac{1}{4}}$$, for all yey (1), (3.6.10) since th(s,y) = 0 for samples scale where $$S = S_4 \cup S_1^* \text{ and } S_4 = \{s, tes\}.$$ (3.6.11) We now first establish Lemma (3.6.1) and (3.6.2) given below. Lemma 3.6.1: For any design P, the H.T. estimator is the best estimator in H,, the class of unbiased estimators given by $(3.6.6)_0$ for estimating the population total, for all yey⁽¹⁾. Proof: We have for all yey⁽¹⁾, $$V(t_{ht}) = \frac{Y_1^2}{Y_1^2} - Y_1^2 \qquad (3.6.12)$$ from (3.3.8) and $$V[t_h(s,y)] = \sum_{s \in S_1} t_h^2(s,y) P(s) - Y_1^2$$ (3.6.13) since from the definition $$t_h(s_t y) = 0$$, for all sesi and yey (1) (3.6.14) Now using the condition of unbiasconess in (3.6.10), we get $$V[t_{h}(s,y)] - V(t_{ht}) = \sum_{s \in S_{\underline{s}}} P(s)[t_{h}(s,y) - \frac{Y_{\underline{s}}}{\pi_{\underline{s}}}]^{2} > 0$$ (3.6.14) since tht # th(s,y), for at least one y. Hence the Loma. Lemma 3.6.2: For any non-unicluster design in which Y is estimable and n_i (le the class n_i is complete in n_i for estimating Y, for all $pey^{(1)}$. Proof: Suppose Hu is not complete in At for yey (1) then ovidently there exist an estimator t(e,y) & (At - Hu) which for yey (1) can be expressed as $$t(s_*y^{(1)}) = \alpha(s) + t_h(s_*y^{(1)}), \quad \text{if } ses_1$$ $$= \alpha(s), \quad \text{if } ses_1^s \quad (3.6.15)$$ and which satisfies the necessary conditions mentioned in 3.1.3 for being admissible. Further, noting that S_1 and S_1 are offectively equivalent samples for all $y \in y^{(1)}$, we get from (3.6.15) and (3.1.5) $$t_{s}(1) = a_{1}(s^{1}) + t_{h}(s^{1},y^{(1)}), \quad \text{if } ses_{1}$$ $$= a_{2}(1), \quad \text{if } ses_{1} \quad (3.6.16)$$ where $a_2(1)$ is independent of s and s^1 stands for samples in s_1 . Since 1 is arbitrary, (3.6.16) is true for $1 \le i \le N$. Now we note that $\alpha_1(s^1) = \alpha_1(i)$, that is $\alpha(s^1)$ is also independent of $s \in S_1$ since every $s \in S$ also belongs to $U = S_1^n$, π_1 being less than one, and that $\alpha(s)$ is independent of $s \in S_1^n$, $1 \le i \le N$ from (3.6.16). Further from the condition of unbiased nose of $t_s(i)$ as well it is easily observed that $\alpha_1(s^1) = \alpha_1(i)$ and that infact $$a_1(1) = a_2(1)(\frac{1-\pi_1}{\pi_4}).$$ (3.6.17) PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompresso Honor, for all samples s with P(s) > 0, we have $$a(0) = a_{2}(1),$$ if $ae_{3}(1)$ = $a_{2}(1),$ if $ae_{3}(1)$ and similarly $$\alpha(s) = \alpha_1(j), \text{ if ses}_j$$ $$\alpha(s) = \alpha_2(j), \text{ if ses}_j. \qquad (3.6.18)$$ How the lorne will follow if $$a_1(i) = a_2(i) = 0, 1 \le 1 \le 1,$$ (3.6.19) To show this we follow the argument given by Hamurav (1968, p. 629), that is, use the property of non-unicluster design in which there exist at least one pair (io.jo) such that $$0 < \pi_{\frac{1}{2}}, 0 < \pi_{\frac{1}{2}}, 0$$ (3.6.20) The right side of (3.6.20) implies that there is one sample 883_183_2 , for which P(8) > 0, and this gives $$\alpha_2(j) = \alpha_1(i),$$ (3.6.21) Minilarly, the left side of (3.6.20) implies that there is a sample 863_18_4 , for which P(s) > 0, and this gives (3.6.22) Hence from (3.6.21) and (3.6.22), we get $$\alpha_1(3) = \alpha_2(3)$$. This implies that $$\alpha(s) = \alpha_s$$ say, for $P(s) > 0$ which from the condition of unbiasconess in (3.6.9) implies that $$\alpha(s) = 0$$, for $P(s) > 0$. Honce the lemma. Now the lease 3.6.1 and 3.6.2 implies that for any non-unicluster design the H.T. estimator is the best estimator of the population total in the class A fer all yey (1). Further from Remark 5.6.2 it follows that the H.T. estimator is the only possible beachissible estimator in A and that in fact it beachissible follows from argument in Remark 3.6.1. This complete the proof of our theorem. # 5.6.2 Hyper-somisaibility of a Variance Estimator: The sampling variance of the estimator that is $$V(t_{ht}) = \sum_{i \in U} \left(\frac{1-\pi_i}{\pi_i} \right) Y_i^2 + \sum_{i \in I} \sum_{j \in I} \frac{Y_i Y_j}{\pi_i \pi_j} (\pi_{ij} - \pi_i \pi_j). \quad (3.6.26)$$ Two unbiased estimators of V(tht) well-known in the literature see due to Hervitz and Thompson (1952) and Yates and Grundy (1953). The estimator due to former authors is given by $$\mathbf{v}_{\text{int}} = \sum_{\mathbf{1} \in \mathbf{n}} (\frac{2 - \pi_{\mathbf{1}}}{\pi_{\mathbf{1}}}) \mathbf{x}_{\mathbf{1}}^{2} + \sum_{\mathbf{1} \in \mathbf{A}} \sum_{\mathbf{1}} (\frac{\pi_{\mathbf{1}} - \pi_{\mathbf{1}} \pi_{\mathbf{1}}}{\pi_{\mathbf{1}}}) \frac{\mathbf{x}_{\mathbf{1}} \mathbf{x}_{\mathbf{1}}}{\pi_{\mathbf{1}} \pi_{\mathbf{1}}}$$ (3.6.27) where n_i and n_{ij} are inclusion probabilities of 1 and (1,j) defined earlier. Later Yatos and Grundy (1953) criticised $v_{\rm ht}$ on three grounds vis., that it is not reducible to a linear function of squares of the difference between the (Y_1/n_1) 's, (ii) it does not venich when all (Y_1/n_1) 's are equal and (iii) it takes negative values rather often. They further noted that for fixed sample size the variance of $t_{\rm ht}$ in (3.6.26) can be expressed as $$V(t_{ht}) = \sum_{i\neq j \in U} (\pi_i \pi_j - \pi_{i,j}) (\frac{Y_i}{\pi_i} - \frac{Y_i}{\pi_j})^2 \qquad (3.6.28)$$ and consequently provided an unbiased cetimator of V in (5.6.28), for fixed sample size designs, which is given by $$v_{y_{\Xi}} = \sum_{i \neq j \in S} \sum_{n=1}^{\infty} \left(\frac{x_{j} x_{j} - x_{j}}{x_{ij}} \right) \left(\frac{x_{j}}{x_{i}} - \frac{x_{j}}{x_{j}} \right)^{2}, \qquad (3.6.29)$$ which assumes negative values less often. As the variance is a non-negative quantity it is very desirable to demand that its estimator should also be non-negative. It is easily seen that no sufficient condition can be given to make vht a non-negative estimator, while
for vyg we have a simple condition under which this estimator is non-negative namely It is partinent to point out that several sampling schemes have also been proposed by different authors (Son, 1953; Des Raj 1956; Rao, 1961; Brower, 1963; Soth, 1966; Hamuray, 1967, and others) for which ψ_{yg} is always positive. Thus v_{yg} has several advantages over v_{ht} as regards its practical utility. The eqtimator v_{ht} is, however, known to be admissible (Sedambo and Joshi, 1965, Theorem 4.3) in the entire class of unblased estimators of $V(t_{ht})$. It is also known from Godenbe and Joshi (1965, corollary 4.2) that there does not exist a best estimator of $V(t_{ht})$ in the class of all unbiased estimators of $V(t_{ht})$, hence in the following we proceed to examine whether there exist a unique h-admissible variance estimator for estimating $V(t_{ht})$, like t_{ht} for Y, in wide classes of unbiased estimators of $V(t_{ht})$. We shall first consider the class of unbiased estimators of $V(t_{ht})$ denoted by H_{uv} (v for variance). An unbiased estimator of $V(t_{ht})$ denoted by $v_h(s,y)$, continuous in its arguments which are the \mathcal{C} values of only those units that occur in s, belonging to the class u_{uv} is such that $$V_h(x,y) = 0$$, if $Y_4 = 0$ for all ics, (3.6.31) and for unbiceedness $$\Sigma V_{\mathbf{h}}(\mathbf{s}_{\mathbf{s}}\mathbf{y}) P(\mathbf{s}) = V(\mathbf{t}_{\mathbf{h}\mathbf{t}}), \text{ for all } \mathbf{y} \in \mathbb{R}_{\mathbf{H}}$$ (3.6.32) Using the definition of h-admissibility of a variance estimator as given in definition 3.6.1 with Y replaced by $V(t_{ht})$, we prove the following theorem for the class $H_{\mu\nu}$. Theorem 3.6.3: For any design P in which $V(t_{ht})$ is estimable, the variance estimator v_{ht} in (3.6.27) is uniquely h-admissible in H_{uv} , the class of unbiased estimator of $V(t_{ht})$ given by (3.6.31). We first establish the following. Lemma 3.6.3: For any decign P, in which $V(t_{ht})$ is estimable, the variance estimator v_{ht} is the best estimator of $V(t_{ht})$ in the class H_{uv} , for all $y \in V^{(1)}$. Proof: We note the following, $$V(t_{100}) = \sum_{i=1}^{N} a_{i} Y_{i}^{2} + \sum_{i \neq j} a_{ij} Y_{i} Y_{j}$$ (3.6.33) where $$a_1 = \frac{1 - n_1}{n_1}$$ and $a_{1,1} = (\frac{n_{1,1} - n_{1,1}}{n_{1,1}})$. from (5.6.26) and $$V(\mathbf{w}_{ht}) = \mathbb{E}(\mathbf{v}_{ht}^{2}) + [V(\mathbf{t}_{ht})]^{2}$$ $$= \sum_{k=1}^{K} \frac{\mathbf{a}_{k}^{2} \mathbf{y}_{k}^{4}}{\mathbf{x}_{k}} + \beta_{43k} (\mathbf{y}) - [V(\mathbf{t}_{ht})]^{2} \qquad (3.6.34)$$ where $f_{ijk}(y)$ is function of $(Y_iY_j), (Y_jY_k)$ etc., such that it is sore for $yey^{(i)}$ and $$V(v_h(s,y)) = \sum_{s \in S} v_h^2(s,y) P(s) - [V(t_{ht})]^2$$ (3.6.35) Hence for the vectors $y_0y_1^{(1)} = (0,0,...,Y_1,...0)$, we get from above: $$V(t_{10t}) = a_1 Y_1^2 (3.6.36)$$ $$V(v_{hb}) = \frac{a_1^2 Y_1^4}{\pi_1} - a_1^2 Y_1^4$$ (3.6.37) and $$V(v_h(s,y)) = \sum_{s \in S_4} v_h^2(s,y) P(s) - s_1^2 Y_1^6$$; (3.6.38) and from the unbiasedness condition of $v_h(e,y)$ in (3.642) we have $$\sum_{b \in S_1} V_b(a_b y) P(s) = a_1 Y_1^2$$, (3.6.39) since $v_h(s,y) = 0$ for all self from the definition. Thus for all yey⁽¹⁾, we have from (3.6.37) and (3.6.38) $$V[v_h(a,y) = V[v_{ht}] = \sum_{a \in S_1} [v_h^2(a,y) - \frac{a^2 Y_h^2}{2}] P(a)$$ $$= \sum_{a \in S_1} [v_h(a,y) - \frac{a^2 Y_h^2}{2}] P(a)$$ $$\geq 0. \qquad (3.6.40)$$ since vh(s,y) / vht for at least one s. Hence the lemma. <u>Proof of the Theorem</u>: From the result in the above lemma it follows (from Remark 3.6.2) that for any design P, the variance estimator $v_{\rm ht}$ is the only possible h-admissible estimator in the class $H_{\rm acc}$. That in fact v_{ht} is h-admissible in H_{uv} easily follows by trivially modifying the proof of Godambo and Joshi (1965) given for admissibility of v_{ht} in the entire class of unbiased estimators of $V(t_{ht})_*$ Since this is all that is required for the h-admissibility of vat, we conclude that vat is the unique h-admissible estimator in Have This complete the proof of our theorem. Heat, we consider a wider class of estimators than H_{av} , denoted by A_{av}^* (v for variance), which is parallel to A_a^* considered in (3.6.6) for estimating Y. An estimator belonging Λ_{av}^* may be expressed as $$v(s,y) = a(s) + v_h(s,y)$$ (3.6.41) and the unbiasedness condition of V(s,y) is and $$\sum_{\mathbf{s} \in S} \Psi_{\mathbf{h}}(\mathbf{s}, \mathbf{y}) P(\mathbf{s}) = V(\mathbf{t}_{\mathbf{h}\mathbf{t}})$$ (3.8.42) for every $y \in \mathbb{R}_{N}$, where $\alpha(s)$ is independent of \mathcal{T} -values and $v_h(s,y)$ is an estimator of $V(t_{ht})$ belonging to R_{N} . We now prove the following. Theorem 3.6.41 For any design P in which $V(t_{ht})$ is estimable, the variance estimator V_{ht} is uniquely h-admissible in A_{uv}^* the class of unbiased estimators of $V(t_{ht})$ given in (3.6.41). We first establish the following. Lemma 3.6.4: For any design P in which $V(t_{ht})$ is estimable, the class H_{uv} is complete in A_{uv}^* for estimating $V(t_{ht})$, for all $vev^{(1)}$. <u>Proof</u>: Suppose H_{uv} is not complete in A_{uv}^* for $y \in y^{(1)}$ then there exist an estimator v(s,y) in $(A_{uv}^* - H_{uv})$ which for $y \in y^{(1)}$ can be expressed as $$v(s,y) = \alpha(s) + v_h(s,y),$$ if ses_1^* (3.6.43) for all yey and which satisfies the necessary condition for being admissible. Further, since θ_1 and θ_2^* are effectively equivalent samples for $y(y)^{(1)}$, we get from above (and (3.6.17)) using the condition of unbiasedness $$v_{s}(1) = v_{1}(1) + v_{h}(s^{1}, y^{(1)}), \text{ if } ses_{1}$$ $$= v_{2}(1), \qquad \text{ if } ses_{1}^{2} \qquad (3.6.44)$$ where a (1) and ag(1) are independent of a and y. Now proof of the Lomma will be complete if $$\alpha_2(1) = \alpha_2(1) = 0, \quad 1 \le 1 \le N. \quad (3.6.45)$$ But this condition is same as (3.6.19) and hence remembering that $V(t_{\rm ht})$ is estimable only for non-unicluster designs that is only if which is some as (3.8.20), the proof of this condition (8.8.45) follows from the proof given in Lemma 3.8.2. Hence the Longa- Proof of the theorem: The above Lemma 3.6.4 together with Lemma 3.6.3 establishes that the variance estimator v_{ht} is the best estimator of $V(t_{ht})$, for all $y_{ty}^{(1)}$, in the class A_{ty} for any design in which $V(t_{ht})$ is estimable. Hence these lemmas together with Remark 3.6.2 shows that vht is the only possible h-admissible estimator of V(tht) in Auv. And shafe this estimator is in fact h-admissible follows from the argument given the proof of Theorem 3.6.3. of vht, we conclude that vht is unique h-admissible in Auv. This complete the proof of theorem. Remark 3.6.3. The Theorems 3.6.2 to 3.6.4 may also be proved following the approach, mentioned in Remark 3.6.1, used by Henuray while establishing his result in Theorem 3.6.1. Namer 3.6.4: From the results in this sub-section it follows that if we decide to choose an estimator of $V(t_{ht})$, restricting cursolves to the class A_{uv} , on the criteria of unbiasedness and h-admissibility slone (with respect to variance as a loss function) then we have to discard all other estimators belonging to A_{uv} (including v_{yg}) save the estimator v_{ht} . ## 3.7 Reconsery-Best Battaster: This criterion for choice of an estimator has been introduced by Problem Ajgaonkar (1965). It is defined as follows: Between two unbiased estimators t and t' with variances $$V(t) = \sum_{i=1}^{N} A_{i}Y_{i}^{2} + \sum_{i\neq j} A_{ij}Y_{i}Y_{j}$$ (3.7.1) and $$V(t') = \sum_{i=1}^{N} P_i Y_i^2 + \sum_{i \neq j} P_{i,j} Y_i Y_j$$ (3.6.2) the estimator t is said to be a necessary better estimator then t' if Now if, for a given design P, an unbiased estimator \mathbf{t}_1 , in a class C(P) of unbiased estimators, is a necessary better estimator than every other estimator in C(P), then \mathbf{t}_1 is termed as the necessary best estimator for the class C(P). Problem Ajgaonker (1965) considered a sub-class of linear ostimators termed T_5 -class based on the features inherent in the T_2 and T_5 classes (given in Chapter II): $$\nabla_5 = \varphi_{1j} = (\chi_j + \chi_j + \dots + \chi_m)$$ Recently, Hoge (1967) extended this result by showing that the H.T. estimator is the necessary best estimator in L_u^* , the class of all homogeneous linear unbiased estimators of the population total. Sary bestness of an estimator t in a given class of unbiased estimators it is enough to show that the estimator t is the best estimator for that class for all vectors $yey^{(1)} = (0,0,\dots,Y_{1},0,\dots,0), 1 \le i \le H_{2}$ since for such vectors the second term in this of V(t) in (3.7.1) becomes zero giving that the requirement given in (3.7.3) for its necessary bestness. That is the criterion of necessary bestness is equivalent to the criterion of the best estimator when the parameter is restricted to the phase of one dimension, the phase which played the vital role in the proof of unique h-admissibility of the H.T.ostimator and the variance estimator v_{ht} . Romank 3.7.2: In view of the above remark, it is pertinent to point out that the result established by Hege (and heace by Prebhu Ajagacakar) follows from the proof given by Godenbe (1960) itself. In view of the above remarks and on the basis of the results obtained for the vector yey (1) in the earlier section we have the following. Theorem 3.7.1: For any design P in which Y is estimable the H.T. estimator is the necessary best estimator in Hu, the class of unbiased estimators of Y given by (3.6.5). Proof of the Theorem follows from Lemma 3.6.1 and the above Remark 3.7.1. In fact, from Lemma 3.6.1, 3.6.2 and the Remark 3.7.1 it follows that for any non-winicluster design the H.T. estimator is the necessary best estimator in the wider class A... How if the criterion of necessary
bestness is extended to the estimation of $V(t_{ht})$, rotaining the essential feature of the criterion, namely, the coefficient of $f(Y_1) = Y_1^4$ being least for the necessary best estimator from among the estimators in a given class of unbiased estimator of $V(t_{ht})$, then the Bemark 3.7.1 remains valid even for estimating $V(t_{ht})$. And from the Lemma 3.6.3 we get the following. Theorem 3.7.2: For any design P, in which $V(\mathbf{t_{ht}})$ is estimable the variance estimator v_{ht} is the necessary best estimator in v_{hv} , the class of unbiased estimators of $V(\mathbf{t_{ht}})$ given by (3.6.34). The extension of this regult for the class Auv follows is mediately from Lemma 3.6.4. Having recognised the importance of the part played by the vectors belonging to the phe of dimension one, that is yen (ye y⁽¹⁾) in both the criterion, namely h-admissibility and the necessary bestness, together with unbiasedness we give below the following. Theorem 3.7.3: For any design F in which Y is estimable the necessary bestness of an estimator implies unique h-admissibility of that estimator for the class H, of estimators of Y and that it is the H.D. estimator which uniquely satisfies both the aritarion for the class H, and copy of CVISION PDFCompressor Proof of the theorem follows from Lemma 3.6.1 Theorem 3.7.1 and Remarks 3.6.1.3.6.2 and 3.7.1. In fact the truth of the above theorem follows for a wider class of estimators A_{ij}^* for any non-unicluster design from Lemma 3.6.2 and the above Theorem. And similar result is easily seen to hold for u_{ijt} from among the estimators of the variance of the H.T. estimator belonging to A_{ijj}^* . ### 3.8 Concluding Remarke: Since a best ostimator does not generally exist for wide classes of cetimators it is logical, as the first step, to reduce the class of estimators without loss of information. That is, the class can be reduced to the extent that for each estimator outside the reduced class there in one inside it which is at least as good as (or better than) that estimator end further in the reduced class no estimator is not at least as good as the other. In this sense, the minimal essentially complete class which coincides with the class of essentially admissible estimators, provides the maximum possible reduction of the class of estimators, without loss of information, with the mean square error as the loss function. However, as the oriterion of unbiasedness is generally taken for granted in the field of sample surveys and is very appoaling in the sense that without this oven a comstant' (Theorem 5.5.2) is also included in the minimal encontially complete class, we may further reduce whis class by confining ourselves to the unbiased estimators only. Introduction of any oritorion to shrink this class further, without using any apriori information about the parameter, with the aim to pin point a unique unbiased estimator of the parameter can not lead us for in estimating Y since such unique estimators will be preferred over all other estimators only for the purpose for which the criterion has been introduced provided, however, it has a practically justifiable purpose. terion of h-admissibility, which gives rise to the unique estimator (Theorem 3.6.1 and 3.6.2) for estimating the population total, has clearly provided the justification for the introduction of this criterion whereas no such justification is available in the literature for the introduction of necessary bestness except that of getting a unique estimator. Hence if the purpose is two-fold namely estimation of the population total as well as estimation of all linear parametric functions (such as totals for each of the sub-populations) the H.T. estimator, is naturally the best (unique) choice, when we decide to use an estimator which is unbiased and admissible for each of the linear parametric functions (sub-population totals) with respect to variance as the loss functions However, limitations of our choice of an estimator based on unbiasedness and h-admissibility, with respect to variance as the less function, becomes apparent from the fact that the estimator \mathbf{v}_{ht} (which is known to be a bad estimator for reasons mentioned in section 5.6) is uniquely h-admissible in a wide class of umbiased estimators of V(t_{ht}); and also from the vital role played by vectors y belonging to the phs's of dimension one. Further, it is felt that in actual practice we rarely need estimation of sub-population totals for each of the sub-populations (2^N-1 in number) and particularly the sub-populations consisting of single units. Hence in this connection it is of considerable interest to modify the h-admissibility criterion so as to exclude the vectors y belonging to the phs's of dimension one; the phs's which played vital role in proving unique h-admissibility; (or more) and to examine whether H.T. estimator remains uniquely h-admissible (as her modified definition) for estimating Y and to see what happens to v_{ht} in that case. As regards Bayes solution, where we use apriori information about the parameter, it is pertinent to note that the solution heavily depends on the apriori distribution, based on prior information which however may not be usually reliable, if available at all. And the estimator may not remain optimum if the guessed apriori distribution, departs even slightly from the setual (that is if $\sigma_{1}^{2} \neq \sigma^{2} X_{1}^{2}$ then even if $\sigma_{1}^{2} = \sigma^{2} X_{1}^{2}$, $g \geq 0$ (that is (3.5.4) is valid), the H.T.estimater ceases to be the optimum and in fact no optimum exist unless g is exactly equal to 2. This is amply illustrated by the results of empirical studies given by Rao and Bayless (1968a). From what has been said above, it appears that restriction of the class of estimators in a meaningful way is possible only if other considerations in addition to the concept of variance are taken into account. For instance the cost aspect is a very important consideration in practical situations and honce the choice of an estimator may be made to depend more on efficiency per unit cost than just on the sampling efficiency (Mahalenobia: 1944, United Nations, 1948). Further, since in practice the interest lies not only in setting stable estimator but else in having stable variance estimator, another consideration for the choice of estimators may be officiency of the verience estimator (Rao and Bayless, 1969a, b). Further, whatever be the eriterion adopted for the choice of estimators it would be necessary to carry out extensive empirical studies on natural populations and types of distributions which they conform to with a view to spotting out reasonably good estimator(s) for different situations commonly not with in practice. #### CHAPTER IV #### SOME TWO-PHASE VARYING PROBABILITY SCHEMES - 4.0 Summary. In this chapter some well-known pps without replacement schemes, originally given for uni-phase sampling, have been considered for selection of a second-phase sample in two-phase sampling. Estimators and the corresponding variances are obtained in Section 4.2 and in Section 4.5 these schemes are compared under an appropriate super-population model. - A.1 Three Mo-phase Schemes. In the method of two-phase sampling, two samples are selected one of which is a sub-sample of the other. The larger sample is called the first-phase sample (fps) and the smaller one the second-phase sample (sps). In some cases, however, the sps is not a sub-sample of the fps but it is selected independently from the population. Information on certain supplementary character x which can be observed at lower cost per unit than the main character y under study is collected from all the units in the fps and utilised either in the selection of sps or in building up estimators which improve upon the usual unbiased estimator of the study character, based on sps. This method, therefore, is suited to the situations where collection of information on y is costly and the population values for highly correlated character x are not known beforehand. Reyman (1938) has considered the use of such information x collected for the fps in stratification where as Gochran (1942) considered its use in ratio and regression methods of estimation. These methods are now well-known and the theoretical developments can be found in the standard text-books (Cochran (1963), Murthy (1967) etc.). Use of fps information in selection of the sps has been considered by Saite (1958), Des Raj (1964) and D. Singh and B. D. Singh (1965), using probability propertionate to size (pps) with-replacement scheme, the size being information on x collected from fps. In this shapter we consider the three pps withoutreplacement schemes, (with associated estimators) for the selection of sps, due to (i) Des Raj (1956), (ii) Hartley and Rao (1962), (iii) Rao, Hartley and Cochran (1962). These schemes, as is well-known, have been considered by the respective authors for uni-phase sampling only. In the present case we consider selection of fps by simple random sampling without-replacement, for collecting data on x and sampling of n of those N' units in the second-phase following any of the three schemes mentioned above. An unbiased estimator T of the population total $Y = E Y_j$ in two-phase sampling will be of the form where t is an unbiased estimator of the fps total $Y^* = \Sigma_1 Y_j$, where Σ and Σ_1 denote the summations over all the units in the population and the fps respectively. It is easy to verify that if t is unbiased for Y^* then T is so for Y_* . The sampling variance for I can be written as $$V(T) = V_1 R_2(T) + E_1 V_2(T)$$ (4.1.2) where E_1 and V_1 are unconditional and E_2 and V_2 are the conditional (given the fps) expectation and variance respectively (Des Raj, 1986). It may be montioned that for the schemes considered here, the first term in (4.1.2) is the same and is given by
$$Y_{\lambda}^{E}_{g}(T) = H(N-N^{*})S_{y}^{2}/N^{*}$$ (4.1.3) whore $$S_y^2 = (N-1)^{-2} \Sigma (Y_1 - \frac{Y}{N})^2.$$ (4.1.4) Again for those schemes, V(T) in (4.1.2) can be expressed as $$V(T) = V(T_{a*}) - V'$$ (4.1.5) MINITO $$V(T_{41}) = (\frac{y_1}{y_1})S_y^2 + \frac{y_1}{y_2} \frac{y_2}{y_1} + \frac{y_2}{y_2} \frac{y_1}{y_2} + \frac{y_2}{y_2} \frac{y_2}{y_2} + \frac{y_2}{y_2}$$ (4.1.6) is the sampling variance of an unbiased estimator $$\Sigma_{d1} = (\frac{\pi}{\pi r}) \frac{1}{\pi} \Sigma_{2} \frac{Y}{Y}$$ (4.1.7) given by Dos Raj (1964), when the second-phase sample is selected as a sub-sample of the first-phase sample following pps with-replacement procedure of selection. $\Sigma_{\rm R}$ denotes the summation over sps units and ${\rm P}_{\rm I}={\rm X}_{\rm I}/\Sigma_{\rm I}{\rm X}_{\rm I}$ is the probability of selection of the j-th fps unit and ${\rm P}_{\rm I}$ is defined as ${\rm X}_{\rm I}/\Sigma_{\rm I}{\rm X}_{\rm I}$. Thus efficiency of these three schemes depend upon the magnitude of V' in (4.1.5). It may be mentioned that the sampling variance obtained by the respective authors in the case of uniphase sampling represent the conditional variance of t in the present situation and hence we evaluate ${\rm R}_{\rm I}{\rm V}_{\rm E}({\rm T})$ for different schemes in the following section and express the corresponding variance in the form (4.1.5) for easy comparisons. ### 4.2 Estimators and Variances (1) <u>Des Raj strategy</u>. For a pps without replacement sps of size n from fps an unbiased estimator of Y from Des Raj (1956), is $$T_a = (\frac{1}{2}r) \frac{1}{2} T_2 t_3$$ (4.2.1) where $$t_1 = \frac{y_1}{y_1}$$ and From Pathak (1967), an upper bound of the conditional variance of Ta can be expressed as $$V_{2}(\mathbb{F}_{d}) \leq \frac{\mathbb{Z}^{2}}{n\mathbb{N}^{3/2}} \mathbb{E}_{1}(\mathbf{p}_{j}^{2} - \mathbf{Y}^{1})^{2} \mathbb{P}_{j}^{1} - \frac{\mathbb{Z}^{2}}{\mathbb{Z}^{3/2}}) \left[\mathbb{E}_{1}\mathbb{P}_{j}^{1/2} \mathbb{E}_{1}\mathbb{P}_{j}^{1/2} + \mathbf{Y}^{1})^{2} + \mathbb{E}_{1}\mathbb{P}_{j}^{1/2}(-\mathbf{p}_{j}^{2} - \mathbf{Y}^{1})^{2}\right]$$ $$+ \mathbb{E}_{1}\mathbb{P}_{j}^{1/2}(-\mathbf{p}_{j}^{2} - \mathbf{Y}^{1})^{2}$$ $$(4.2.2)$$ to the order of $O(N^{s-1})_0$ assuming that max $P_j = O(N^{s-1})_0$. Evaluating P_1 of $V_2(T_d)$ term by term, we get, $$E_{1}(t_{2}) = (\frac{1}{14})^{2} \frac{1}{14} E_{1}(x^{1} E_{1} - \frac{y^{2}}{14} - y^{12})$$ $$= \frac{1}{14} \frac{y^{2}}{14} V_{pps} \qquad (4.2.3)$$ whore $$V_{\text{pps}} = \frac{1}{N} \Sigma P_{\delta}^{\dagger} \left(\frac{Y}{Y_{\delta}^{\dagger}} - Y \right)^{2}$$ is the variance based on a pps sample of size n selected directly from the population. $$E_{1}(t_{2}) = \frac{\Gamma^{2}(2n^{2})}{2\pi^{2}} E_{1} \left[E_{1}Y_{2}^{2}P_{1}^{2} - Y_{1}E_{1}P_{1}^{2}^{2} + \sum_{j \neq j} \frac{Y_{2}^{2}}{2} P_{1}^{2} \right]$$ $$= \frac{\Gamma(1)^{2}-1}{2\pi^{2}} (2n^{2}) \left(\frac{1}{2\pi^{2}} \right) \left(\frac{1}{2\pi^{2}} + E_{1}P_{2}^{2}E_{1}P_{1}^{2} \right) + \left(\frac{1}{2\pi^{2}} + 2 \right) E_{1}Y_{2}^{2} - Y_{2}^{2}E_{1}P_{2}^{2} \right]$$ $$= \frac{\Gamma(1)^{2}-1}{2\pi^{2}} (2n^{2}) \left(\frac{1}{2\pi^{2}} \right) \left(\frac{1}{2\pi^{2}} + E_{1}P_{2}^{2}E_{1}P_{1}^{2} \right) + \left(\frac{1}{2\pi^{2}} + 2 \right) E_{1}Y_{2}^{2} - Y_{2}^{2}E_{1}P_{2}^{2} \right]$$ $$= \frac{\Gamma(1)^{2}-1}{2\pi^{2}} (2n^{2}) \left(\frac{1}{2\pi^{2}} + E_{1}P_{2}^{2}E_{1}P_{2}^{2} \right) \left(\frac{1}{2\pi^{2}} + 2 \right) E_{1}Y_{2}^{2} - Y_{2}^{2}E_{1}P_{2}^{2} \right)$$ $$= \frac{\Gamma(1)^{2}-1}{2\pi^{2}} \left(\frac{1}{2\pi^{2}} + \frac{1}{2\pi^{2}}$$ to the order of O(N-1) $$E_1(t_3) = \prod_{j=1}^{N} E P_j^2 (\frac{Y_1}{P_j} - Y)^2$$ (4.2.5) to the order of $O(N^{-2})_0$ where t_1, t_2 and t_3 are the first, second and third terms in $(4.2.2)_+$ Hence from (4.2.3) to 4.2.5) and (4.1.2), we got $$V(T_{d}) \leq V(T_{d},) - \frac{1}{2m} \frac{1}{2} (\Sigma P_{j}^{2} \Sigma P_{j} (\frac{1}{2} + Y)^{2} + \frac{NH^{2}}{2} \Sigma Y_{j}^{2} P_{j} + Y_{j}^{2$$ to the order of O(N'-1). (ii) Hartley and Rao Strategy. In this scheme for selecting a pps sample, the population units are listed in random order, their sizes are cumulated and a systematic selection of units from a random start is made on cumulation. However, for the present situation this method will consist in just cumulating the sizes of the fps units and selecting a pps sample systematically with a random start. It is assumed that nPj \(\) I to avoid any repetition of units. An unbiased estimator of the population total Y is $$\mathbb{T}_{loc} = \frac{1}{11}, \quad \frac{2}{5} - \frac{1}{11}$$ (4.2.7) where π_j is the inclusion probability of the j-th fps unit. The estimator T_{hr} is essentially the NT estimator considered earliers From Hartley and Rao the conditional variance of Thr is given by $$V_{2}(T_{hr}) = (\frac{1}{H^{2}})^{2} \frac{1}{H} (\Sigma_{1}^{p_{j}^{*}} (\frac{Y}{p_{j}^{*}} - Y^{*})^{2} + (ne.) \Sigma_{1}^{p_{j}^{*}} (\frac{Y}{p_{j}^{*}} - Y^{*})^{2}$$ (4.2.8) assuming max $P_j^* = O(N^{-d})$. This formula is valid for large values of N^* and values of n relatively smaller. We get from (4.1.2), (4.1.3) and (4.2.8) $$V(T_{hx}) = V(T_{d*}) - \frac{R-1}{h} \frac{\pi}{h} \times P_J^2 (\frac{Y_J}{P_J} - Y)^2$$ (4.2.9) where V(24.) is defined in (4.1.6). - (iii) Rao, Harthey and Cochran strategy. This scheme, for selecting a sps of units, in the present situation, will consist of - 1) forming n groups of the fps units (as they occur) having sizes N_1^* , N_2^* on N_{10}^* , such that $\sum_{i=1}^{N} N_i^* = N^*$ and - ii) drawing one unit from each group with the probability proportionate to the X-values of units collected in fps. An unbiased estimator of the population total Y is then given by $$T_{\text{rhc}} = \frac{1}{11} \epsilon_2 \frac{X_1}{X_2} \frac{Y_1}{\sqrt{q_2}}$$ (4.2.10) where ϕ_j is defined as the sum of all X_j for which U_1 (1 = 1,2,*** H*) belongs to the j-th group. The conditional variance of the estimator is $$V_{E}(x_{\text{pho}}) = (x - \frac{11}{11-x}) \frac{x^{2}}{x^{2}} E_{1}^{p} (\frac{x}{p} - x^{2})^{2}$$ (4.8.11) if No is a multiple of n and 1f N' = Qn+q and M = ... = N = Q+2, N_{k+1} = ... N_n = Q The unconditional expectation for $V_2(T_{\text{rho}})$, in (4.2.11) $$E_1V_2(x_{pho}) \neq (1-\frac{1}{12}) \stackrel{1}{h_2} \stackrel{1}{h_3} \stackrel{2}{h_4} E_2(\frac{1}{2}-Y)^2$$ (4.2.13) and for $V_{\mathbb{R}}(\mathbb{T}_{\text{rhs}})$ in (4.2.12), the unconditional expectation will be given by replacing the factor $(1 - \frac{n-1}{n-1})$ by $(1 - \frac{n}{n-1}) + \frac{k(n+k)}{n-1}$]. However, we shall consider the case when N' is multiple of a as it gives optimus solution and we get, $$V(T_{\text{the}}) = V(T_{\text{do}}) + \frac{N}{N-1} + \sum P_{j} (\frac{Y_{j}}{P_{j}} - Y)^{2},$$ (4.2.14) It may be noted that $V(T_{d^*})$ and $V(T_{ho})$ are exact where $V(T_{d})$ and $V(T_{ho})$ are approximate expressions. that the information on x collected from fps can also be used in ratio method of estimation instead of using for the selection of the sps. Usually in such cases the sps is also selected as a sps size to be a simple random sample from the fps. The fps s ample in such cases are meant for estimating X on a large sample and to use it is building up the ratio estimation given by $$T_{\mu} = -\frac{\tilde{\lambda}_{\mu}}{\tilde{\lambda}_{\mu}} \tilde{\lambda}_{\mu} \tilde{\lambda}_{\mu} \tilde{\lambda}_{\mu}.$$ The bias and sampling variance of T, are given in Cochran (1963) and other books hence we shall not consider it here. ### 4.3 Efficiency Comparison of the Estimators: For making efficiency comparison of the above estimators, we regard the finite population as being drawn from an infinite super-population in which y is correlated with x. Let \triangle g be the class of apriori distributions θ_g satisfying $$X_{\partial_{\mathcal{E}}}(Y_{j} \mid X_{j}) = aX_{j}, \quad a > 0$$ $$Y_{\partial_{\mathcal{E}}}(Y_{j} \mid X_{j}) = a^{2} X_{j}^{2}, \quad g \ge 0 \qquad (4.3.1)$$ $$Cov_{\partial_{\mathcal{E}}}(Y_{j}, Y_{j}, \mid X_{j}, X_{j}) = 0.$$ It may be mentioned however that in most situations met with in practice, the parameter 'g' is found to lie between 1 and 2. Under the above model we have the expected variances of the estimators as $$\frac{1}{16} \int_{\mathbb{R}^{3}} \int_{\mathbb{R}$$ (4.3.3) $$E_{\partial_{\mathbf{g}}}(V(T_{\mathbf{k}\mathbf{g}})) = E_{\partial_{\mathbf{g}}}(V(T_{\mathbf{g}})) - \frac{1}{2} \frac{1}{2} P^{2} \left[\sum X_{\mathbf{g}}^{2} + O(X^{-2}) \right] \quad (4.3.4)$$ $$E_{\partial_{\mathcal{B}}}(Y(T_{\text{phe}})) = E_{\partial_{\mathcal{B}}}(Y(T_{\mathbf{6}})) - \frac{1}{N} \int_{\mathbb{R}^{N}} \sum_{i=1}^{N} (X - X_{i}) + O(N^{-2}).$$ (4.3.5) It may be mentioned that pps with replacement estimator, which obviously is less efficient than pps without replacement estimators considered here, has been shown to be more efficient than ratio estimator I, whenever g > 1, by Dos Raj (1964). Hence in the following theorems we compare the three schemes smong thems elves. Theorem 4.3.1 Dos Raj strategy is superior to the Hartley and Rao strategy under the above model Δ_g in (4.3.1). Proof: $$E_{\theta_{\theta}}^{-1}(X_{\theta}) = E_{\theta_{\theta}}^{-1}(X_{\theta}) = \frac{1}{2\pi^2} \int_{\mathbb{R}^2} \left[\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} X_{i} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} X_{i} \cdot (X_{i} - X_{i}) \right) \right]$$ $$= \frac{1}{2\pi^2} \int_{\mathbb{R}^2} \left[\sum_{i=1}^{n} X_{i} \cdot (X_{i} - X_{i}) \right]$$ $$> 0 \quad \text{if all } X_{i} \text{ are not same}$$ 1.e. if X_j , X_j for at least one j' and g > 1. Hence the theorem. Theorem 4.3.2 Des Raj strategy is superior to the Rao, Hartley and Cochran strategy under the above model \triangle_{E^*} Proof: $$B_{ij}(v(x_{200})) - B_{ij}(v(x_{4})) = \frac{1}{2} \frac{1}{4}$$ $$[(\frac{1}{2}
\sum P_{ij}^{2} - 1) \times \sum x_{ij}^{2-1} + (\frac{1}{2} - 1) \times x_{ij}^{2}]$$ $$= \frac{1}{2} \frac{1}{4} \cdot [(3 + 2) \sum x_{ij}^{2} - X \sum x_{ij}^{2-1}] \qquad (4.3.6)$$ since max. $P_{ij} = O(\pi^{-1})$ $$\Sigma P_1^2 > N^{-1}$$ 1f come $P_1 \neq N^{-1}$. (4.3.7) Also that all X; are positive, we have from an elementary inequality according as g 2 1. From (4.3.6) and (4.3.8) we get $$\mathbb{F}_{\partial_{\mathcal{E}}} V(\mathbb{T}_{\mathbf{d}}) \leftarrow \mathbb{F}_{\partial_{\mathcal{E}}} V(\mathbb{T}_{\mathbf{rhe}})$$ whenever $g > 1$. Hence the theorem. Theorem 4.3.3. Hartley and Rac strategy is superior to the Rac, Hartley and Cochran strategy under the model \triangle g in (4.3.1). Proof: $$E_{\partial_{\mathcal{G}}}(V(T_{\mathbf{xho}})) - E_{\partial_{\mathcal{G}}}(V(T_{\mathbf{hx}})) = \frac{1}{2} \oint_{\mathbb{R}} [N \Sigma X_{\mathbf{y}}^{\mathbf{g}} - X \Sigma X_{\mathbf{y}}^{\mathbf{g}-1} + \Sigma X_{\mathbf{y}}^{\mathbf{g}}]$$ with the help of inequality (4.3.8), it is easily seen that according as g > 1 or < 1 and hence the theorem. We can now summarise our result as follows: - If (i) N and N' are sufficiently large. - (11) max. $P_j = O(N^{s-1})$ and max. $P_j = O(N^{-1})$ with at least one $P_j \neq N^{-1}$ and (iii) the parameter 'g' lies between 1 and 2, then $$\mathbb{E}_{\partial_{\mathcal{S}}} V(\mathbb{T}_{\mathbf{d}}) < \mathbb{E}_{\partial_{\mathcal{S}}} V(\mathbb{T}_{hx}) < \mathbb{E}_{\partial_{\mathcal{S}}} V(\mathbb{T}_{hx}) < \mathbb{E}_{\partial_{\mathcal{S}}} V(\mathbb{T}_{\mathbf{d}}). \tag{4.3.9}$$ However for g=2, the optimality of the HT estimator is easily seen to hold. Remark 4.3.1. It may be mentioned that in Hartley and Rac scheme when used in uniphase sampling, it is necessary to arrange the units in random order before selection of sample and in Rac, Hartley and Cochran scheme the units are required to be grouped into a random groups before selection of the sample. This randomization in both the cases is a difficult task, especially when number of units in the population is quite large. However, the application of these schemes at the second phase in two-phase sampling becomes quite simple, for the first-phase sample is a random sample and the units within it are automatically arranged in random order. Thus application of these schemes for selection of sps. in many cases, may be even simpler than pps with-replacement scheme. Remark 4.3.2 By considering Murthy's strategy (pps mon-sampling using unordered Dos Raj estimator) to two-phase sampling it will be observed that this strategy fares better than Dos Raj strategy, however, the gain in efficiency schieved by using Murthy's strategy ever Des Raj's strategy is expected to be very small for large N'. #### CHAPTER V ### RATIO AND PRODUCT METHODS OF RETINATION supplementary character may be used have been classified in section 5.1. In section 5.2 the situations in which the ratio and product estimators of the parameter fare better then the usual unbiased estimator is given on the basis of approximate expressions for their mac's for a class of designs. The exact use have been considered in section 5.3 and preference regions are obtained for any design. And in section 5.4 product estimator has been made unbiased for the case of simple random sampling. # 5.1 Use of Summlementary Information: this would hardly be the case in practice, the only possible method for getting valid estimates of the population parameters (totals means etc.) is to use a sampling scheme which assigns equal probabilities to all possible samples along with the usual unbiased estimator involving the character under study alone. There are, however, a number of methods proposed in sampling theory to improve upon this unbiased estimator, which utilise information on one or more supplementary characters. The major uses of such information may be classified under the following heads: - (a) designing estimation formulae, - (b) determining the probabilities of selection of the sampling units. - (c) suitable arrangement of the units in combination with systematic or cluster sampling, - (d) stratification of the population and - (e) allocation problems. Another instance of the methods is two-phase sampling, considered in the previous chapter. In this and the subsequent chapters we shall Confine curselves to discussion of use of supplementary information in the method (a). ### 5-2 Ratio and Product Methods of Estimations In practice we come across several situations in which the ratio of the character under study (y) to the supplementary character (x) is less variable than y's themselves. It is better in such situations to estimate the ratio of y to x in the population, based the values of y's and x's for the units selected in the sample, and then multiply it by the known parameter of to estimate the parameter of which of and of are the functions of y and x respectively. This procedure is called ratio method of estimation. In some other situations, however, the product of y and x may be believed to be less variable than y's, in which case it is better to estimate the product of y and x in the population, from the sample and then divide it by the known parameter of the estimators of the paramotors of and of respectively, then the ratio and product estimators of the parameter of are given by $$T_{x} = x \cdot \theta_{1}$$ and $T_{p} = p/\theta_{1}$ (5.2.1) where e, is assumed to be known and r and p are given by $$r = T_0 / T_1$$ and $p = T_0 T_1$ (5.2.2) respectively. Both the estimators T_p and T_p are blased but consistent. Their bias and mean square error (mso) to the order n^{-1} , where n is the sample size, may be obtained as follows: Writing $$\mathcal{L}_{\underline{1}} = \Theta_{\underline{1}} (\underline{1} + \Theta_{\underline{1}}), \quad \underline{1} = 0, 1 \quad (5.2.3)$$ where $E(e_1)=0$ and assuming that for large n, $|e_1|<1$ (which is necessary for derivation in the case of ratio estimator), we get $$B(2_{p}) = E[x + 2_{1} - 4_{0}]$$ $$= 4_{0} E[(1 + 6_{0})(1 + 6_{1})^{-1} - 1]$$ $$= 4_{0} E[(6_{0} + 6_{1}) + (6_{1}^{2} - 6_{0}6_{1}) \cdots]$$ $$= 4_{0} (7_{1}^{2} - 7_{01}^{11})$$ (5.2.4) and $$B(T_p) = E(p/e_1 - e_0)$$ = $e_0 E((e_0 + e_1) + e_0 e_1)$ = $e_0 V_{01}^{11}$ (5.2.5) Similarly, the mee of T, and T, are $$M(Z_{p}) = B(x + 1 - 4_{0})^{2}$$ $$= \Phi_{0}^{2} E((e_{0}^{2} + 2e_{0}e_{1} + e_{1}^{2}) - (2e_{0}^{2}e_{1} - 2e_{0}e_{1}^{2} + e_{1}^{3}) + ...)$$ $$\frac{1}{4} \Phi_{0}^{2} (V_{0}^{2} + 2V_{01}^{2} + V_{1}^{2}) \qquad (5.2.6)$$ and $$M(T_p) = B(p/e_1 - e_0)^2$$ $$= e_0^2 \ B(e_0 + e_1 + e_0e_1)^2$$ $$= e_0^2 (v_0^2 + v_1^2 + 2v_{01}^{11} + 2v_{01}^{12} + v_{01}^{22} + v_{01}^{22}) \quad (5.2.7)$$ $$= e_0^2 (v_0^2 + v_1^2 + 2v_{01}^{11} + 2v_{01}^{12} + v_{01}^{22}) \quad (5.2.8)$$ Where $$V_{01}^{rs} = E(e_0^r, e_1^s) = \frac{E[(e_0 - e_0)^r(e_1 - e_1)^s]}{e_0^r e_1^s}.$$ (6.2.9) It may be mentioned that the expression in (5.2.7) gives exact value of M(T_p) where (5.2.8) is its approximation. Further Murthy (1964) has compared ratio and product estimators with the of conventional unbiased estimator for estimating the population total Y (that is T_p, T_p and T_c in the present set-up) and obtained the following result. Theorem 5.2.1 (Murthy): For any design obtained by selecting the units with equal probability or verying probability sempling with replacement or any other sampling scheme involving selection of independent sub-samples, the preference regions for either product, unbiased or ratio estimator, considering the use to order n⁻¹, are given by $$= \frac{1}{2} \leq \frac{$$ respectively, where $c_0^2 = v_0^2$, $c_1^2 = v_1^2$, $c_{01} = v_{01}^{21}$ and c_{01}^2 and c_{01}^2 and c_{01}^2 and c_{01}^2 . Remark 5.2.1: It is easily seen that the above preference regions are valid only if both the parameters θ_0 and θ_2 are either positive or negative. Otherwise, the preference regions for T_p and T_r get interchanged. Romark 5.2.2: The Theorem holds only for restricted sampling schemes as indicated. For these sampling schemes $$V_{01}^{rs} = Q(V_{01}^{rs})^{*}$$ (5.2.11) where $(v_{01}^{rg})^*$ stands for v_{01}^{rg} where n=1 and Q is some constant inversely proportional to n_s the sample size or the number of sub-samples as the case may be. It is partinent to note that the preference regions given in Theorem 5.2.1 is based on approximate expression of the mac for ratio and product estimators and hence an alternative criterion to choose any of the three estimators, which is based on the exact use and is valid for any design is presented in the following section. ### 5.3 A General Criterion for Proference: We shall prove the following theorem. Theorem 5.3.1: For a decign P, where the unite at any given step may be selected with or without replacement and with equal and unequal probabilities, the product estimator T_p will be more efficient than the linear unbiased estimator T_o for estimating 3. If $$\alpha + \beta + \gamma \ge 0$$ (5.3.1) $\text{Cov } \{(-T_0 T_1)^2, \frac{1}{2} \}$ whore $$\beta = \frac{1}{2} / \frac{\pi}{2} (1 - a^2)$$ $$y = \frac{2C_1/2}{C_{T_1}T_1} \left[\frac{C_1/2}{2C_{T_1}T_1} - a \right]$$ $$\partial = \frac{\cos \sqrt{(x_0 x_1) \cdot \sqrt{(x_1 x_1)}}}{\sqrt{\sqrt{(x_0 x_1)} \cdot \sqrt{(x_1 x_1)}}}$$ (5.3.2) Proof: Let us consider the identity $$r_0 = \frac{(r_0 r_1)}{r_1}$$ (5.3.3) Then we have $$V(T_0) = V[\frac{(T_0)^2}{2}]$$ $$= E[\frac{(T_0)^2}{2}]^2 (E(\frac{T_0}{2}))^2 \qquad (5.3.4)$$ Noting that for a = 1,2,3 ... and using this relation we get from (5.3.4) $$V(T_0) = Cov[(T_0^2, T_1^2), 1/T_1^2] + E(1/T_1^2) E(T_0^2, T_1^2)$$ $$- \{Cov[(T_0, T_1), 1/T_1] + E(1/T_1) E(T_0, T_1)\}^2$$ (5.3.5) Noxte since and from (5.3.5). We get $$V(T_0) = Cov[(T_0^2, T_1^2), 1/T_1^2] - \{Cov[(T_0, T_1), 1/T_1]\}^2$$ $$- 2Cov[(T_0, T_1), 1/T_1] E(1/T_1)E(T_0, T_1) + V(t/T_1) V(T_0, T_1) + E(T_0^2, T_1^2) V(1/T_1)$$ $$+ E(1/T_1^2) V(T_0, T_1).
\qquad (5.3.6)$$ After some simplification $V(T_0)$ can also be expressed as $$V(z_0) = (1 + \alpha + \beta + \gamma) V(z_0, z_0) E(1/z_0^2)$$ (5.3.7) where as \$5 and Y are defined in (5.3.2). Again noting that $$E(1/T_1^2) = V(1/T_1) + [E(1/T_1)]^2$$ $$= [E(1/T_1)]^2 = \frac{1}{4}$$ $$= \frac{1}{4} (5.3.8)$$ Substituting the value of $\mathbb{E}(1/\mathbb{T}_1^2)$ from (5.3.8) in (5.3.7) we get $$V(x_0) \ge [2 + \alpha + \beta + \gamma] \frac{v(x_0, x_1)}{x_1^2}$$ where $V(T_0, T_1)/e_1^2$ is some so $V(T_p)$. ### Honoe the theorem: Remark 5.3.1: From equation (5.3.6) it is observed that whenever T_0 is inversely proportional to T_1 , the covariance terms, that is the first three terms in $(5.3.6)_0$ vanished automatically and hence in such pasce we get $$V(T_0) = V(1/T_1)V(T_0, T_1) + E(T_0^2, T_1^2)V(1/T_1) + E(1/T_1^2)V(T_0, T_1).$$ (5.3.9) Noting that the first and the second terms in (5.3.9) are always good tive and from (5.3.8), therefore we have Thus if To is inversely proportional to Ti This is also seen from the form (5.3.7) since in this situation α_* a are zero, which implies that β + γ is always greater than sero. Remark 5.3.2: The condition (5.3.1) is satisfied in a variety of other situations as well. For example it is easily seen that a will never attain value ± 1 , and hence $\beta > 0$ always. Thus (5.3.1) is estimated whenever $\alpha + \frac{y}{2}0$. But y > 0 if and only if and this condition is likely to be satisfied for large values of $C_{1/2}$. in which case (5.3.1) may be realised even when $\alpha < 0$. On the other hand if then a + y will be positive if a is much larger. It may be mentioned that keep (1964) has obtained similar conditions for the preference of ratio estimator in comparison to the linear unbiased estimators. These conditions are as follows. Theorem 5.3.2 (Keop): For any sampling design, where the units at any given step may be selected with or without replacement and with equal or unequal probabilities, the ratio estimator . will be more officient than the linear unbiased estimator To for estimating & if $$\alpha^* + \beta^* + \gamma^* > 0$$ (5.3.9) whore $$a^* = \frac{\text{Cov}[x_1^2, (x_1/x_1)^2]}{[B(x_1)]^2 \ V(x_1/x_1)}$$ $$y' = \frac{20_{T_1}}{c_{T_2}} \left[\frac{c_{T_1}}{20_{T_2}/T_1} + 8'' \right]$$ (5.3.10) and $$\Theta_{i} = \frac{(\Lambda(\vec{x}^{i}) \ \Lambda(\vec{x}^{i} \backslash \vec{x}^{i}))_{T \backslash S}}{(\Delta(\vec{x}^{i}) \ \Lambda(\vec{x}^{i} \backslash \vec{x}^{i}))_{T \backslash S}}.$$ Remark 5.3.3: From (5.3.9) and (5.3.10) is is observed that whenever the linear estimators To and To are directly proportional them s', 8', becomes sere leaving the conditions (5.3.9) as which is in this situation always true. However, there exist other situations as has been pointed out by Koop where the condition (5.3.9) is satisfied. Thus on the basis of remarks (5.3.1) and (5.3.3) we get clearly demorated regions of preference for unbiased, ratio or product estimator based on the proportionality of the esti- ## An Banerical Study: For the purpose of the present study reference is made to an investigation undertaken by the Biometry Research Unit of the Indian Statistical Institute in connection with multivariate investigation of blood chemistry. Such investiaution ontailes the collection of multiple measurements on each individual examined, to study the blood chemistry, and it was carried out on three groups of persons namely (1) Urban non-vogotorian meles (Group A), (ii) Urban non-vogeterian fondes (Group B) and (111) Urban vegetarism males (Group C). Data on 32 variables was collected, the details of findings have been given by Das (1966). Considering 'height' as the supplementary variable we give below the relative officioney of the unbiased, product and ratio methods of estimation for estimating the remaining 31 characteristics based on data for Group Be Table 5.3.1: Comparison of the estimators To.Tr and Tp. | sl. | oherecters. | 340 840 | S.D. cooff. with height | | officiency of catimator | | | |-----|----------------------|---------|-------------------------|---------|-------------------------|---------|-------| | | | | | | unbi-
agod | product | ratio | | D | | (3) | | (6) | (8) | (0) | (8) | | 1 | Ago | 34.96 | 11.89 | 0.1932 | 100 | 103.3 | 94.2 | | 2 | Wolght | 47.05 | 10.76 | 0.2270 | 100 | 89.1 | 105.1 | | 3 | Amyleee activity | L04.57 | 33,34 | 0.0219 | 100 | 97.7 | 98.8 | | 4 | Calcium | 8.65 | 1.25 | 0.1518 | 100 | 65,5 | 100.1 | | 5 | Ohlorido | 518.16 | 34.62 | -0.1289 | 100 | 81.49 | 64.2 | | 6 | Cotal Cholostrol | 153.13 | 37.91 | -0.0279 | 100 | 98.2 | 96.3 | | 7 | Free Cholestrol | 60.03 | 14.88 | -0.0334 | 100 | 98.5 | 95.8 | | 8 | Cholostrol deter | 93.09 | 23.37 | -0.0237 | 100 | 97.9 | 96.4 | | 9 | Greatinine | 0.99 | 0.20 | 0.0697 | 100 | 94.3 | 98.7 | | 10 | @ucceca | 67.78 | 37.31 | -0.2029 | 100 | 102.8 | 96.4 | | 11 | Non-protoin Mitrogen | 35.90 | 7.28 | -0.0834 | 100 | 99.2 | 93.2 | | 12 | Acid phosphate | 2.77 | 2.26 | -0.1279 | 100 | 101.2 | 98.4 | | 13 | Alkaline phosphate | 8.77 | 5.19 | -0.1599 | 100 | 101.9 | 97.3 | | 14 | Sotal protoin | 7.29 | 0.79 | 0.0860 | 100 | 83.6 | 90.6 | | 15 | Marus pli | 7.33 | 0.13 | -0.0741 | 100 | 48.2 | 70.2 | | 16 | Wea | 18.21 | 5.37 | -0.2116 | 100 | 104.6 | 89.6 | | 17. | Urio soid | 1.80 | 0,74 | -0.0332 | 100 | 99.5 | 98,3 | | 18 | Brythrocyton | 3.61 | 0.34 | 0.2822 | 100 | 68.9 | 104.5 | | 19 | Loukocytes | 659.57 | 1172.06 | -0.0713 | 100 | 97.8 | 91.7 | | 20 | Noutrophilos | 60.43 | 6,61 | 0.0673 | 100 | 83.8 | 91.5 | continued ... contdas | | | | | | (Ø) (Ø) | | (8) | |----|---------------------------|--------|-------|----------------|---------|-------|-------| | 21 | Lymphocytes | 31.489 | 8-67 | -0.0062 | 100 | 95,2 | 94.5 | | 22 | Bostnophils | 6,22 | 4.47 | -0.1185 | 100 | 101,3 | 98.2 | | 23 | Homoglobin | 11.16 | 1.14 | 0.2804 | 100 | 71.3 | 107.2 | | 24 | Sodimentation Fate | 26.75 | 20.27 | -0.1742 | 100 | 102.0 | 97.6 | | 25 | Pulse (right) | 75.46 | 11.50 | -0.1326 | 100 | 100.2 | 86.0 | | 26 | Pulse (loft) | 74.43 | 9.45 | -0.0929 | 100 | 95.7 | 88.4 | | 27 | Systolic prossure (right) | 117.59 | 21.69 | 0.0614 | 100 | 9246 | 98.2 | | 28 | Systolic pressure(left) | 116.41 | 22.72 | -0.0591 | 100 | 96.1 | 93.3 | | 29 | Dystolic pressure (right) | 71.68 | 12.03 | 0.0065 | 100 | 93.9 | 93.8 | | 30 | dystolic pressure(left) | 72.24 | 12.39 | 0.0144 | 100 | 93.8 | 94.2 | | 31 | Orel temperature | 99-06 | 0.73 | -0.1245 | 100 | 62.6 | 47.2 | product estimator fare better in 8 cases and the ratio estimator in 4 cases only and in the remaining the unbiased estimator is more efficient. The gain in efficiency by using ratio or product estimator is in no case substantial due to the fact that the magnitude of the correlation coefficient (% of) is quite small in all the image. Horover, this study gives an indication of the situations in which product estimator can be efficiently used. # 5.4 Betimatore in Systematic Sampling : significant contributions of Madow (1944), Griffith (1946) and others describe various situations under which systematic sampling passesses an edge over other schemes both from the view point of its efficiency and practical convenience. However, work in this field has been concentrated to the conventional unbiased estimator only. In this section was shall consider the use of ratio and product estimators in uni-stage and two-stage systematic sampling and also present a discussion for the general case (Sinyk, 1970) i) Uni-stage systematic sampling: Consider a population $U = (U_1, U_2, \dots, U_N)$ of N identifiable units. The systematic sampling consists in drawing a number, say r, between 1 and I, and selecting the units bearing serial numbers # re role r + 21, easy re(n = 1)I which constitute the systematic sample. I is called the sampling interval and it is taken to be myation of N and n. That I = N/n. re(j-1)I number has the population for the character under study y and the supplementary character x respectively. Then the conventional unbiased estimators of the population mean $$\vec{Y} = \frac{1}{4}$$ \vec{X} and $\vec{X} = \frac{1}{4}$ \vec{X} (5.4.1) are gaven by respectively. The sempling verience of the estimators ye and is are ma where of and of are the variances and ? and ? are the intra-class correlation coefficients for the character y and a respectively. We now prove the following Theorem. Theorem 5.2.1. The region of preference, mentioned in Theorem 5.2.1. for the ratio and product estimators given by $$\vec{y}_{pq} = (\vec{y}_{p} / \vec{x}_{p}) \vec{x} \text{ and } \vec{y}_{pq} = (\vec{y}_{p} \vec{x}_{p}) / \vec{x}$$ (5.4.5) respectively, remains unchanged even for the systematic sampling school whenever the condition is satisfied, for large N. Proof: For the present case, we get from (5.2.8) and (5.2.9) the use of $\overline{\gamma}_{yy}$ as mid which under the condition (5.4.6) can be written as (Swain, 1964) and $$H(\vec{y}_{ps}) = H(\vec{y}_{p})_{ren} (1 + \vec{n} = 1 \cdot 9)$$ (5.4.8) respectively, where $$M(\bar{y}_{x})_{xyy} = \frac{z^{2}}{4} (c_{y}^{2} + c_{x}^{2} - 2c_{x}c_{y}^{2})$$ (5.4.9) and $$\mathbb{N}(\overline{y}_{p})_{rem} = \frac{\overline{y}^{2}}{h} (c_{y}^{2} + c_{x}^{2} + 2c_{x}c_{y}s_{yx})$$ (5,4,10) are the use of ratio and product estimators in simple random sampling. Now ocaparison of (5.4.7) and (5.4.8) established the truth of the Theorem. by Sukhatma (1953) which consists in selecting the first-stage units with replacement and with varying probabilities Pl.Pg. ... Ph. where N denotes the number of first-stage units in the population, and the second-stage units within the selected first-stage units are sampled by the method of systematic sampling. Let n denote the number of first-stage units selected in the sample and m, be the number of second stage units selected from the 1th unit containing M, second stage units selected from the 1th unit containing M,
second stage units selected from the 1th unit containing M, second stage units selected from the 1th unit containing M, second stage units selected are not seen integer and E M, second stage units the characters are observed for m, units in the sample. An unbiased estimator for T is where $\vec{y}_{ei} = \vec{z}_{ei}$ \vec{y}_{ei} and $\vec{u}_{o} = \vec{z}_{ei}$ \vec{u}_{ei} . The estimator of \vec{z}_{ei} denoted by \vec{z}_{ei} will also have similar definition. The corresponding ratio and product estimators \vec{y}_{ei} and \vec{y}_{pe} may also be defined similarly. Theorem 5-4-2: Under the assumption the mac of \$700 for this school, is $$M(\vec{G}_{200}) = V_{2x} + \frac{1}{2} \sum_{i=0}^{N} \frac{\vec{x}_{i}}{\vec{x}_{i}} (1 + 9^{*}(m_{2}-1))$$ (5.4.12) where Vir is the embribation of sampling of first stage units and is given by $$V_{1r} = \frac{1}{R} \sum_{i=1}^{N} \frac{(\tilde{X}_{i} - R \tilde{X}_{i})^{2}}{N_{0} P_{i}}$$ (8.4.13) maa $$\pi_{1}^{2} = (\sigma_{1y}^{2} + \pi^{2}\sigma_{1x}^{2} - 2\pi\sigma_{1x}\sigma_{1y}\sigma_{1yx}) \qquad (5.4.14)$$ Proof: Proof of the theorem follows by noting that with a civiliar doffinition for V(X,) and where in and in are variences corresponding to the Lth first stage units and lift in are the corresponding intra class correlation coefficients for the Character y and x respectively. The expression for the man of the product estimator can also be obtained for this scheme and compared with the $\mathbb{H}(G_{rm})$. ### iii) <u>General tage:</u> The general form of the variances of these estimators in restage sampling is given by $$V(T) = E_1 V_{2^{***}} E_{r-1} E_{r}(T) + E_1 E_2 V_{3^{***}} E_{r}(T) + \cdots + E_1 E_2 V_{3^{***}} E_{r}(T)$$ $$E_1 E_2 + \cdots + E_{r-1} V_{r}(T)$$ $$(5.4.15)$$ where I is my estimator. This shows that total variance consists of x parts each part giving variation between units of particular stage within units of the previous stage. This last part of the variance, in case where the systematic sampling has been adopted at the difficate-stage with any scheme of sampling at the provious stages, for ratio and product estimators will consist of two parts, namely, (1) contribution due to the scheme of sampling at previous stages which differs from one procedure of estimation to the other and (ii) the contribution of systematic sampling, unaffected by the produce of estimation. The contribution of systematic sampling at the rth stage is given by (1+ % (n-1)), where % is the intra-class correlation coefficient between the ultimate stage units belonging to the individual ponultimate-stage units and n, is the number of ultimate stage units solected from the sampled penultimate stage units and this may vary from one penultimate stage units to another according to the scheme of sampling. The assumption here, herever, is that the scheme of sampling. The assumption here, herever, is that that efficiency of systematic selection at the rth stage depends on the value of 1. If 1. is negative or due to some arrangement of the ultimate stage units it could be made negative, then these estimators in systematic sampling will be some efficient than the corresponding estimators in simple random sampling. Hence it may be concluded that systematic sampling can be efficiently used in building-up either of the three estimators only when both the conditions are distincted, nemely, (1) 9, is less than zero and (21) 9, satisfies the preference regions mentioned in theorem 8.2.1. Remark: The comparison of a ratio and product estimators have been made using the usual approximation for their variances, which has been used by many authors in past (Sevain, 1964, Sukhatme 1963 etc.), this approximation however, does not include all the terms up to order n⁻¹ in general. ## 5.4. Unbiased Estimatorsi For simple random sampling without replacement, Hartley and Rose (1984) has obtained ratio type estimator which is unbiased for estimating \tilde{Y} . The estimator is given by where $$f = \frac{1}{N} \sum_{i=1}^{N} y_i / x_i$$. An unbiased product estimator for estimating \tilde{T} , similar to $\tilde{T}_{\mathbf{r}}^*$ may also be obtained by subtracting unbiased estimator of its bias given by The unbiased product estimator is thus given by Some other estimators of this type have been given Chapter VII. #### CHAPTER VI #### MULTIVARIATE RATIO AND PRODUCT METHODS OF ESTIMATION 6.0 Surmary: In this chapter the uni-variate product estimator has been extended to multivariate product method of estimation, which utilise information on several supplementary characters. This estimator has been considered in Sections 6.1 and 6.2 in a general manner. This estimator is then compared with the multivariate ratio estimator in Section 6.3. The case of two-phase sampling is included in the last section and an empirical study is also included for illustration. ## 831 Multivariate Product Method of Estimations eny source, the sampler tends to utilize it in the method of estimation which gives maximum efficiency. We have already considered in the previous chapter the ordinary ratio and product methods of estimation which make use of information on just one supplementary characteristic and provide more efficient estimators than the usual unbiased estimator, under certain situations commonly not with in practice. quite often information on more than one such characteristic is available in the survey which can be utilised to increase the effloiency of the estimator. Olkin (1958), in connection with the estimation of population total, considered the use of information on multi-supplementary variables in building-up multivariate ratio estimator and this estimator was found to be more efficient than the ordinary ratio estimator in most situations. Use of information on multi-supplementary variables in suitable manners have been considered by Des Raj (19650), Shuklai (1966), Srivastava (1967) and others. Author's contribution in this direction have been presented in this and the following shapters. We give below an extension of the ordinary product estimator to the multivariate case. The multivariate product estimator, using information on two or more supplementary characters, is being introduced here in a quite general form. Let Θ_0 be the parametric function to be estimated and let Θ_1 , Θ_2 ***• Θ_k be the parametric functions corresponding to k supplementary characters. Let T_i (i = 0,1,..., k) denote the linear unbiased estimators of Θ_i based on any design P. Then the estimator considered is given by $$T_{pk} = \sum_{i=1}^{k} \frac{w_i p_i}{\theta_i} \tag{6.1.1}$$ where pi = To.Ti and Wi's are weights such that $$\sum_{i=1}^{k} w_i = 1. (6.1.2)$$ It is assumed that θ_1 , θ_2 ... θ_k are known in advance. The discussion for unknown values of these parameters has been presented in the last section. We prove below a theorem regarding the bias and meses of Take Theorem 6.1.1 For may design D(U,S,P), exact expressions for the bias and mesee of Tak are given by $$B(2_{pk}) = \theta_0 W b^*$$ (6.1.3) and $$M(T_{pk}) = 60 \text{ w } (A + B + C + 56') \text{ w}$$ (6.1.4) respectively, where $A = (a_{ij})_0 B = (b_{ij})_0 C = (a_{ij})_0$ defined below, are matrices of order $k \times k$ each, b and w are vectors represented by (b_1, b_2, \ldots, b_k) and (w_i, w_0, \ldots, w_k) respectively, and b^* and w^* are transpose of b and w_0 Proofs Let us define $$T_1 = \theta_1 (1 + \theta_1)$$ (6.1.5) where $E(\theta_k) = 0$ for all $k = 0, 1, 2, \dots, k$. We get, $$E(T_{pk}) = 0$$ $E = \frac{E}{2} = \frac{E}{2}$ (6.1.6) and $$E(\mathbb{Z}_{pk}) = e_0^2 \sum_{i} \sum_{j} w_i w_j \text{ oor } (p_1, p_j)/p_1 p_j$$ (6.1.7) where Pa = 0 010 1 = 1,2,000 ke PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompresso New substituting 2, from (6-1.5) in p4, we get $$P_1 = P_2(1 + e_0)(1 + e_1)$$ = $P_2(1 + e_1 + p_2)$, where $\alpha_1 = (\epsilon_0 + \epsilon_1)$ and $\beta_1 = (\epsilon_0 \epsilon_1)$, which gives $$E(\frac{p_1}{p_2}) = 1 + E(p_2)$$ = 1 + b₂. (6.1.8) Further, $$\frac{\text{Gov} (p_1 \cdot p_1)}{p_1 \cdot p_2} = \mathbb{E}(p_1 - \mathbb{E}(p_1))(p_1 - \mathbb{E}(p_2))/2$$ $$= \mathbb{E}(\frac{p_1}{p_2} - 1 - p_1) - (\frac{p_1}{p_2} + 1 - p_2)$$ $$= \mathbb{E}((1 + \alpha_1 + \beta_1)(1 + \alpha_2 + \beta_3) - (1 + \beta_1 + \beta_3) + p_1 p_1)$$ $$= \mathbb{E}(\alpha_1(\alpha_1 + \beta_1)) + \mathbb{E}(\alpha_1\beta_1) + \mathbb{E}(\beta_1\beta_1) + p_1 p_1$$ $$= \mathbb{E}((2^2_0 + 6_0 e_1 + 6_0 e_1 + 2 e_1) + (6^2_0 e_1 + 2 e_0 e_1 e_1)$$ $$= \mathbb{E}((6^2_0 + 6_0 e_1 + 6_0 e_1 + 2 e_1) + (6^2_0 e_1 + 2 e_0 e_1 e_1)$$ $$= \mathbb{E}((6^2_0 + 6_0 e_1 + 6_0 e_1 + 2 e_1) + (6^2_0 e_1 + 2 e_0 e_1 e_1)$$ $$= \mathbb{E}((6^2_0 + 6_0 e_1 + 6_0 e_1 + 2 e_1) + (6^2_0 e_1 + 2 e_0 e_1 e_1)$$ $$= \mathbb{E}((6^2_0 + 6_0 e_1 + 6_0 e_1 + 2 e_1) + (6^2_0 e_1 + 2 e_0 e_1 e_1)$$ $$= \mathbb{E}((6^2_0 + 6_0 e_1 + 6_0 e_1 + 2 e_1) + (6^2_0 e_1 + 2 e_0 e_1 e_1)$$ $$= \mathbb{E}((6^2_0 + 6_0 e_1 + 6_0 e_1 + 2 e_1) + (6^2_0 e_1 + 2 e_0 e_1 e_1)$$ $$= \mathbb{E}((6^2_0 + 6_0 e_1 + 6_0 e_1 + 2 e_1) + (6^2_0 e_1 + 2 e_0 e_1 e_1)$$ $$= \mathbb{E}((6^2_0 + 6_0 e_1 + 6_0 e_1 + 2 e_1) + (6^2_0 e_1 + 2 e_0 e_1 e_1)$$ $$= \mathbb{E}((6^2_0 + 6_0 e_1 + 6_0 e_1 + 2 e_1) + (6^2_0 e_1 + 2 e_0 e_1 e_1)$$ $$= \mathbb{E}((6^2_0 + 6_0 e_1 + 6_0 e_1 + 2 e_1) + (6^2_0 e_1 + 2 e_0 e_1 e_1)$$ $$= \mathbb{E}((6^2_0 + 6_0 e_1 + 6_0 e_1 + 2 e_1) + (6^2_0 e_1 + 2 e_0 e_1 e_1)$$ $$= \mathbb{E}((6^2_0 + 6_0 e_1 + 6_0 e_1 + 2 e_1) + (6^2_0 e_1 + 2 e_0 e_1 e_1)$$ $$= \mathbb{E}((6^2_0 + 6_0 e_1 + 6_0 e_1 + 2 e_1) + (6^2_0 e_1 + 2 e_0 e_1 e_1)$$ $$= \mathbb{E}((6^2_0 + 6_0 e_1 + 6_0 e_1 + 2 e_1) + (6^2_0 e_1 + 2 e_0 e_1 e_1)$$ $$= \mathbb{E}((6^2_0 + 6_0 e_1 + 6_0 e_1 + 2 e_1) + (6^2_0 e_1 + 2 e_0 e_1 e_1)$$ $$= \mathbb{E}((6^2_0 + 6_0 e_1 + 6_0 e_1 + 2 e_1) + (6^2_0 e_1 + 2 e_0 e_1 e_1)$$ $$= \mathbb{E}((6^2_0 +
6_0 e_1 + 6_0 e_1 + 2 e_1) + (6^2_0 e_1 + 2 e_0 e_1 e_1)$$ $$= \mathbb{E}((6^2_0 + 6_0 e_1 + 2 e_1) + (6^2_0 e_1 + 2 e_0 e_1 e_1)$$ $$= \mathbb{E}((6^2_0 + 6_0 e_1 + 6_0 e_1 + 2 e_1) + (6^2_0 e_1 + 2 e_0 e_1 e_1)$$ $$= \mathbb{E}((6^2_0 + 6_0 e_1 + 2 e_1) + (6^2_0 e_1 + 2 e_0 e_1 e_1)$$ $$= \mathbb{E}((6^2_0 + 6_0 e_1 + 2 e_1) + (6^2_0 e_1 + 2 e_0 e_1 e_1)$$ whore $$a_{i,j} = (v_0^2 + v_{0i}^{11} + v_{0j}^{11} + v_{ij}^{11})$$ $$a_{i,j} = (v_{0i}^2 + 2v_{0ij}^{11} + v_{0j}^2)$$ $$a_{i,j} = v_{0i,j}^{21}$$ $$a_{i,j} = v_{0i,j}^{21}$$ (6.1.10) and $$V_{\text{oij}}^{\text{rst}} = \frac{E(x_0 + \theta_0)^2 (x_1 + \theta_1)^2 (x_1 - \theta_1)^4}{\theta_1^2 \theta_1^2 \theta_1^2}$$ (6.1.11) Substitution of $B(p_1/P_1)$ and Cov $(p_1, p_1)/P_1P_1$ in (Gal.6) and (Gal.7) confirms the truth of the theorem. Remark 6.1.1 It is easily seen that the estimator will be unbiased if b'=0, which will happen if $E(e_0e_1)=0$, that is if the correlation coefficient between T_0 and T_1 is zero for all i. Remark 6.1.2 The matrices A, B, and C are alterst semi-positive definite. Further writing $V_{1j}^{11} = C_{1j} = C_{1}^{C_{1}^{0}} i_{j}$ where C_{1} , C_{j} and C_{1j} are relative variances (coefficient of variations) and covariances of the estimators and V_{1j} correlation coefficient between them, we get, $$and \qquad aij = (a_0^2 + a_0a_1^2a_1 + a_0a_3^2a_2 + a_1a_3^2a_3). \qquad (6.1.12)$$ Next, in order to compare this estimator with the multivariate ratio estimator we obtain approximate expressions for the bias and mas.c. of $T_{\rm pk}$. Since for sampling schemes, such as simple random sampling, varying probability schemes with replacement, etc., $E(p_i/P_i)$ and $Cov(p_i, p_j)/P_iP_j$ can be expressed as $$\mathbb{E}\left(\frac{1}{r_1}\right) = 1 + \frac{h}{n^2}$$ and where n is the sample size and aij, bij and cij have similar mesming as the corresponding terms in (6.1.10), except for the This shows that the contribution of the terms involving and n^{-S} in the m.s.c. may be neglected for large values of n, in which case (6.1.6) reduces to How arises the question of the choice of weights. Of all the vectors w satisfying the condition (6.1.2), we shall choose that one which minimises M(T_{ph}) in (6.1.13). We prove the following lemma. Lemma (6.1.1) The estimator Tpk with its meses given in (6.1.13) attains minimum value when each <u>Proof</u>: We minimise $M(T_{pk})$ under the condition $\sum_{i=1}^{k} W_i = 1$. In other words the function $$\phi = \theta_{S}^{AVM_i} - y(A\theta_i - 1)$$ is minimised, where λ is a lagrangian multiplier and vector $a = (\lambda_0 \lambda_1 a a a a a)$. Differentiating of with respect to w and equating to sere, we get WA - Ac = 0. Assuming A-1 exists, $$W = \lambda \circ \Lambda^{-2}$$ (6.1.14) that is, we' = lo A-lo', hence $$\lambda = \frac{1}{6 \cdot 1.15}$$, since we' = 1 (6.1.15) which gives from (6.1.14), the optimum $$W = \frac{0 \, A^{-2}}{0 \, A^{-2}} \, . \tag{6.1.16}$$ Monce the lemma. Assuming the weights for all the k supplementary characters to be uniform, which will happen only shen the sums of each column matrix A are equal, the optimum weight w is given by (c/k) and the corresponding bias and mesos. and $$M(T_{pk}) = 6^{3} \text{ m/k}$$ (6.1.17) where m is scalar such that 0A = 9m, $(m \neq 0)$ and m = 9 implies that A is singular. Theorem 6.1.2 Assuming the weights to be uniform, the bias and meses of Tags, to order n 1, is given by $$B(T_{pk}) = 0 C C_0^0$$ (6.1.18) and $$\mathbb{E}(\mathbb{E}_{nk}) = \frac{e^2}{k} \left[\left(\sigma^2 (1-9) + k \left(\sigma^2 + 20 \, c_0 \, s_0 + 9 \, \sigma^2 \right) \right] \qquad (6.1.19)$$ where C4, C4 otes, are as defined before. Proofi Let us consider $$C_1 = C_1 = 0$$ (6.1.20) and $S_{11} = 0$ for all I_0 ; $(1,2,...,k)$ as an example of uniform weights. Then we get $$b_1 = 9_0 c_0 c$$ $$a_{11} = (c_0^2 + 2c_0 c_0 + c^2)$$ $$a_{11} = (c_0^2 + 2c_0 c_0 + 9c^2)$$ which gives and $$H(2^{\frac{1}{2}}) = \frac{1}{2} \left[(2^{\frac{1}{2}}(1-8) + k(2^{\frac{1}{2}} + 200^{\frac{1}{2}}) + 80^{\frac{1}{2}}) \right]$$ $$= \frac{1}{2} \left[(2^{\frac{1}{2}}(1-8) + k(2^{\frac{1}{2}} + 200^{\frac{1}{2}}) + 80^{\frac{1}{2}}) \right]$$ and also $B(T_{pk})$ as in (6.1.18). Hence the theorem. Further, if in addition, we assume we got. and $$N(T_{pk}) = \frac{9^2}{k} - [(k+1) - 9(1-3k)]e^2.$$ (6.1.22) # 6.8 Multiveriate Ratio Method of Retinations Olkin's (1986) multivariate ratio ostimator for estimating the parametric function 0, oam be expressed as $$\mathbf{z}_{\mathbf{rk}} = \sum_{i=1}^{k} \mathbf{w}_{i} \mathbf{r}_{i} \mathbf{e}_{i} \tag{6.2.1}$$ WE BY $$x_1 = x_0 / x_1$$ and $x_1 = 1$. (6.2.2) Here again we assume that $\theta_1, \theta_2, \dots, \theta_k$ are known in advance. We have the following theorem 6.2.1 regarding the bias and m.s.c. of the estimator T_{nk} in (6.2.1). Theorem 6.2.1 (Olkin): For any design P, with the procedure of selection mentioned in Lemma 6.1.1, the bias and meses of Trk, to order man, are given by and $$H(2_{**}) = 6^{2} \text{ w* } A^{*} w^{*},$$ (6.2.3) respectively, where be and we are vectors represented by $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ Further, As in (6.2.2) is a matrix of order k X k, As (2), where 04 etc., being defined earlier. Proof of the theorem is similar to the proof given in Theorem 6-1-1 and is emitted. The optimum weights can be obtained in a similar way by minimizing $M(T_{\rm rk})$ and it will be observed that these weights turn out to be same as in (6.1.16) with matrix A replaced by the matrix A^* . Theorem 6.2.2 Under the condition (6.1.20), the bias and masse. of True to order not are given by $$B(T_{xk}) = \theta_0 \sigma^2 (1 + \theta_0)$$ and $$H(T_{xk}) = \frac{\sigma^2}{k} [\sigma^2 (1 + \theta) + k(\sigma_0^2 + 200_{\theta}^2 + \theta \sigma^2)]. \quad (6.2.4)$$ Proof is straightforward, If In addition (6.1.20), 6 = 0, and 8 = 8, then $$B(2_{22}=0.0^2(1-8)$$ and $$N(T_{rk}) = \frac{a^2}{k} \sigma^2(1+k)(1-2). \qquad (6.2.8)$$ # 6.5 Comparison of Estimators: We now compare the estimators Tpk and Trk with Tor the linear unbiased estimator, under the condition of (6.1.20) uniform weights and prove the fellowing. Theorem 6.3.1 For any decign D(A,S,P), with reclection procedures mentioned in Lemma 6.1.1, under the condition (5.1.20); considering the approximation to order n⁻¹, the preference regions for the estimator T_{sk}, T_o and T_{sk} are given by #mspectively. Proof. The sampling variance of the unbiased estimator To is $$V(z_0) = e_0^2 c_0^2.$$ (6.3.2) Comparing the $M(T_{pk})$ in (6.1.19) and $V(T_{p})$ in (6.3.2), it is seen that T_{pk} will be more efficient than T_{p} if and similarly companies $M(T_{rk})$ in (6.2.4) with $V(T_0)$, T_{yk} is found to be more efficient whenever which in turn gives the regions of preference mentioned in (6.3.1). Hence the theorem. Romark 5.3.1 It is easily seen that the Theorem 6.3.1 is a generalisation of Theorem 5.2.1 since for k=1, the former gives the results obtained in the latter. Remark 6.3.2. The preference regions in (6.5.1) hold good only if all ** are positive and also when the number of positive and negative parameters are same, in case otherwises, the conditions for T_ and T_ gets interchanged, Remark 6.3.3 If in addition to (6.1.20), $C = C_0$ and $9 = 9_0$ then $T_{\rm mic}$ will be more efficient if and Tre will be more efficient if Further, it is pertinent to compare the universate product estimator (Tpl) considered in the previous chapter and the multivariate product estimator. We prove the following. Theorem 6.3.2 Let T_{pk} , and T_{pk} be the multivariate product estimators and T_{pk} , and T_{pk} be the multivariate ratio estimators of θ_{e^*} with optimum weights based on k^* and k supplementary real-valued characteristics, where k is greater than them Compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompress $$H(T_{nk}) \leq H(T_{nk}) \tag{6.3.3}$$ and $$M(2_{2k}) \le M(2_{2k}).$$ (6.3.4) The inequality (6.5.4) is a straightforward extension of Olkin's result and (6.3.5) can also be obtained in a similar manner. As a special dasc of the above theorem, when weights are uniform and (6.1.20) is satisfied then $$M(T_{pk0}) = M(T_{pk}) = \Theta_0^2 C^2(1-9)(\frac{k-k^2}{KE^2})$$ which is always positive. Thus if $k^* = 1$ and k = 2 then this implies that T_{p2} will be more efficient than T_{p1} . Similar results held for ratio estimator also. ### An Empirical Studen For the purpose of this study we again refer to the multivariate investigation of blood chemistry undertaken by the Biometry Research Unit of the Indian Statistical Institute. In the present case we compare the univariate product estimator Tpl with that of two-variate product estimator Tpl for estimating the 'Essinophil' content based on data for Group C. Let us denote by Y the variable under study and Z and Z the supplementary variables, height and weight respectively. The problem is to estimate T based on data for 69 individuals belonging to Group C for a simple random sample of give n. We compare below the unbiased estimator To with the univariate and two-variate estimators Tpl and Tp2 respectively. For incorporate product estimator, we have $M(T_{p2}) \approx \bar{T}^2 \text{ with these } W = (W_1, W_2)$, $W' = {W_1 \choose p}$ and $$A = (a_{13})_2 \times 2 = \begin{pmatrix} a_{01} + a_{12} & a_{02} + a_{01} + a_{21} & a_{02}^2 + 2a_{02} + a_{22} \\ a_{03} + a_{02} + a_{01} + a_{21} & a_{02}^2 + 2a_{02} + a_{22}^2 \end{pmatrix}$$ The optimum weight $$w_1 = \frac{2c_0^2 + 86c_0 + c_2^2 + c_{01} + c_{12}}{4(c_0^2 + c_{01} + c_{02}) + c_1^2 + c_2^2 + 2c_{12}} = 1 + w_2.$$ It may be muntioned that C_1 and S_{11} (1 \neq 1 \approx 0,1,2) are the coefficient of variation and correlation coefficient respectively for the sample means and for the present scheme $C_1^2 = QC_1^{-2}$, where $Q = \frac{1}{(N-1)N}$ and C_2^2 are defined for the
corresponding variables. We have the following values for this population. $$c_0 = 0.60$$ $c_{01} = -0.1752$ $c_1 = 0.033$ $c_{02} = -0.2505$ $c_2 = 0.25$ $c_{12} = 0.0099$ which gives w = 0.48 and w = 0.58 and the corresponding m.s.c. as $$\mathbb{H}(\mathbb{Q}_{pk}) = \overline{Y}^2 \mathbb{Q}(0.3541)$$ and $\mathbb{H}(\mathbb{Q}_{pk}) = \overline{Y}^2 \mathbb{Q}(0.3545)$ product and two-variate product estimator is 100, 104 and 110 respectively. It may be noted that this example is being given here by a way of illustration. Here the gain in efficiently is marginal, due to the fact that s_{01} and s_{02} , although negative and quite small in magnitude. # 5.4 Retinotors in Two-Phase Samplings on the real-valued supplementary characteristics is not available in advance. A large initial sample usually known as first-phase sample is selected to observe the values of the supplementary characteristics and in the second-phase sample, which can be either a sub-sample of this large sample or an independent sample of smaller size data on both the characteristic under study and the supplementary characteristics are collected. It is further assumed that cost of collecting data on initial sample is very small compared to that for the usecond-phase sample. simple random sampling without-replacement has been applied at both the phases and that the parameter under consideration is the population mean f. [Nowever, some complex two-phase schemes have been considered in the less chapter of this thesis.] ### Case 1. Sub-semple of the initial semple: Following (6-1-1) an estimator of the population mean can be defined as where $p_1 = \hat{y} \hat{x}_1$, \hat{y} and \hat{x}_1 being the sample means based on the second-phase sample of size n_2 and \hat{x}_1 denote the mean for the i-th supplementary characteristic based on the first phase sample of size n_2 . We get the masse as whore $$a_{1j} = \frac{1}{R_2} (2 + z_2) c_0^2 + \frac{1}{R_2} (1 - z_2) (a_1 a_1 a_2) + a_{01} a_0 c_1 + a_{01} a_0 c_1,$$ $$(6.4.5)$$ $$D = (a_{11}) + x_2 \cdot P_1^2 = \hat{T}_0 \hat{X}_1 \text{ and } \hat{x}_2 = (\hat{x}_2^2).$$ Optimum values of wi's eas to defined in a minilar way by replacing matrix A with D. Multiveriate ratio estimator for this scheme can be defined from (6.2.1) as where r = \$/ \$ and we get $$= \frac{1}{4\pi} \sum_{i=1}^{n} \sum_{i=1}^{n} a^{i} a^{i} a^{i}$$ a^{i} a^{i}$$ $$= \frac{1}{4\pi} \sum_{i=1}^{n} \sum_{i=1}^{n} a^{i} a^{i} a^{i} a^{i}$$ $$= \frac{1}{4\pi} \sum_{i=1}^{n} \sum_{i=1}^{n} a^{i} a^{i} a^{i} a^{i} a^{i}$$ $$= \frac{1}{4\pi} \sum_{i=1}^{n} \sum_{i=1}^{n} a^{i} a^{i} a^{i} a^{i} a^{i} a^{i}$$ $$= \frac{1}{4\pi} \sum_{i=1}^{n} \sum_{i=1}^{n} a^{i} a^{$$ whore $$d_{1j}^{2} = \frac{1}{R_{2}^{2}}(1-z_{2})c_{0}^{2} + \frac{1}{R_{2}^{2}}(1-z_{2})(c_{1}c_{3}z_{1j} - s_{01}c_{0}c_{1}-s_{01}c_{0}c_{3}),$$ $$D_{1} = (d_{1j}^{2}), \quad R_{1}^{2} = \frac{2}{2}/\frac{2}{2}.$$ $$(6+4+5)$$ Optimin weights wi's are obtained by replacing the matrix As by De. The nesse of universate product and ratio estimator when the weights are uniform are given by $$H(\hat{\tau}_{pt}) = \frac{72}{42} ((2 + \epsilon_2)\sigma_0^2 + (2 - \epsilon_2)(\sigma^2 + \epsilon_0\sigma_0^2))$$ (6.4.6) and $$\mathbb{E}(\hat{\mathbf{z}}_{-1}) = -\frac{1}{2} \left[(2 - 22) \mathbf{e}_{0}^{2} + (2 - 22) (\mathbf{e}^{2} - 22 \mathbf{e}_{0}^{2} \mathbf{e}_{0}^{2}) \right] \quad (6.4.7)$$ where $$f_1 = \frac{n_2}{n_1}$$ and $f_2 = \frac{n_2}{3}$. Ignoring the terms of O(N-1). $$H(\bar{x}_{pq}) = \bar{x}^2 \left[\frac{\sigma_2^2 + \sigma_2^2 + 29_0 \sigma_0}{\pi_2} + \frac{89_0 \sigma_0 - \sigma_0^2}{\pi_2} \right] \quad (6+4.9)$$ and $$H(\hat{t}_{24}) = \hat{\tau}^2 \left[\frac{G_2^2 + G_2^2 - 29 G_2^2}{T_2} + \frac{29 G_2^2 - G_2^2}{T_2} \right], \quad (6.4.9)$$ # Case II. Independent sub-sample: - The form of the estimators \tilde{T}_{pkt} and \tilde{T}_{rkt} will remain the same as (6.4.1) and (6.4.4) respectively. The name in this case is given by and where 6 = (811) k x k and 6* = (811) k x k and $$+\frac{1}{T^{2}}(x-\frac{1}{T^{2}})\delta^{2}i_{0}^{2}c^{2}$$ $$e^{2}i^{2}=\frac{1}{T^{2}}(x-x^{2})(c_{0}^{0}+s^{0}i_{0}^{0}c^{2}+s^{0}i_{0}^{0}c^{2}+s^{2}i_{0}^{2}c^{2})+$$ $$S_{13}^{2} = \frac{1}{n_{2}} (1 - \Sigma_{2}) (O_{2}^{0} - O_{2}O_{3}^{0} - O_{3}O_{3}^{0} - O_{3}O_{3}^{0} + O_{3}O_{3}O_{3}^{0}) + \\ + \frac{1}{n_{2}} (1 - \Sigma_{2}) (O_{2}^{0} - O_{3}O_{3}^{0} - O_{3}O_{3}^{0} + O_{3}O_{3}O_{3}^{0}) + \\ + \frac{1}{n_{2}} (1 - \Sigma_{2}) (O_{2}^{0} - O_{3}O_{3}^{0} - O_{3}O_{3}^{0} - O_{3}O_{3}^{0}) + \\ + \frac{1}{n_{2}} (1 - \Sigma_{2}) (O_{3}^{0} - O_{3}O_{3}^{0} - O_{3}O_{3}^{0} - O_{3}O_{3}^{0}) + \\ + \frac{1}{n_{2}} (1 - \Sigma_{2}) (O_{3}^{0} - O_{3}O_{3}^{0} - O_{3}O_{3}^{0}) + \\ + \frac{1}{n_{2}} (1 - \Sigma_{2}) (O_{3}^{0} - O_{3}O_{3}^{0} - O_{3}O_{3}^{0}) + \\ + \frac{1}{n_{2}} (O_{3}O_{3}^{0} - O_{3}O_{3}^{0} - O_{3}O_{3}^{0}) + \\ + \frac{1}{n_{2}} (O_{3}O_{3}^{0} - O_{3}O_{3}^{0} - O_{3}O_{3}^{0}) + \\ + \frac{1}{n_{2}} (O_{3}O_{3}^{0} - O_{3}O_{3}^{0} - O_{3}O_{3}^{0}) + \\ + \frac{1}{n_{2}} (O_{3}O_{3}^{0} - O_{3}O_{3}^{0} - O_{3}O_{3}^{0}) + \\ + \frac{1}{n_{2}} (O_{3}O_{3}^{0} - O_{3}O_{3}^{0} - O_{3}O_{3}^{0}) + \\ + \frac{1}{n_{2}} (O_{3}O_{3}^{0} - O_{3}O_{3}^{0} - O_{3}O_{3}^{0}) + \\ + \frac{1}{n_{2}} (O_{3}O_{3}^{0} - O_{3}O_{3}^{0} - O_{3}O_{3}^{0}) + \\ + \frac{1}{n_{2}} (O_{3}O_{3}^{0} - O_{3}O_{3}^{0} - O_{3}O_{3}^{0}) + \\ + \frac{1}{n_{2}} (O_{3}O_{3}^{0} - O_{3}O_{3}^{0} - O_{3}O_{3}^{0}) + \\ + \frac{1}{n_{2}} (O_{3}O_{3}^{0} - O_{3}O_{3}^{0} - O_{3}O_{3}^{0}) + \\ + \frac{1}{n_{2}} (O_{3}O_{3}^{0} - O_{3}O_{3}^{0} - O_{3}O_{3}^{0}) + \\ + \frac{1}{n_{2}} (O_{3}O_{3}^{0} - O_{3}O_{3}^{0} - O_{3}O_{3}^{0}) + \\ + \frac{1}{n_{2}} (O_{3}O_{3}^{0} - O_{3}O_{3}^{0} - O_{3}O_{3}^{0}) + \\ + \frac{1}{n_{2}} (O_{3}O_{3}^{0} - O_{3}O_{3}^{0} - O_{3}O_{3}^{0}) + \\ + \frac{1}{n_{2}} (O_{3}O_{3}^{0} - O_{3}O_{3}^{0} - O_{3}O_{3}^{0}) + \\ + \frac{1}{n_{2}} (O_{3}O_{3}^{0} - O_{3}O_{3}^{0} - O_{3}O_{3}^{0}) + \\ + \frac{1}{n_{2}} (O_{3}O_{3}^{0} - O_{3}O_{3}^{0} - O_{3}O_{3}^{0}) + \\ + \frac{1}{n_{2}} (O_{3}O_{3}^{0} - O_{3}O_{3}^{0} - O_{3}O_{3}^{0}) + \\ + \frac{1}{n_{2}} (O_{3}O_{3}^{0} - O_{3}O_{3}^{0} - O_{3}O_{3}^{0}) + \\ + \frac{1}{n_{2}} (O_{3}O_{3}^{0} - O_{3}O_{3}^{0} - O_{3}O_{3}^{0}) + \\ + \frac{1}{n_{2}} (O_{3}O_{3}^{0} - O_{3}^{0} - O_{3}^{0}) + \\ + \frac{1}{n_{2}} (O_{3}O_{3}^{0} - O_{3}^{0} -$$ Again the m.s.e of ratio and product estimators (assuming weights to be uniform) and considering term up to $O(N^{-1})$, are given by $$\pi(\hat{\bar{x}}_{pt}) = \bar{Y}^2 \left[\frac{\sigma_0^2 + 29 \sigma_0^2 \sigma + \sigma_0^2}{n_0} + \frac{\sigma_0^2}{n_1} \right]$$ (6.4.11) and $$M(\tilde{Y}_{rt}) = \tilde{Y}^{2} \left(\frac{\sigma_{0}^{2} + 29_{0}\sigma_{0}\sigma + \sigma^{2}}{n_{2}} + \frac{\sigma^{2}}{n_{1}} \right). \tag{6.4.12}$$ It may be noted that the expressions (6.4.9) and (6.4.12) are the same as given by Cochran (1963) and a comparison between (6.4.13) and (6.4.11) will lead to the same preference regions mentioned in Theorem (5.2.1). #### CHAPTER VII #### SOME RATIO CUM PRODUCT ESTIMATORS Summers: Betimetion of a non-linear parametric 7.00 function (nlf) of the parameters, along with the paremeters themselves, have been considered in this Chapter. Section 7.1 deals with estimation of a nlf and in Section 7.2 some estimators for the ratio and products (special cases of the alf) of the parameter have been proposed. Sections 7.5 and 7.4 gives comparison of these estimators with the usual ratio and product estimators. As these estimators are blased some almost unbiased cetimators are suggested in Section 7.5 and in Section 7.6 two com-Minations of the estimators, suggested above, have been proposed and compared. Illustrations for the gain in efficiency of these estimators are also given on the basis of a live data. Leatly these estimators have been considered for estimating the parameters themselves and some comparisons with other relevant estimators are also made in Sections 7.7 and 7.8. # 7.1 The New-Linear Parametrie Punctions Batimation of a non-linear function (nlf) of the parameters, apart from the parameters themselves, are of considerable interest in practice. Let us denote $\eta(\theta)$ as a nlf of the parameters $\theta_0, \theta_1, \dots, \theta_k$ where θ_0 is a function of the character y and θ_1 's are functions defined for the characters x_i (i=1,2,..., k). Then we can express n(0) as $$\eta(\theta) = \mathcal{I}(\theta_0, \theta_{100000}, \theta_{k})$$ Two important examples of $\eta(\theta)$, for k=1, are the population ratio R and the product P, given by $$R = \Theta_0 / \Theta_1$$ and $P = \Theta_0 \cdot \Theta_1$ (7.1.1) respectively. The estimation of ratio of ratioss, that is $$\eta(\theta) = R_1 / R_2$$ where $R_1 = \theta_0/\theta_1$ and $R_2 = \theta_0/\theta_5$ are also of considerable interest in some situations (Keyfits, see Yates 1960; Kish 1960, Kool957). These alf besides θ_1 's themselves are often required to be estimated. For instance, it is often required to estimate the proportion of population under different means of livelihood or the total crop production, which is product of cultivated area and the yield rate, besides the total population or the total cultivated area. For estimating such alf of the parameters, each of which can be unbiasedly estimated, usually the same function of the unbiased estimators of the parameters is taken as an estimator. For instance in estimating the ratio R and the product P of two parameters Θ_0 and Θ_1 , the commonly adopted practice is to take the ratio and product respectively, of the unbiased estimators of the peremeters, as an estimator. However, in this case, whenever, the true value of one of the parameters is available one may feel that it is sufficient to estimate the other parameter only and obtain an entinator of the true ratio or product by using the
known value of the parameter. It is interesting to note that even if true value of either of the parameter is known, the ratio or product of unbiased estimators proves to be better, in many cases, then the estimator obtained by using the actual value of the parameter, mainly because of the correlation between the springtors. That is, for instance if the ratio R is of interest and it is believed that the ratio of y to x is less variable then y's themselves then it would be better to estimate R from the sample itself, instead of estimating of from the sample and then dividing it by the known parameter 91. Similarly if the product P is to be estimated and it is bolioved that the product of y and x is less variable then it is better to estimate P on the basis of sample estimates of the and the as compared to estimating simply o and multiplying it by known parameter o1. Let us denote G(T) as an estimator of $\eta(\theta)$, then usually G(T) is a function of T_0, T_1, \ldots, T_k , where T_1 's $(1=1,2,\ldots,k)$ are unbiased estimators of θ_1 's for any design D(U,S,P). Next, let us suppose that information on a supplementary character x_{k+1} related to y and x_i (i = 1,..., k) is available in the survey and we are interested in using this information if it is found to be beneficial. Let us denote the parameter relating to \mathbf{x}_{k+1} by \mathbf{e}_{k+1} and suppose that it is known and let \mathbf{x}_{k+1} be its unbiased estimator from the sample. Then an estimator \mathbf{x}_{k+1} which utilises supplementary infernation, is given by $$G^*(\mathfrak{D}) = G(\mathfrak{D})(\frac{\mathbb{Q}_{k+1}}{\mathbb{Q}_{k+1}})^{\mathcal{E}}$$ *** (7.1.2) where ξ is a constant and its value may be obtained by minimising the mean square error of $G^*(\mathbb{T})$. Obviously ξ will be a function of the coefficient of variations of T_1 and the correlation coefficient of variations of T_2 and the correlation coefficient of variations of T_3 for $G(A) = 0, 1, \dots, k+1$. In case θ_{k+1} is not known in advance and if it is found easier and chapper to observe x_{k+1} than y and x_i 's then a two-phase sample may be used. This procedure has already been discussed in a carlier chapter hence this discussion is emitted here. It is well-known that if $\eta(\phi)$ is a linear function of θ_1 's then G(T) will be unbiased, for instance, if $\eta(\phi) = \theta_0 - \theta_1$ then $G(T) = T_0 - T_1$ is unbiased for $\eta(\phi)$. But as $\eta(\phi)$ is nlf, the corresponding estimator G(T) and also the proposed estimator $G^*(T)$ will be biased. The approximate expressions for the bias and mean square error of these estimators can be obtained by using Taylor's series. In this chapter we consider the estimation problems in relation to the ratio R and product P given in (7.1.1) as a special case of $\eta(\phi)$. ## 7.2 Batimators for Ratio and Product: The opposity adopted method of estimating the ratio R and the product Re as indicated earlier, is to find the ratio and the product Purther, it is well-known that r and p, respectively, estimate the true ratio R and product P efficiently only if the study characters y and x are highly positively correlated in the former case and highly negatively correlated in the latter. In practice, however, we come across several situations where the above condition is not satisfied and the question then arises what estimator to use in such passes. In other words, while estimating R, we some across situations in which the ratio of y to x is believed to be highly variable along with y's themselves or on the other hand while estimating P, the product of y and x is believed to be highly variable blong with y's themselves. In such situations both the estimators r and Tolor of R are likely to have large errors and similarly the estimators p and Tolor are likely to large error for estimation of P. We suggest below an estimator, on the basis of the estimator G*(T) for estimating n(*), which may be efficiently utilized for the above situations for estimating R and P. For estimating the ratio of ratios. R_1/R_2 , Keyfits (see Yates 1960), Ras (1957) and Kish (1960) have considered double ratio estimators. The estimators suggested here utilise the knowledge of a supplementary character and are given by $$R^* = r(\frac{T_2}{T_0})^{\xi_2} \tag{7.2.3}$$ $P^* = P(\frac{T_2}{T_2})^{3} 2 \tag{7.2.4}$ respectively, where $\bullet_{\mathbb{C}}$ is assumed to be known and $\mathfrak{I}_{\mathbb{C}}$ and $\mathfrak{d}_{\mathbb{C}}$ are constants and may be determined by minimising the mean square error of the estimators \mathbb{R}^* and \mathbb{P}^* respectively. Then writing $T_1 = \bullet_1(1 + \varepsilon_1)$ for 1 = 0,1,2 such that $\mathbb{E}(\mathfrak{C}_1) = 0$ and assuming $|\mathfrak{C}_1| < 1$ the masses of \mathbb{R}^* and \mathbb{P}^* are given by $$M(R^*) = E(R^* - E)^2$$ $$= R^2 E(e_0^2 + e_1^2 + \xi_2^2 e_2^2 - 2e_0 e_1 + 2\xi_2 e_0 e_2 - 2\xi_2 e_1 e_2 \cdots)$$ $$\stackrel{!}{*} M(T) + R^2 (\xi_2^2 e_2^2 + 2\xi_2 e_0 e_2 + 2\xi_2 e_1 e_2) \cdots \qquad (7.2.5)$$ and $M(P^*) = E(P^* - P)^2$ $= \mathbb{P}^{2} \mathbb{E} (\varepsilon_{0}^{2} + \varepsilon_{1}^{2} + \delta_{2}^{2} \varepsilon_{2}^{2} + 2 \varepsilon_{0} \varepsilon_{1} + 2 \delta_{2} \varepsilon_{0} \varepsilon_{2} + 2 \delta_{2} \varepsilon_{1} \varepsilon_{2} \cdots)$ $\stackrel{\cdot}{=} \mathbb{M}(\mathbf{p}) + \mathbb{P}^{2} (\delta_{2}^{2} \sigma_{2}^{2} + 2 \delta_{2} \sigma_{02} + 2 \delta_{2} \sigma_{12}). \tag{7.2.6}$ Minimising M(R*) and M(P*) for values of \$2 and 82 respectively, we get their optimus value as and $$\delta_{2}^{*} = -(\frac{C_{1}}{C_{2}})^{2}_{12} = (\frac{C_{2}}{C_{2}})^{2}_{02}$$ (7.2.8) #### Ye spectively. Thus those constants involve the values of coefficients of variation of To, T, and Tg and the correlation coefficients between them, and sometimes it may be difficult in practice to guess the value of Tg and dg. For the sake of simplicity let us consider the value of Tg and dg as 1.0 and -1. Then for Tg and dg to be zero R* and P* are some as r and p respectively and for the values 1 and -1, we get, $$R_1^* = (rT_2)/e_2$$ and $R_2^* = (re_2)/T_2$ (7.2.9) as the two estimators of R and $$P_1^* = (p T_2)/e_2$$ and $P_2^* = (p e_2)/T_2$ (7.2.10) as the two estimators of F. second degree) for the bias and mae of these estimators. Writing $c_1 = c_1(1 + c_1)$, $c_2 = c_1(1 + c_2)$, $c_3 = c_3(1 + c_3)$, $c_4 = c_3(1 + c_3)$, $c_4 = c_3(1 + c_3)$, $c_5 = c_5(1 + c_3)$ where $c_6 = c_5(1 + c_3)$ and $c_6 = c_5(1 + c_3)$ of the degree of the estimator is in the degree $c_5 = c_5(1 + c_3)$. dominator) so as to make the expansion valid. We shall denote B(r), $B(R_2^*)$, $B(R_2^*)$, $B(R_2^*)$, $B(P_1^*)$ and $B(P_2^*)$ as the biases and M(r), $M(R_2^*)$, $M(R_2^*)$, M(p), $M(P_1^*)$ and $M(P_2^*)$ as the mean equate errors of the degree panding estimators. Then the biases are $$B(r) = B(r-R)$$ $$= RE(1 + C_0)(1 + C_1 + C_1^2 + C_1^2 + \cdots) - 1$$ $$= RE((C_0 + C_1) + (C_1^2 + C_0C_1) \cdots)$$ $$= R(C_1^2 + C_0C_1) \cdots (7.8.11)$$ $$B(R_{1}^{2}) = RB[(1+c_{0})(1+c_{2})(1+c_{1}+c_{1}^{2}+c_{1}^{2}+c_{1}) + RB[(c_{0}+c_{2}+c_{2}^{2}+c_{2}+c_{1}^{2}+c_{1}) + RB]$$ $$\Rightarrow RB[(c_{0}+c_{2}+c_{2}+c_{3}) + (c_{0}c_{2}-c_{0}c_{1}+c_{1}c_{2}+c_{2}^{2}) + RB]$$ $$\Rightarrow B(r) = R(c_{1}R + c_{0}R) \qquad (7.2.18)$$ $$B(R_{g}^{*}) = RE[(1 + e_{g})(1 - e_{g} + e_{g+-}^{2})(1 + e_{g} + e_{g}^{2} + ...) - 1]$$ $$= RE[(e_{g} + e_{g} - e_{g}) + (e_{g}^{2} + e_{g}^{2} - e_{g}e_{g} + e_{g}e_{g} + e_{g}e_{g}) + ...]$$ $$\Rightarrow B(r) + R(e_{g}^{2} + e_{gg} - e_{gg} + e_{gg}) \qquad (7.2.13)$$ $$B(p) = PE((e_0 + e_1) + e_0e_1)$$ $$= P c_{01}. \qquad (7.2.14)$$ $$B(Y_1^*) = PB[(1+e_0)(1+e_1)(1+e_2) - 1]$$ $$= PB[(e_0 + e_1 + e_2) + (e_0e_1 + e_0e_2 + e_1e_2)]$$ $$= B(p) + P(c_{02} + c_{12}) \qquad (7.2.15)$$ $$B(P_{2}^{2}) = PE((1 + e_{0})(1 + e_{1})(1 - e_{2} + e_{2}^{2} + \cdots) - 1)$$ $$= PE((e_{0} + e_{1} - e_{2}) + (e_{0}e_{1} - e_{0}e_{2} + e_{1}e_{2} + e_{2}^{2}) + \cdots)$$ $$= B(p) + P(c_{2}^{2} - c_{0} - c_{1}e_{2}). \qquad (7.2.16)$$ Similarly the mean square errors are $$R(r) = R(r + R)^{2}$$ $$\Rightarrow R^{2}(c_{0}^{2} + c_{1}^{2} + 2c_{01}). \qquad (7.2.17)$$ $$M(R_2^5) = R^2 R(e_0^2 + e_1^2 + 2e_0 e_1 + e_2^2 + 2e_0 e_2 - 2e_1 e_2 + ...)$$ $$\frac{4}{7} M(r) + R^2(e_2^2 + 2e_0 e_2 + 2e_1 e_2 + ...)$$ $$(7.2.18)$$ $$M(R_{2}^{6}) = R^{2}B(e_{0}^{2} + e_{1}^{2} + e_{2}^{2} - 2e_{0}e_{1} - 2e_{0}e_{2} + 2e_{1}e_{2} + ...)$$ $$\frac{1}{2}M(x) + R^{2}(e_{2}^{2} + 2e_{0}e_{2} + 2e_{1}e_{3}). \qquad (7.8.19)$$ $$M(y) = E(y - y)^2$$ $$= y^2(c_0^2 + c_1^2 + 2c_{01}) \qquad (7.2.20)$$ $$H(P_1^*) = P^{2}E(e_0^2 + e_1^2 + e_2^2 + 2e_0e_1 + 2e_0e_2 + 2e_1e_2 \cdots)$$ $$\frac{4}{3}H(p) + P^{2}(e_2^2 + 2e_0e_2 + 2e_1e_2). \qquad (7.2.21)$$ $$H(P_{2}^{*}) = P^{2}E(e_{0}^{2} + e_{1}^{2} + e_{2}^{2} + 2e_{0}e_{1} - 2e_{0}e_{2} - 2e_{1}e_{2} ...)$$ $$= H(p) + P^{2}(e_{2}^{2} - 2e_{0}e_{2} - 2e_{1}e_{3}) \qquad (7.2.22)$$ where $C_1 = V(T_1)/e_1$ and $C_{1j} = C_1C_jS_{1j}$ for 1,j = 0,1,2 and S_{1j} (1 \neq 1) are the correlation coefficients between T_1 and T_j . Estimators of the mas's may be obtained by substituting the estimates of C_1 and C_{1j} in the corresponding expressions. ### 7.3 Comparison of Setimatore: In this section we shall compare the proposed estimators with those of the usual estimators for their mse's and got the following two Theorems. Theorem 7.3.1: For a given design D(0,S,P), the estimators R_1^* and R_2^* will be more efficient than the usual estimator r for estimating the ratio R if the conditions $$9_{02} \left(\frac{C_0}{C_2}\right) - 9_{12} \left(\frac{C_1}{C_2}\right) < -\frac{1}{2}$$ (7.3.1) and $$9_{02} \left(\frac{C_2}{C_2} \right) - 9_{12} \left(\frac{C_1}{C_2} \right) > \frac{1}{2}$$ (7.8.2) respectively, are satisfied. <u>Proof:</u> Comparing M(r) in (7.2.17) with those of $M(R_1^*)$ and
$M(R_2^*)$ in (7.2.18) and (7.2.19) respectively, it is observed that R_1^* and R_2^* to be more efficient, the terms in the bracket should be less than zero, which on rearrangement gives the corresponding conditions stated in the above Theorem. Theorem 7.5.2. For a given design D(U,S,P) the estimators P_1^{\bullet} and P_2^{\bullet} will be more efficient than the usual estimator P_1^{\bullet} for estimating the product P_1^{\bullet} if the conditions and $$9_{02} \left(-\frac{C_0}{C_0} \right) + 9_{12} \left(-\frac{C_1}{C_0} \right) > \frac{1}{2}$$ (7.3.4) respectively, are caticfied. Proof of the theorem follows by comparing (7.2.20) to (7.2.22) and rearranging the terms. Remark 7.5.1: In the above comparisons the LHS of equations (7.5.1) and (7.5.2) is same as $-\xi_2^*$ and the LHS of equation (7.5.3) and (7.5.4) is expressible as $-\delta_2^*$. Remark 7.3.2: It may be mentioned that the conditions for efficiency of the estimators have been derived under the assumption that all the parameters θ_0 , θ_1 and θ_2 are positive or all are negative. Otherwise, the conditions will get interchanged. Those changes are shown in the following table. Table: Showing the interchange of conditions in the Theorems 7.3.1 and 7.3.2 depending on the sign of 61's. | | al on | of | | conditions for preference of | | | | | |-------------|-------|------|---------|------------------------------|---------|---------|--|--| | 0 | *1 | 92 | | | | Fg | | | | d a. | * | + | (7.3.1) | (7.3.2) | (7.3.3) | (7.3.4) | | | | SW | | *** | (7,5,1) | (7*3*2) | (7.3.3) | (7.3.4) | | | | 4 | * | ** | (7.3.2) | (7.3.1) | (7.3.4) | (7.3.3) | | | | | **** | 4 | (7.3.2) | (7.3.1) | (7.3.4) | (7.3.3) | | | | | - | + | (7.3.3) | (7.3.4) | (7.3.1) | (7.3.2) | | | | (30) | 4 | .160 | (7.3.3) | (7.3.4) | (7.3.1) | (7.3.2) | | | | • | + | * | (7.3.4) | (7.5.3) | (7.3.2) | (7.3.1) | | | | * | | *** | (7.3.4) | (7.3.5) | (7.3.2) | (7.3.1) | | | Remark 7.3.3 The conditions for officiency of the estimators are valid regardless of the value of the correlation coefficient between To and T1. (Pol). Hence these estimators may be more efficient than r (or p) even if To and T1 are positively (or negatively for p) correlated. However, in case Pol takes a value 41, the usual ratio estimator r is the only estimator to be used provided the coefficient of variations are equal. # 7.4 Configurational Representations The purpose of this section is to provide better appreciation of the preference regions obtained in the previous section. We shall assume $$C_0 = C_1 = C_2 = C$$ (7.4.1) in which ease the conditions for R_1^* and R_2^* to be more offi- and respectively. These conditions may be represented with the help of the configuration PR given delonge mext page. Thus whenever it is possible to choose a supplementary character \mathbf{x}_2 such that the pair $(?_{02}, ?_{12})$ lies in either of the regions R_1^* and R_2^* , then under the assumption $(7.4.1)_5$ the corresponding estimator is an improvement over the usual ratio estimator. It may be mentioned that the relative increase in efficiency is higher when y and \mathbf{x}_1 are negatively correlated. For illustration let us consider two extreme situations In the case (i) the point (${}^{9}_{02}$, ${}^{9}_{12}$) lies in the region of \mathbb{R}^{*}_{1} whereas in case (ii) it lies in the region \mathbb{R}^{*}_{2} and we get $$B(r) = 2R\sigma^2$$ and $M(r) = 4R^2\sigma^2$ in both the cases, while $$B(R_1^*) = 0 \quad \text{and} \quad M(R_1^*) = (RO)^2$$ in the first case and $$B(R_2^*) = B(r)/2$$ and $M(R_2^*) = (RC)^2$ in the second case. Similarly, the set of conditions obtained in Theorem 7.3.2 can also be given a configurational representation. Under the assumption (7.4.1), the conditions (7.3.3) and (7.3.4) take the form respectively and we get the following configuration From Thus when the supplementary character x_2 is such that the pain (\P_{a2}^*, \P_{12}^*) lies in either of the regions of P_1^* and P_2^* , then the corresponding estimator is an improvement over the usual product estimator provided (7.4.1) is satisfied. It is again seen that the gain in efficiency is higher if \P_0 and X_1 are found to have positive correlation. For illustration if (i) $\P_0 = +1.0$, $\P_0 = +1.0$ and $\P_1 = +1.0$ and $\P_1 = +1.0$, $\P_0 = +1.0$ and $\P_1 = +1.0$ and $\P_1 = +1.0$ and $\P_1 = +1.0$ and $\P_1 = +1.0$ and $\P_2 = -1.0$ and $\P_1 = -1.0$ then under the assumption (7.4.1) $\Pi_1 = \Pi_1 = -1.0$ in both the cases and $\Pi_1 = \Pi_1 = \Pi_1 = 0$ in the first case, and $\Pi_1 = \Pi_1 = \Pi_1 = 0$ in the second case. ## An Danielcal Study For this repulation we get, The data for all 61 blocks of Ahemedabad city Ward No. 1 (Khadia I) taken from 1961 Population Consus have been considered for the purpose of the present study. It is intended to find the ratio E of total female workers (Y) to the total female population (X_1) . The supplementary characters chosen for this purpose are (1) educated female $\{X_2\}$ and (11) female population in services $\{X_3\}$ (group IX of the Population Census). $$\ddot{Y} = 7.46$$ $0_0^2 = 0.5046$ $9_{el} = 0.0388$ $\ddot{X}_1 = 265.54$ $0_1^2 = 0.0379$ $9_{el} = -0.2070$ $\ddot{X}_2 = 179.00$ $0_2^2 = 0.0633$ $0_3^2 = 0.7731$ $\ddot{X}_3 = 5.33$ $0_3^2 = 0.5737$ $9_{12} = 0.7373$ and 923 = 0.0474 we \tilde{Y}_1, \tilde{X}_2 and \tilde{X}_3 denote mean for the corresponding agractors, $\tilde{G}_1^{(2)}$ (i = 0, 1, 2, 5) stand for the square of their coefficient of variations of the characters and \tilde{Y}_{ij} (i $\neq j$ = 0, 1, 2, 5) for the corresponding correlation coefficients. Let us assume that a simple random sample of n blocks is selected from this population to estimate the ratio R, in which case $C_1^2 = QC_1^{*2}$ where Q = (N-n)/(N-1)n. For this population it is observed that we can use the characters \mathbf{x}_2 and \mathbf{x}_3 in constructing the proposed estimator $$\mathbb{R}_{1}^{*} = \left(\frac{Y}{X_{1}}\right)\left(\frac{\hat{X}_{2}}{X_{2}}\right) \quad \text{and} \quad \mathbb{R}_{2}^{*} = \left(\frac{Y}{X_{1}}\right)\left(\frac{X_{3}}{\hat{X}_{3}}\right)$$ respectively. Further, we find from (7.2.7) the optimum value of ξ_2 (using x_2) and ξ_3 (using x_3) as $$\xi_2 = 1.178$$ $\xi_3 = -0.737.$ The efficiency of the estimators is given in the following table. Table 7-4-1: Showing efficiency of estimators. | Setinators | VISEI/ | % Relative
officiency | |----------------------------------|--------|--------------------------| | * | •5318 | 100 | | R*(x2) | •4491 | 118 | | R*(x ₂) | 46677 | 110 | | R ₂ (x ₃) | .2593 | 205 | | R*(z 5) | .21.91 | 242 | The mipplementary character used in a particular estimator is indicated in the bracket. It is observed that \mathbf{x}_3 is more suitable than \mathbf{x}_2 . Further, the gain in using the exact value of ξ_2 and ξ_3 is not much and therefore R_1^* and R_2^* which does not require then may safely be used. ### V.5 Almost Unbigged Batimators We have seen in Section 7.2 that the proposed estimators, like the usual ratio and product estimators, are biseck to order n⁻¹, where n is the size of the sample, for estimating the ratio R and product P. In this section some estimators corresponding to R* and P* are obtained following quenouille's (1956) and Murthy and Hanjarma's (1959) techniques of bias reduction. quemouille's method of bias reduction, from order n^{-1} to n^{-2} , consists in dividing the smaple in to g random groups each of size m_0 such that $m_0 = n$, and thus the estimators $$t_p = gp - \frac{p-1}{2} \sum p_1^2$$ $t_p = gp - \frac{p-1}{2} \sum p_2^2$ $t_{12} = gp - \frac{p-1}{2} \sum p_2^2$ $t_{13} = gp - \frac{p-1}{2} \sum p_2^2$ $t_{14} = gp - \frac{p-1}{2} \sum p_2^2$ $t_{15} = gp - \frac{p-1}{2} \sum p_2^2$ corresponding r, p, R* and P* have bias of order n⁻² almost; where r, p; R; and P* are the corresponding estimators computed from the earple omitting the jth group. Durbin (1959) and J. N. E. Ras (1965) have studied some properties of t_r assuming different models for the variates. Murthy and Manjama have suggested a technique for getting elegat unbiased (unbiased to order n-2) estimators on the basis of interponetrating sub-samples. The technique consists in drawing the sample in the form of g independent interpenetrating sub-samples, and using the relation between the biases of the estimators computed from the sub-samples and that from the sample as a whole, to get almost unbiased estimators. Accordingly the estimators are almost unbiased corresponding to r, p, R* and P*, where rj. pj. Rj and Pj are the corresponding estimators computed from the sub-samples. The estimator tip is given by Murthy and Nanjamma (1959) and tip by Murthy (1964). It may be mentioned that to and tip are unbiased. Those estimators can also be obtained with the help of the technique developed by T. J. Rec. (1966). Estimators corresponding to R_1^* , R_2^* and R_1^* , R_2^* may be obtained from the above expressions. Such estimators may also be obtained by substracting an unbiased estimator of the bias for the corresponding estimators. Efficiencies of these estimators are not being studied here. # 7.6 Use of Two or More Supplementary Characters: In the previous sections of this chapter we have considered the estimator R* and P* for estimating R and P, and two important special forms of R*, namely R* and R* in (7.2.5), and that of P*, namely B* and P* in (7.2.6), and compared then in detail. These estimators, as mentioned earlier, utilised only one supplementary character B* (or T*). In this section we consider more general estimators using two or more such characters. For the same of simplicity, we first consider the case of two characters which suggests an immediate extension. Let us consider two supplementary characters \mathbf{x}_2 and \mathbf{x}_3 ,
information on which is available, and denote the corresponding estimators of the parameters \mathbf{e}_2 and \mathbf{e}_3 by \mathbf{f}_2 and \mathbf{f}_3 respectively. Then the proposed estimators is the linear combination of \mathbf{R}^* 's and \mathbf{f}^* 's obtained by using \mathbf{f}_2 and \mathbf{f}_3 . Thus an estimator for \mathbf{R} is $$R_0^* = w_1 x \left(-\frac{x_2}{4g} \right)^{\xi_2} + w_2 x \left(-\frac{x_3}{4g} \right)^{\xi_3} \tag{7.6.1}$$ where w_1 and w_2 are weights such that $w_1 + w_2 = 1$, and ζ_2 and ζ_3 are constants to be suitably chosen. Next, writting $T_1 = (\theta_1(1+\theta_1))$ for 1=0,1,2,3 and assuming $|\theta_1| < 1$ for large samples, the bias and may of Rg will be given by $$\begin{split} B(R_0^e) &= BB(w_1(1+e_0)(1+e_1)^{-2}(1+e_2)^{\frac{2}{2}} + w_2(1+e_0)(1+e_1)^{-2}(1+e_3)^{\frac{2}{3}} - 1) \\ &= BB((e_0-e_1+e_1^2-e_0e_1) + w_1\epsilon_2e_2 + w_1\epsilon_3e_3 + w_1(e_2e_0e_2 - \epsilon_2e_1e_2 + \frac{\epsilon_2(\epsilon_2-1)}{2}e_2^2) + w_2(\epsilon_3e_0e_3 - \epsilon_3e_1e_3 + \frac{\epsilon_3(\epsilon_3-1)}{2}e_3^2) + w_1(\epsilon_3e_0e_3 - \epsilon_3e_1e_3 + \frac{\epsilon_3(\epsilon_3-1)}{2}e_3^2) + w_2(\epsilon_3e_0e_3 \frac{\epsilon_3(\epsilon_3e_1e_3 \frac{\epsilon_3(\epsilon_3e_$$ $$+\frac{\xi_3(\xi_3-2)}{3}c_2^2)$$ (7.6.4) $$= M(x) + E_{5}(4J_{5}^{5}c_{5}^{5} + 4S_{5}^{5}c_{5}^{2} + 8M^{7}(4^{5}c_{0}^{6} - 4^{5}c_{0}^{15})$$ The optimum values of w_1 and w_2 may be determined, in the usual way by minimising (7.6.5) under the condition $w_1 + w_2 = 1$, and we get, $$W_{1} = \frac{\xi_{3}^{2} c_{3}^{2} - \xi_{2}(c_{02} - c_{12}) + \xi_{3}(c_{03} - c_{13}) - \xi_{2}\xi_{3} c_{23}}{\xi_{2}^{2} c_{2}^{2} + \xi_{3}^{2} c_{3}^{2} - 2\xi_{2}\xi_{3}c_{23}}$$ $$= 1 - W_{2}. \tag{7.6.6}$$ The optimum values of ζ_8 and ζ_3 in (7.6.1) may be obtained by minimising $M(R_5^*)$ using optimum weights. But since they will be complicated, in general, we shall consider the simple case of $\zeta_2=-1$ and $\zeta_3=-1$ as in the earlier case. Then the estimator R_6^* may be written as linear combination of R_2^* and R_2^* . That is $$R_0^* = W_1 R_1^* + W_2 R_2^*$$ (7.6.7) The bias of this estimator may be directly obtained from $B(R_2^*)$ in (7.6.4). Similarly $$M(R_{0}^{*}) = M(r) + R^{2} [w_{1}^{2} c_{2}^{2} + w_{2}^{2} c_{3}^{2} + 2w_{1} (c_{02} - c_{12}) - 2w_{2} (c_{03} - c_{13}) - 2w_{1} w_{2} c_{23}^{2}].$$ $$(7.6.8)$$ It is interesting to note that $w_1 = w_2 = 1/2$ when $C_j = C$, $c_0 = c_1 = c_2$ and $c_0 = c_1 = c_2$ in which case $$H(R_{\bullet}^{\bullet}) = \frac{R_{\bullet}^{2} c^{2}}{2} [(1 + 9_{23}) - 4(9_{01} + 9_{03} - 9_{02} - 1)]. \qquad (7.6.9)$$ Remark 7.6.1: A direct comparison of Rt with R* or Rt. with R1 and R2, will not lead to any usable conclusions. However, in general the weighted estimators are likely to fare better than the unweighted ones. But, the major draw-back with the weighted estimators is that of determination of optimum weights. It may happen that in some situations the values of the optimum weights are known in advance from some source and them no difficulty arises, however in such cases one has to be quite certain that the weights used are atleast near optimum as otherwise these estimators may fare worse than the unweighted ones. On the other hand, if the weights are not known and they mre to be estimated from the sample data itself, then the total mee gots automatically increased. We, therefore, suggest below an estimator, free from the weights (w_1^*s) , and which utilise information on both the supplementary character \mathbf{x}_2 and \mathbf{x}_3 , for estimating the ratio R_* . The estimator is $$R_0^{q^*} = r(-\frac{T_E}{\Psi_E})^{\xi_E}(-\frac{T_S}{\Psi_S})^{\xi_S}$$ (7.6.10) where ξ_g and ξ_g are constants similar to ξ_g in (7.2.7). The bias and was of this estimator is $$B(R_3^{*}) \stackrel{?}{=} B(r) + R[\xi_2(\sigma_{02} - \sigma_{12}) + \xi_3(\sigma_{03} + \sigma_{13}) + \xi_2\xi_3\sigma_{23}$$ $$+ \frac{\xi_2(\xi_2 - 1)}{2} \sigma_2^2 + \frac{\xi_3(\xi_3 - 1)}{2} \sigma_3^2] \qquad (7.6.11)$$ and $$N(R_{\delta}^{*}!) = N(r) + R^{2} [\xi_{2}^{2} c_{2}^{2} + \xi_{3}^{2} c_{3}^{2} + 2\xi_{2}(c_{02} - c_{12}) + 2\xi_{3}(c_{03} - c_{13}) + 2\xi_{2}\xi_{3}^{2} c_{23}].$$ (7.6.12) Again the optimum values of ξ_2 and ξ_3 maybe tained by minimising $M(R_0^{**})$ but as in the earlier case these optimum values are complicated to use in practice. We therefore consider $\xi_2 = 1$ and $\xi_3 = -1$ which gives the estimator $$R^{**} = r(\frac{T_2}{T_3})(\frac{\theta_3}{\theta_2})$$ (7.6413) PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompresso the mee of which is $$H(R_0^*1) = H(r) + R^2[a_2^2 + a_3^2 + 2(a_{02} - a_{12}) - 2(a_{03} - a_{13}) - 2a_{23}].$$ (7.6.14) It may be mentioned that R. is the usual double ratio estimator. Because of the reasons pointed out in the remark 7.6.1 we do not compare R. and R. directly for their asc. However, in the empirical study given later both the estimators are considered. In the following we shall compare R. in (7.6.13) with that of R. and R. using x. and x. respectively and get the following. Theorem 7.6.1: For a design D(U,S,P) the estimator Rail be more efficient than Ri and Ri respectively for estimating the ratio R if the conditions $$(\frac{G_{2}}{G_{2}})_{2} = (\frac{G_{2}}{G_{2}})_{2} + (\frac{G_{2}}{G_{3}})_{2} = \frac{1}{2}$$ (7.6.15) and $$(\frac{C_0}{C_0})_{S_{00}} - (\frac{C_1}{C_0})_{S_{12}} - (\frac{C_3}{C_3})_{S_{23}} < -\frac{1}{2}$$ (7.6.16) respectively, are satisfied. #### Proof is omitted. There are various situations in which the above conditions are satisfied. Broadly speaking, if 905 is positive and 902 negative, conditions will hold. In ease, however, good guess values of ξ_2^* and ξ_3^* (defined as ξ_2^* for character x_3) are available they may be used in getting R_2^{**} . In that case it is observed that R_3^* is more efficient than $R^*(\xi_2^*)$ if and that it is more efficient than R* (x3) if where $R^*(\xi_2^*)$ denotes the estimator R^* using \mathbf{x}_2 with ξ_2^* and $R^*(\xi_3^*)$ denotes the estimator R^* using \mathbf{x}_3 with ξ_3^* . Thus it is expected that R_0^* will be more efficient that $R^*(\xi_2^*)$ and $R^*(\xi_3^*)$ if the magnitude of θ_{23} is quite small. Before giving the empirical study, we consider below the estimators of products, which utilize information on both x_2 and x_3 . These estimators, similar to x_0^* and x_0^{**} , are given by $$R_{i}^{2} = H_{i}^{2} N \left(\frac{2}{5} \right)^{3} + H_{2}^{2} P \left(-\frac{2}{5} \right)^{3}$$ (7.6.17) and $$P_{6}^{*0} = y(\frac{\pi_{2}}{5})^{3}2(\frac{\pi_{3}}{5})^{3}3 \tag{7.6.18}$$ where we and we are weights such that we + we al and PDF compression. OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompress ∂_{2} and ∂_{3} are constants to be determined as ∂_{2} in (7.2.8). The approximate bias and use of these estimators are given by $$\begin{split} B(P_{e}^{*}) &= B(p) + P[w_{1}^{*} \partial_{2}(C_{02} + C_{12}) + w_{2}^{*} \partial_{3}(C_{03} + C_{13}) \\ &+ w_{1}^{*} \frac{\partial_{2}(\partial_{2} - L)}{2} C_{2}^{2} + w_{2}^{*} \frac{\partial_{3}(\partial_{3} - L)}{2} C_{3}^{2}], \\ B(P_{e}^{**}) &= B(p) + P[\partial_{2}(C_{02} + C_{12}) + \partial_{3}(C_{03} + C_{13}) + \partial_{2}\partial_{3}C_{23} + \\ &\frac{\partial_{2}(\partial_{2} - L)}{2} C_{2}^{2} + \frac{\partial_{3}(\partial_{3} - L)}{2} C_{3}^{2}], \\ M(P_{e}^{*}) &= M(p) + P^{2}[w_{1}^{*2} \partial_{2}^{2}C_{2}^{2} + w_{2}^{*2}\partial_{3}^{2}C_{3}^{2} + 2w_{1}^{*}\partial_{2}(C_{02} + C_{12}) \\ &+ 2w_{2}^{*}\partial_{3}(C_{03} + C_{13}) + 2w_{1}^{*}w_{2}^{*}\partial_{2}\partial_{3}C_{23}], \\ M(P_{e}^{*}) &= M(p) + P^{2}[\partial_{2}^{*}C_{2}^{2} + \partial_{3}^{*}C_{3}^{2} + 2\partial_{2}(C_{02} + C_{12}) + 2\partial_{3}(C_{03} + C_{13}) \\ &+ 2\partial_{2}\partial_{3}C_{23}], \end{split}$$ Further the optimum weights w_1' and w_2' used in $P_{\mathbf{c}}^*$ are given by $$\mathbf{w}_{1}^{2} = \frac{\partial_{3}C_{3}^{2} - \partial_{2}(C_{02} + C_{12}) + \partial_{3}(C_{03} + C_{13}) - \partial_{2}\partial_{3}C_{23}}{C_{2}^{2} + C_{3}^{2} - 2\partial_{2}\partial_{3}C_{23}}$$ $$= 1 - \mathbf{w}_{2}^{2}.$$ Considering $\partial_2 = 1$ and $\partial_3 = -1$, we get the mse of $$P_0^* = p(T_2/T_3)(\Phi_3/\Phi_2)$$ as $$M(P_0^*) = M(p) + P^2[a_2^2 + a_3^2 + 2(a_{02} + a_{12}) - 2(a_{03} + a_{13}) - 2a_{23}].$$ Again due to remark 7.6.1 we do not compare P_6^* with other estimators, however, a comparison of P_6^* with those of P_1^* and P_2^* yields the following Theorem. Theorem 7.6.2: For any design D(U,S,P), the estimator P^{*} , in (7.6.16) with $\partial_2 = -1$, $\partial_3 = 1$), will be more efficient than P_1^* and P_2^* for estimating the product P if the conditions and $$(\frac{C_0}{C_0})^{\frac{1}{2}} \circ 2 + (\frac{C_0}{C_0})^{\frac{1}{2}} \circ 12 - (\frac{C_0}{C_0})^{\frac{1}{2}} \circ 23 < -\frac{1}{2}$$ respectively: are satisfied. Proof is straight forward and honce it is omitted. ### An Ampirical Study Here again we refer to the same data considered in Section 7.4 and consider the Same scheme of sample selection which has been used to compare the efficiencies of different estimators (shown in Table 7.4.1) using single supplementary character \mathbf{x}_2 or \mathbf{x}_3 . The four estimators \mathbf{R}_3^* , \mathbf{R}_3^* , \mathbf{R}_3^* , and \mathbf{R}_3^* ; using both \mathbf{x}_2 and \mathbf{x}_3^* , developed in Section 7.6 will be compared with that of r. Using the values of to and to given by $$\xi_2 = 1.178$$ and $\xi_3 = -0.737$, obtained earlier, we get the optimum weights w_1 and w_2 , for the estimator R_0^* , from (7.6.6) as $$w_1 = 0.2137$$ and $w_2 = 0.7863$. Similarly the optimum weights for the
estimator R_0^* (with $g_2=1$ and $g_3=-1$), are $$W_1 = 0.3506$$ and $W_2 = 0.6494$. Thus using those values of ties and with we get the following table giving the efficiency of different estimators. Table 7.6.1: Showing efficiency of different estimators using both (X_2) and (X_3) . | Marior . | MSD/RZQ | ./. Relative efficiency | | | | |----------|---------|-------------------------|--|--|--| | * | 0.5318 | 100 | | | | | H. | 0.2021 | 263 | | | | | R. | 0.1812 | 293 | | | | | R** | 0-1390 | 382 | | | | | Rai | 0.1800 | 296 | | | | This study reveals that R_0^{**} which does not use $W_{1's}$ is most efficient. However, in seek situations R_0^* is expected to fare better. But the estimator R_0^* ; which does not use either w_1 or ξ_1 seems to be quite usable in practice and its construction is also simplest as it requires only a rough knowledg of Ψ_{02} and Ψ_{03} . In the following for the sake of completeness, we consider the estimators $R_{\mathbf{C}}^{*}$ and $R_{\mathbf{C}}^{*}$, as an extension $R_{\mathbf{C}}^{*}$ and $R_{\mathbf{C}}^{*}$, using k suitable supplementary characters. We define $$R_{k_0} = \sum_{i=0}^{k+1} W_i r(\frac{x_i}{x_i})^{i_1}$$ (7.6.19) where $\Sigma w_1 = 1$, w_{10} being weights to be obtained by minimized $M(\mathbb{R}_{k0}^*)$ and $$R_{40}^{2} = 2 + \frac{1}{4} \left(\frac{r_{4}}{r_{1}} \right)^{r_{4}} \tag{7.6.20}$$ where \$1.8 are constants (as in 7.2.7). Similar estimator for estimating P will be given by $$P_{k_0} = \sum_{i=2}^{k+1} w_i p(\frac{r_i}{i})^{\delta_1}$$ and $P_{k_0} = p \prod_{i=2}^{k+1} (\frac{r_i}{\delta_1})^{\delta_1}$ (7.6.21) where Σ w = 1 and θ_{10} similar to ξ_{10} For obtaining the mee we consider the case where for q characters which are positively related with y's, $\xi_1 = \delta_1 = -1$ and for the remaining iteq characters negatively correlated with y's, $\xi_4 = \delta_4 = +1$, we get $$M(R_{k_0}^2) = M(r) + R^2[M_k - 2 \sum_{i=1}^{q} c_i c_i s_{1i} + 2 \sum_{j=q+1}^{k+1} c_i c_j s_{1j}]$$ and $$M(P_{k_0}^{*1}) = M(p) + P^2[M_k + 2 \sum_{i=1}^{q} c_i c_i s_{1i} - 2 \sum_{j=q+1}^{k+1} c_j c_j s_{1j}]$$ where Expressions for the general estimators may be obtained in a similar way. Comparison of these estimators is not attempted here. In the next gention we proceed to extend these estimators for estimating the parameters themselves. ## 7.7 Estimators of the Parametric Functions In this section we consider some estimators obtained as combination of well known ratio and product estimators for estimating the parametric function of itself. For this purpose let us suppose that information on two or more supplementary characters is available in the survey and for simplicity we decide to use any two of them in the estimation procedure. We immediately meet with the problem of choice between the two and how to utilise them as to yield more efficient estimators of e_0 than those which do not use information on any such character or utilise only one of them. Let x_1 and x_2 be two such chosen characters. Then we may have the following situation. - (A) x_1 and x_2 are such that one of them, say x_1 is highly positively correlated with y and x_2 is negatively correlated such that x_1 and x_2 can be used in constructing ratio and product estimators respectively. - (B) z and z both are not highly correlated (positive or negative) with y such that usual unbiased estimator To is quite efficient. - (C) Both z and z are either highly positively or negatively correlated with y in which case we use two variate ratio or product estimator as the case may be. - (D) Only x_1 (or x_2) could be efficiently used in ratio (or product) method of estimation. We consider below three estimators t_1, t_2 and t_3 ; which are direct extensions of the estimators considered in Section 7.2, and compare them with other known estimators for the situations mentioned in A to D. The estimators considered $$\mathbf{z}_1 = \mathbf{z}_1^* \, \mathbf{e}_1 = (\mathbf{z}_1^* \, \mathbf{z}_2)(\mathbf{z}_2^*), \qquad (7.7.1)$$ $$\theta_2 = R_2^* \theta_1 = (\pi^2 \pi_2) \theta_2 \theta_1$$ (7.7.2) pends to the character x which is the supplementary character in the present case. The bias and mac of these estimators may be directly obtained from the corresponding estimators of Section 7.2 by multiplying them with Θ_1^2 . We give below those expressions and compare them for their mae's M_1,M_2 and M_3 respectively. We get, $$H_1 = 9_0^2(0_0^2 + 0_1^2 + 0_2^2 + 20_{02} - 20_{01} - 20_{12}) \qquad (7.7.4)$$ $$H^{2} = \Theta_{2}^{2}(G_{0}^{2} + \Theta_{1}^{2} + G_{2}^{2} + 2G_{02} + 2G_{01} + 2G_{12}) \qquad (7.7.5)$$ $$H_3 = \Theta_0^2(G_0^2 + G_1^2 + G_2^2 + 2G_{01} + 2G_{02} + 2G_{12}) \qquad (7.7.6)$$ where $$C_1 = V(T_1)/e_1$$ and $C_{1j} = C_1C_js_{1j}$. ## 7.8 Comparison of Estimators; Here we compare unbiased, ratio, product and multivariate ratio and product estimators with the estimators suggested in the previous assetion under the situations (A) to (D), mentioned therein. We have the following theorems. Theorem 7.8.1: For any sampling design D(U,S,P), the estimators tors to and to under the situation (A) of Section 7.7, will be more efficient than the ratio estimator T. which utilize information on z. for estimating 0. if the conditions (7.3.1) and (7.3.2) respectively, mentioned in Theorem 7.3.1, are satisfied. Proof is omitted. Theorem 7.3.2: For any design D(U,S,P), the estimators to and to under the situation (A) in Section 7.7, will be more efficient than the product estimator T, which utilizes information on x₂, for ustimating 0, if the conditions (7.3.3) and (7.3.4) respectively, mentioned in Theorem 7.3.2, are satisfied. We omit the proof. It may be noted that for $$C_1 = C_2 = C_0 = C$$ (7.8.1) we get the same configurational representation P_R and P_P as given in Section 7.4. However, in the present situation P_R , the correlation coefficient between P_R and P_R , is supposed to be greater than half whereas in the comparisons of P_R^* and P_R^* with P_R^* and restriction was imposed on P_R^* Due to this restriction, we find that some points in the region of P_R^* (which in the present case will mean the preference region for P_R^*) can not be realised due to restriction of the positivity of the correlation matrix of 9cl, 9cc and 912* Similarly, under the condition (A) the correlation coefficient f_{c2} should be less than minus half, whereas no such condition was imposed on f_{c1} (which now corresponds to f_{c2}) for the configuration F_{p} . Owing to this condition we again find that some of the points, specially towards the corner of the region for F_{1}^{*} (which correspond to the region of f_{2}) and f_{2}^{*} (which correspond to the region of f_{1}) are not realised in practice due to positivity restriction of the correlation natrix. However, it can easily be shown that there do exist a number of eases where the point located by the pair lies in the preference regions of the proposed estimators satisfying the condition of the positivity of the correlation matrix. For example, consider the following pair of values of \$1.900 and \$12 in the table below. Table 7.8.1. | elano. | | "A | | 908 | | 12 | |--------|----|-----|-----|-----|---|-----| | 1 | * | 0.6 | - | 0.8 | * | 0.2 | | 2 | + | 0.7 | + | 0.2 | | 0.6 | | 3 | | 0.0 | ** | 0.7 | | 0.7 | | 4 | * | 0.2 | *** | 0.3 | | 0.7 | | 5 | + | 0.5 | 4 | 0.3 | | 0.7 | | 6 | .+ | 0.4 | + | 0.4 | * | 0.6 | It may be noted that the pair s_{ol} and s_{ol} in the above table are so chosen that they satisfy the different situations mentioned in Section 7.7. For instance in case I situation (A) is satisfied and in this case t_1 is better than both t_r and t_p . Similarly, in cases 4.5 and 6 unbiased estimator is preferred but from configuration t_{rp} (to follow) we get more efficient estimators and so on. Now we consider the situation (B) and compare the proposed estimators with that of the usual unbiased estimator T_0 which happens to be more efficient than T_p and T_p . Soting that $$V(T_0) = \Theta^2 C_0^2,$$ (7.8.2) we have the fellowing Theorem 7.8.3: For any design $D(U,S,P)_y$ under the situation (B), the proposed estimators t_1 , t_2 and t_3 will be more efficient than the usual unbiased estimator T_0 if the conditions $$\left(\frac{c_1^2 + c_2^2}{c_1 c_2}\right) + 2\left(\frac{c_2}{c_1}\right) s_{02} - 2\left(\frac{c_2}{c_2}\right) s_{01} - 2s_{12} < 0$$ (7.8.3) $$\left(\frac{C_{1}^{2}+C_{2}^{2}}{C_{1}C_{2}}\right)-2\left(\frac{C_{0}}{C_{1}}\right)_{0}^{2}-2\left(\frac{C_{0}}{C_{2}}\right)_{0}^{2}+2_{12}^{2} < 0 \qquad (7.8.4)$$ and $$(\frac{G_1}{G_2}) + (\frac{G_2}{G_1}) + 2(\frac{G_2}{G_1}) \circ_{02} + 2(\frac{G_2}{G_2}) \circ_{01} + 2 \circ_{12} < 0$$ (7.8.5) PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompress ere respectively satisfica. Proof follows by comparing (7.8.2) with (7.7.4) to (7.7.6). Under the condition of equality of the coefficient of variations, we get the respective conditions (7.8.3) to (7.8.5) as $$(9_{01} - 9_{02}) > 1 - 9_{12}$$ (7.8.6) and $$(9_{a1} + 9_{a2}) < -(1 + 9_{12}),$$ (7.8.8) Assigning different plausible values to t_{01} , t_{02} and t_{12} , with the condition (B), that is, t_{01} and t_{02} lies between -5 to +5, we get the following configuration T_{np} . It may be mentioned that we have not imposed any restriction on \mathbf{s}_{12} . It is clear from Above 3 that \mathbf{t}_1 will be more efficient than T_0 in the triangular region $\mathbf{A}_1\mathbf{B}_1\mathbf{G}_1$ for $\mathbf{s}_{01} \leq 0.5$ and in the region $\mathbf{A}_2\mathbf{B}_2\mathbf{G}_1$ if $\mathbf{t}_{01} \leq 0.6$ and so on. The regions of preference for \mathbf{t}_2 and \mathbf{t}_3 are also indicated above. Next we compare these estimators with that of Olkin's multivariate ratio
estimator which has been discussed in the previous chapter, in a general forms. The use of this estimator for uniform optimum weights, under the condition $$C_1 = C_2 = C$$ (7.8.9) for k = 2 is given by $$H(T_{pg}) = 60 \left[\frac{\sigma^2}{2} (1 + \theta_{12}) + \sigma^2 + \sigma_0 \sigma \left(9_{12} + 9_{02}\right)\right], \quad (7.8.10)$$ Under the condition (7.8.9), we get from (7.7.4) $$H_1 = e^2[\sigma_0^2 + \sigma^2(2 - \theta_{12}) + 26C_0(\theta_{02} - \theta_{01})],$$ (7.8.11) Theorem Valati For any design D(U,S,P), the estimator by, to end to under the condition (Val.9), will be more efficient than T, whenever the conditions $$\frac{1}{3-89} = \frac{1}{2} \left(\frac{C}{C_0} \right) \qquad (7.8.12)$$ $$\frac{9}{2} \frac{1}{4} + \frac{9}{2} \frac{1}{2} > \frac{3}{2} \left(\frac{0}{0} \right)$$ (7.8.13) and $$\frac{{}^{9}_{01} + {}^{9}_{02}}{1 + {}^{9}_{12}} < -\frac{1}{2} {}^{(9)}_{0}$$ (7.8.14) respectively, are satisfied. Lastly, we compare these estimators with the multivariate product estimator T_{pk} proposed in the forecome; chapter. The mass of T_{pk} for k=2 with uniform weight under (7.8.9), is $$H(T_{M2}) = \Theta_0^2 [\frac{\sigma^2}{2} (1 + \theta_{12}) + G_0^2 + CG_0(\theta_{e1} + \theta_{e2})].$$ (7.8.15) Theorem 7.8.51 For any design D(A,S,P) the estimators $t_1 \cdot t_2$ and t_3 , under the condition (7.8.9), will be more efficient than T_{p2} whenever the conditions $$\frac{38_{01} - 9_{02}}{3 - 59_{12}} > \frac{160}{3}$$ (7.8.16) $$\frac{901 + 902}{1 + 912} > \frac{1}{2} \left(\frac{0}{0}\right) \tag{7.8.17}$$ md $$\frac{{}^{9}_{01} + {}^{9}_{02}}{1 + {}^{9}_{12}} \leftarrow \frac{3}{2} (\frac{6}{6}) \tag{7.8.18}$$ respectively, are satisfied. Proofs of the theorems easily follow by comparing the mee of the estimators under the condition (7.8.1). Remark 7.8.1: It may be noted, however, that the estimator \mathbf{t}_{22} has been suggested for the situation where both \mathbf{x}_1 and \mathbf{x}_2 are highly positively correlated and \mathbf{t}_{22} for the situation where both \mathbf{x}_1 and \mathbf{x}_2 are highly negatively correlated hence it is t_g which is comparable with t_{TS} and t_g with that t_{TS} since they satisfy the situation mentioned in (C). nentioned in Theorem 7.8.4 and 7.8.5, are not with in a variety of situations. Further to will in general be more often perfected than any other estimator considered here, whenever, one of the character is positively correlated and the other is negatively correlated with y. However, for this situation, it is worthwhile to consider another estimator based on the estimator R*: suggested for estimating the ratio R in the previous chapter. The estimator in this case will be of the form $$t_1^* = w_1 x \theta_1 + w_2 y \theta_2 \tag{7.8.19}$$ where we and we are weights such that This estimator like the earlier ones is biased. Bias and use are easily seen to be (from \mathbb{R}_6^*) $$B(t_1^*) = w_1 B(r) + w_2 B(p)$$ where B(r) and B(p) are bias of ratio and product estimators T_r and T_n respectively. PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompresso The optimum weights we and we are $$w_1 = \frac{\sigma_2^2 + \theta_{01} \sigma_0 \sigma_1 + \theta_{02} \sigma_0 \sigma_2 + \theta_{12} \sigma_1 \sigma_2}{\sigma_1^2 + \sigma_2^2 + 8\theta_{12} \sigma_1 \sigma_2} = 1 - w_2.$$ (7.8.21) Nort, comparing to with the we find to will be more efficient, $$\frac{901-908}{2-918} > +\frac{3}{2}(\frac{3}{6})$$ (7.8.22) It is observed that this condition is encountered in many cases. For instance, under the condition (A), $v_{el} = v_{e2}$ will always be positive and greater than unity making the rhe greater than half which is the requirement whenever $C = C_0$. Hence t_1 is to be preferred to t_1^c in such cases from the view point of its use as well as its simplicity. #### CHAPTER VIII ### SOME GENERALISED RATIO ESTIMATORS Summary: In this chapter we consider some estimators which are generalisations of the usual ratio estimator. Srivestava (1967) considered an estimator $\vec{y}_1 = \vec{y}(\vec{x}/\vec{x})^{\alpha}$ and Rao (19689 has suggested $\vec{y}_1 = \vec{y}(\vec{x}/\vec{x})^{\alpha}$ and Rao (19689 has suggested $\vec{y}_1 = \alpha \vec{y}_1 + (1-\alpha)\vec{y}$ as an alternative to \vec{y}_1 where α is some constant to be suitably chosen. These produced estimators are biased and have mean square error equal to that of the usual regression estimator for optimum value of α . We suggest in section 8.2 an estimator $\vec{y}_1 = (\vec{y}/t_1)\vec{x}_1$, where $t_1 = \alpha \vec{x} + (1-\alpha)\vec{x}_1$, which is almost unbiased and has some mean square error for large samples. In section 8.3 two types of extensions of \vec{y}_1 are suggested and comparisons are made with other known estimators which use the same amount of information. # 8.1 Introduction: Let (Y_1, X_1) denote the value of the ith unit (i = 1, 2, ..., N) in the population consisting of N distinct units for the character under study (y) and the supplementary character (x) respectively. We shall consider in this chapter, for the sake of simplicity, detimation of the population mean $\tilde{Y} = \frac{1}{N} + \frac{N}{N} \frac{N}{N$ mean \bar{Y} and \bar{X} respectively where \bar{X} is the population mean of \bar{X} and is known. The information on \bar{X} may now be used in getting the ratio estimator $\bar{y}_x = (\bar{y}/\bar{x})\bar{X}$ or the product $\bar{y}_y = (\bar{y}/\bar{x})/\bar{X}$ on the basis of preference regions given in an earlier chapter. Srivestava (1967) has suggested an estimator, which is a generalisation of \bar{y}_x , given by $$\vec{p}_{i} = \vec{y} \left(-\frac{\vec{y}}{2} \right)^{\alpha}$$ (8.1.1) where α is a constant to be suitably chosen. Evidently, for $\alpha = 41$ and -1 the estimator \tilde{y}_x^* is same as \tilde{y}_x and \tilde{y}_y respectively. The optimum value of α obtained by minimising the mean square of \tilde{y}_x^* to order n^{-1} , is given by $$a = \frac{a_0}{a_1} \circ a_1 \tag{8.1.2}$$ are the coefficient of variations for y and x respectively. c_0^2 and c_1^2 are the variances of y and x and s_{01} is the correlation coefficient between y and x. The ostimator \vec{y}_{r} , like usual ratio estimator, is biased and has the mean square, to order n^{-1} , equal to that of usual regression estimator when sptimum value of α is used. Hence in case a good guess value of α is available from some provious sensus or surveys, the use of estimator \vec{y}_{r} will improve over \vec{y}_{r} (or \vec{y}_{p}). It may be noted here that the computation of \vec{y}_r , in general, will be complicated in the sense that it will require computation of log and anti-log of the estimators. Rao (1968) has, however, suggested an estimator, as an alternative to \vec{y}_r , 1 given by $$\vec{y}_{-}^{*} = \alpha \vec{y}_{-} + (1 + \alpha) \vec{y}$$. (8.1.3) This estimator being a linear combination of the usual unbiased estimator and the ratio estimator, is quite simple to compute and utilise exactly the some information as that of \overline{f}_{*}^{*} . The estimator \overline{f}_{*}^{*} . Also \overline{f}_{*}^{*} , is biased and has the same mean square error to order n^{-1} , as that of \overline{f}_{*}^{*} or the usual regression estimator for the optimum value of a. The optimum value of a obtained by minimising the mass of \overline{f}_{*}^{*} , to order n^{-1} , is same as given in (8.1.2). In the following section we propose an estimator, as an alternative to \$\frac{1}{2}\$ (or \$\frac{1}{2}\$), which is unbiased, to order \$n^{-1}\$, and has the same mean square curve. Extensions of this estimator to utilize information on several characters have been considered in section 8.5. Some comparisons with other estimators are also made in this section. Results of this chapter are based on a paper (Single 1846) (bythe author in collaboration with K. B. Pathak. # 8.2 The Estimator, its Mas and Mean Square Errors The proposed estimator is given by $$t_1 = \alpha \bar{x} + (1 - \alpha) \bar{x}$$ (8.2.2) and a is some constant to be saitably chasen. The estimator $$\mathcal{F}_{2} = \mathcal{F} (1 + \alpha \, \alpha_{2})^{-1}$$ (8.2.3) whore $$\mathbf{e}_{1} = (\mathbf{x} = \mathbf{x}) \quad \text{and} \quad \mathbf{E}(\mathbf{e}_{1}) = 0.$$ Further, writing $\mathbf{e}_0 = (-\frac{\mathbf{v}_0}{2})$, such that $\mathbf{E}(\mathbf{e}_0) = 0$, and assuming that $|\mathbf{a}| < 1$ for large sample sizes, the bias and mean square error of \mathbf{v}_0 , to order \mathbf{n}^{-1} , are respectively given by $$B(\bar{y}_{x}^{*}) = E[\bar{y}(1 + \alpha e_{1})^{-1} - \bar{y}]$$ $$= \bar{Y} E[(1 + e_{0})(1 + \alpha e_{1} + \alpha^{2}e_{1}^{2} - \cdots)^{-1}]$$ $$= \bar{Y} [(e_{0} - \alpha e_{1}) + (\alpha^{2}e_{1}^{2} - \alpha e_{0}e_{1}) + \cdots]$$ $$= \frac{2\bar{Y}}{2}(\alpha^{2}e_{1}^{2} - \alpha e_{0}e_{1}^{2})$$ (8.2.4) ma $$M(\overline{y}_{2}^{*}) = \mathbb{E}[\overline{y}(1 + \alpha e_{1})^{-1} - \overline{y}]^{2}$$ $$= \overline{y}^{2} \mathbb{E}[e_{0} - \alpha e_{1}) + (\alpha^{2}e_{1}^{2} - \alpha e_{0}e_{2}) + \cdots]^{2}$$ $$= \frac{2}{3} (c_{0}^{2} + \alpha^{2}c_{1}^{2} - 2\alpha e_{0}c_{1}^{2})$$ (8.2.5) whore The optimum value of α which minimises the mean square error of \overline{y}_{T}^{*} can be obtained by differentiating $\mathbb{H}(\overline{y}_{T}^{*})$ with respect to α and setting the derivative equal to zero. It is observed that the optimum value of α is seme as given in (8.1.2). Now substituting the optimum value of α in the approximate expression for bias and mean square error of \overline{y}_{T}^{*} , we get $$B(\tilde{\sigma}_{r}^{2}) = \frac{2}{n} \left(\sigma_{0}^{2} \sigma_{01}^{2} - \sigma_{0}^{2} \sigma_{01}^{2} \right) = 0 \tag{8.2.5}$$ and $$M(\hat{\mathcal{F}}_{n}^{2}) =
\frac{\hat{\mathcal{F}}_{n}^{2} \hat{\mathcal{F}}_{0}^{2}}{n} (1 - \hat{\mathcal{F}}_{01}^{2})$$ $$= \frac{\hat{\mathcal{F}}_{n}^{2} \hat{\mathcal{F}}_{0}^{2}}{n} (1 - \hat{\mathcal{F}}_{01}^{2}). \qquad (8.2.6)$$ Thus it is observed that the proposed estimator \bar{y}_{r}^{*} is unbiased, to order n^{-1} , and has the same mean square error as that of the usual regression estimator, when the optimum value of α is used. But the bias of \bar{y}_{r}^{*} , to order n^{-1} , is easily seen to be $$B(\overline{y}_{2}^{*}) = \frac{1}{2n} \overline{Y}(c_{0}c_{1}^{2}c_{01} - c_{0}^{2}c_{01}^{2}). \tag{8.2.7}$$ Remark 8.3.1 The estimator \overline{y}_{k} is unbiased, to order $n^{\omega l}$, only if the optimum value of α is used in the estimator. In actual practice, however, this optimum value will not be available in most situations and hence this estimator will also be biased to that extent. The bias is expected to be negligible if the guessed value used is very near to the true optimum value of α . The estimator \overline{y}_{k}^{*} is however preferable to other estimators in practice since it is quite simple to compute and is expected to be almost unbiased for a good guess of α . It may however be mentioned that any of these generalised estimators should be used in practice only if very good guess of α is available as otherwise they may lead to less in efficiency. ### 8.3 Generalised Multivariate Ratio Estimators: In this section we shall assume that the information is available on k supplementary characters $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k$ some of which are positively correlated with y and others negatively correlated. Let \mathbf{x}_1 denote the usual unbiased estimator of the population near $\mathbf{x}_1^{(z_1, z_2)}$ corresponding to the veriable \mathbf{x}_1 and we assume that \mathbf{x}_1 is known. We shall consider the following two estimators as extensions of \mathbf{x}_2 , given by $$\bar{y}_{xk} = \bar{y} \sum_{i=1}^{k} v_{i} (1 + \alpha_{i} \ell_{i})^{-1}$$ (8.3.1) and $$\bar{y}_{xk}^{a} = \bar{y} \prod_{i=1}^{k} (1 + a_i e_i)^{-1}$$ (8.3.2) where w_1 's in (8.5.1) are weights, such that $\sum_{i=1}^{k} w_i = 1$, a_i 's are constants to be suitably chosen and (1 = 0 stands for the character y). We shall now obtain the bias and mean square errors of those estimators, for large sample size, and compare them with some other estimators known in the literature. Assuming that $|a_i| < 1$ for large samples, the bias of \tilde{y}_{rk}^* is given by where $$p_{a_1} = (p_1^a)^{1 \times K_a}$$ $a = (a^i)^{1 \times 1}$ and $$= \frac{1}{L} a p_a,$$ $$= \frac{1}{L} a^{i} p_1^{i}$$ a^{i}$$ $$b_1 = \alpha_1^2 G_1^2 - \alpha_1 G_0 G_1^2 G_1. \tag{8.3.5}$$ And the mean square lyw is $$\begin{split} \mathbf{H}(\vec{\mathbf{y}}_{2k}^{*}) &= \vec{\mathbf{Y}}^{2} \, \mathbf{E} \left[\, \mathbf{E} \, \mathbf{w}_{1} (1 + \mathbf{e}_{0}) (1 + \mathbf{e}_{1} \mathbf{e}_{1})^{-1} - 1 \right]^{2} \\ &= \vec{\mathbf{Y}}^{2} \, \mathbf{E} \left[\, \mathbf{E} \, \mathbf{w}_{1} (1 + \mathbf{e}_{0} + \mathbf{e}_{1} \mathbf{e}_{1} + \cdots) - 1 \right]^{2} \\ &= \vec{\mathbf{Y}}^{2} \, \mathbf{E} \left[\, \mathbf{E} \, \mathbf{w}_{1} (\mathbf{e}_{0} - \mathbf{e}_{1} \mathbf{e}_{1}) \right]^{2} \\ &= \vec{\mathbf{Y}}^{2} \, \mathbf{E} \, \mathbf{E} \, \mathbf{E} \, \mathbf{w}_{1} \mathbf{w}_{1} \, \left(\mathbf{e}_{0} - \mathbf{e}_{1} \mathbf{e}_{1} \right) \left(\mathbf{e}_{0} - \mathbf{e}_{1} \mathbf{e}_{3} \right) \\ &= \frac{\vec{\mathbf{Y}}^{2} \, \mathbf{E}}{1} \, \mathbf{E} \, \mathbf{E} \, \mathbf{w}_{1} \mathbf{w}_{1} \, \mathbf{e}_{2} \mathbf{E}_{3} \\ &= \frac{\vec{\mathbf{Y}}^{2} \, \mathbf{E}}{1} \, \mathbf{E} \, \mathbf{E} \, \mathbf{w}_{1} \mathbf{w}_{3} \, \mathbf{e}_{2} \mathbf{E}_{3} \\ &= \frac{\vec{\mathbf{Y}}^{2} \, \mathbf{E}}{1} \, \mathbf{E} \, \mathbf{E} \, \mathbf{w}_{1} \mathbf{w}_{3} \, \mathbf{e}_{2} \mathbf{E}_{3} \\ &= \frac{\vec{\mathbf{Y}}^{2} \, \mathbf{E}}{1} \, \mathbf{E} \, \mathbf{E} \, \mathbf{w}_{1} \mathbf{w}_{3} \, \mathbf{e}_{2} \mathbf{E}_{3} \\ &= \frac{\vec{\mathbf{Y}}^{2} \, \mathbf{E}}{1} \, \mathbf{E} \, \mathbf{E} \, \mathbf{w}_{1} \mathbf{w}_{3} \, \mathbf{e}_{2} \mathbf{E}_{3} \\ &= \frac{\vec{\mathbf{Y}}^{2} \, \mathbf{E}}{1} \, \mathbf{E} \, \mathbf{E} \, \mathbf{w}_{1} \mathbf{w}_{3} \, \mathbf{e}_{2} \mathbf{E}_{3} \\ &= \frac{\vec{\mathbf{Y}}^{2} \, \mathbf{E}}{1} \, \mathbf{E} \, \mathbf{E} \, \mathbf{w}_{1} \mathbf{w}_{3} \, \mathbf{e}_{2} \mathbf{E}_{3} \\ &= \frac{\vec{\mathbf{Y}}^{2} \, \mathbf{E}}{1} \, \mathbf{E} \, \mathbf{E} \, \mathbf{e}_{1} \mathbf{e}_{2} \mathbf{e}_{3} \mathbf{e}_{3} \\ &= \frac{\vec{\mathbf{Y}}^{2} \, \mathbf{E}}{1} \, \mathbf{E} \, \mathbf{E} \, \mathbf{e}_{1} \mathbf{e}_{2} \mathbf{e}_{3} \mathbf{e}_{3} \\ &= \frac{\vec{\mathbf{Y}}^{2} \, \mathbf{E}}{1} \, \mathbf{E} \, \mathbf{E} \, \mathbf{e}_{1} \mathbf{e}_{2} \mathbf{e}_{3} \mathbf{e}_{3} \\ &= \frac{\vec{\mathbf{Y}}^{2} \, \mathbf{E}}{1} \, \mathbf{E} \, \mathbf{E} \, \mathbf{e}_{2} \mathbf{e}_{3} \mathbf{e}_{3} \mathbf{e}_{3} \mathbf{e}_{3} \\ &= \frac{\vec{\mathbf{Y}}^{2} \, \mathbf{E}}{1} \, \mathbf{e}_{3} \mathbf{e}_{3} \mathbf{e}_{3} \mathbf{e}_{3} \mathbf{e}_{3} \mathbf{e}_{3} \\ &= \frac{\vec{\mathbf{Y}}^{2} \, \mathbf{e}_{3} \mathbf{e}_$$ whore $$a_{\alpha 1 j}^* = (c_0^2 + \alpha_1 c_0 c_1^2 e_1 + \alpha_2 c_0 c_1^2 e_2 + \alpha_2 c_1 c_1^2 c_1^2 e_1)$$ (8.3.7) and $A^{*}(a)$ is matrix of order $k \times k$, $A^{*}(a) = (a_{a,j}^{*})$. Similarly, the bias and mosn square error of \vec{r}_{rk} are given by $$\frac{1}{2}(p_{n,+} + \sum_{i=0}^{n} a^{i}_{i} a^{j}_{i} a^{j}_{i} a^{j}_{i}) \qquad (6.2.4)$$ $$\frac{1}{2} \frac{1}{2} (\sum_{i=0}^{n} a^{i}_{i} a^{j}_{i} a^$$ where by = (by) at 51ven (8.3.5) and where $A^*(a)$ is matrix $(a^*_{\mathbf{x}ij})_{\mathbf{k}} \times \mathbf{k}$ and $a^*_{\mathbf{x}ij}$ is given in (8.3.6), $a^*_{\mathbf{x}ij}$ is the correlation coefficient between $a^*_{\mathbf{x}i}$ and $a^*_{\mathbf{y}i}$. Next, we shall compare the proposed estimators \hat{y}_{pk} and within themselves and with some other estimators known in the literature using exactly the same amount of information. In this connection we consider the following two types of estimators given by $$\bar{y}_{xk} = \bar{y} \sum_{i=1}^{k} w_i (\bar{\xi}_i)^{\alpha_i}, \quad \bar{y}_{w_i} = 1$$ (8.3.9) and $$\vec{y}_{2k} = \vec{y} \stackrel{\sim}{\coprod} (\stackrel{\sim}{Z}_{1})^{\alpha_{1}}$$ (8.3.10) where at's are constants to be suitably chosen. It is pertinent to note that the estimator V_{rk} with $\alpha_1 = +1$ is the multivariate ratio estimator which was suggested by Olkin (1958) for situations where V_{cd} is positive and high for all i and this estimator with $\alpha_1 = -1$ is the multivariate product estimator (Singh, 1967d) considered earlier in Chapter VI for the situations where V_{cd} is negative and high. The other estimator V_{rk} is the ratio cum product estimator considered in Chapter VII (Singh, 1967) for the situations where V_{cd} is positive for some V_{cd} and negative for others with $V_{cd} = -1$ in the latter. This estimator may be considered as a generalisation of the usual double ratio estimator given by Keyfits (see, Tates, 1960). PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor (8.3.13) Noting that Trk and Trk may be expressed as orid their bias, to order not, are easily seen to be $$B(\overline{y}_{22k}) = \overline{Y}B(\overline{y}_{2k}(1+e_0)(1-a_1e_0+\frac{a_1(a_1+1)}{2}e_1^2-a_1e_1e_0)+\dots)$$ $$= \overline{Y} = w_1B((e_0+a_1e_1)+(\frac{a_1(a_1+1)}{2}e_1^2-a_1e_1e_0)+\dots)$$ $$= \overline{X} = =$$ spend \$0 = (plopson pl) and $$b_1 = (\frac{a_1(a_1+1)}{2}) c_1^2 - a_1 c_0 c_1 c_{01}), \qquad (8.3.12)$$ and $$B(\overline{y}_{2k}) = \overline{Y} E[(1+c_0) \frac{k}{1-1} (1-a_1 c_1 + \frac{a_1(a_1+1)}{2} c_1^2 ...) - 1]$$ $$a_1(a_1+1) c_2$$ $$= \frac{1}{4} \pm (8a + \frac{1}{2} \frac{1}{2$$ DF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompress As regards the mean square error of these estimators, it is observed that, to order n^{-1} , $$\mathbb{N}(\overline{\mathfrak{F}}_{xk}') = \mathbb{N}(\overline{\mathfrak{F}}_{xk}'')$$ and $$\mathbb{N}(\vec{y}_{nk}^*) = \mathbb{N}(\vec{y}_{nk}^{**}).$$ (8.3.14) It may be mentioned that Srivastave (1967, 1968) has considered the use of optimum value of a_1 's in the estimator \overline{y}_{rk} and \overline{y}_{rk} . The optimum values of a_1 's are, however, quite complicated to use in practice as they involve many unknown parameters. In case good guess values of the coefficient of variations and correlation specificients are available from previous consus or surveys them a suitable choice of a_1 , based on a in (8.1.2), is $$\alpha_{\underline{1}} = (\frac{C_{\underline{1}}}{C_{\underline{1}}}) \theta_{\underline{0}\underline{1}}. \qquad (8.3.15)$$ Substituting this value of at in the expression for the bias of the above estimators, we get $$n(\vec{y}_{n|k}^*) = 0$$ (8.3.16) $$B(\vec{y}^{\bullet}) = \frac{1}{N} \vec{x} c_0^2 \sum_{1 \le j} c_1^2 c_2^2 c_3^2 c_3$$ $$B(\bar{S}_{2k}) = \frac{1}{2\pi} \nabla C_0 \sum_{i} W_i S_{0i} (C_1 - C_0 S_{0i})$$ (8.3.18) $$B(\vec{y}_{2k}) = B(\vec{y}_{2k}^{*}) + \frac{1}{2} \hat{\vec{y}}_{0} + +$$ Remark 8.3. The catimator \vec{y}_{rk} and \vec{y}_{rk} utilise the same smount of information i.e. knowledge of a_i 's and \vec{x}_i 's where as \vec{y}_{rk} and \vec{y}_{rk} require in addition the optimum weights w_i 's and hence they can be used officiently only if w_i 's are known before hand. As regards use of these estimatoriles no choice between \vec{y}_{rk} and \vec{y}_{rk} and between \vec{y}_{rk} and \vec{y}_{rk} on the basis of the approximation considered. Comparison between \overline{r}_{rk} and \overline{r}_{rk} shows that the former is an
obvious choice over the latter for the reasons that (i) \overline{r}_{rk} , the suggested estimator is the ratio of linear estimators of \overline{r} and \overline{r} and hence quite simple to compute whereas \overline{r}_{rk} would in general be complicated since it will require calculation of log and satilog of the estimate, (ii) \overline{r}_{rk} is unbiased, to order n^{-1} , when a_{t} in (8.5.15) is used where \overline{r}_{rk} is blased. Comparing \vec{y}_{rk} with \vec{y}_{rk} it is seen from (8.2.21) that both are equally preferable as regards their mac. However, the suggested estimator \vec{y}_{rk} is much simplex to compute than that of \vec{y}_{rk} which again requires calculation of log and antilog of the estimato. And if fact this will the mainplest of all the four estimators in general as it does not use w_i 's. Further, it is easily observed from (8.3.17) and (8.3.19) that the bias of \vec{y}_{rk} would be quite small for large sample aise and it will be smaller than the bias of \vec{y}_{rk} for the situations where the second term in the of (8.3.19) is possitive (\hat{y}_{ij} being greater than sore). That is, when $a_i < 1$ for almost all i (i = 1,2..., k) the bias of \vec{y}_{rk}^* will be less than the bias of \vec{y}_{rk}^* . Assuming that this condition is satisfied then the choice rests between the two estimators \vec{y}_{rk}^* and \vec{y}_{rk}^* suggested in this section. As pointed out earlier \vec{y}_{rk}^* will be simpler to compute and since it does not require any weights w_i 's this estimator is an obvious choice when w_i 's are not available. Since in such cases determination of w_i 's from the sample will be complicated and that estimator may not retain its efficiency with these estimated weights. In case however w_i 's are available which is very rarely the situation \vec{y}_{rk}^* may be a better choice since it is almost unbiased estimator when α in (8.3.15) is used. #### CHAPTER IX ON A METHOD OF USING AN AFRICATIVATURE OF THE PARAMETER IN THE ESTIMATION PROCEDURE 9.0 Swingy In this chapter on estimation procedure is suggested which utilises the knowledge of an apriori value of the population parameter 0. The coriori value may be available to the experimenter from previous census or surveys or even expert guosses. The proposed ostimator to is essentially a weighted average of t. the usual unbiased estimator of 0, and the apriori value 0, of 0. That is, to = kt + (1-k) to where k is some constant. to be guitably choosen. The optimum value of k which minimises the use of t, is found to be $k_0 = \frac{3^2}{(3^2 + e^2)}$, where $|3| = |1 - \frac{6}{9}|$ and e is the relative standard error of to In many cases e may be known in practice, especially when the survey has been planned to achieve a specified precision but a is always inknown. For such situations, using 8, as an apriori value of 8 an approximately optimum estimator ton is obtained where kon = $\delta_1^2/(\delta_1^2+e^2)$, to then compared with for estimating & and a table showing the efficioncy of ton as compared to t has been given for various values of 8, e and 8, in section 9.3. The situation where approximate values of both 3 and c are used has also been discussed. Some special cases of to have been mentioned? Therefly therefly to is biased estimator of 0 has been discussed briefly. Lastly, an estimator of 0 which utilise information on a supplementary character besides 0, is also suggested. ### 9.1 Introduction: several methods by which supplementary information may be utilized have already been mentioned in an earlier chapter and it is well-known in this connection that the use of supplementary information in a suitable manner generally improves the estimator of the population parameters. The usual techniques of using the supplementary information assume that values of one or more supplementary character related to the character of interest are known for each unit of the population. A variant of the procedure is that of two-phase sampling discussed earlier where the data on supplementary character may be collected from a large first-phase sample, if found economical, and utilized in themselve wearingle. In many cases, however, such detailed apriori information may not be available or may be quite cestly to collect. On the other hand, some summary information, for instance, an apriori value of the parameter &, quite close to it may be known to the experimenter. Knowledge of this apriori value may be available from previous census or surveys or even from expert guesses by the specialists in the concerned field. It may also happen that the upper and lower limits of the parameter may be known (Dalenbuss, 1965) and in that case a simple or modified average depending on the expected skewness of the distribution of & may provide a good approximation of %. It seems worthwhile, therefore, to develop an estimator which utilises this appiori value of 9 and achieves a mean square error considerably smaller than the variance of the usual unbiased ostimator of the parameter. In section 9.2 of this chapter we propose such an estimator. This estimator utilise an apriori value and an estimator of the correction factor which involves the usual estimate of * as well as the relative difference from its apriori value and the relative standard error (rse) of the usual estimator. As the exact value of the relative difference is not likely to be available in practice, the suggested estimator is modified so as to use the approximate value of the relative difference and then the modified estimator is compared with the ugual unbiased ogtisator in section 9.3. A table is also given showing the efficiency of this estimator for different values of approximate relative difference and rec. The value of be known in many occors ospecially when the survey is planned to achieve a prospecified procision. However, the effect of using an approximate value is also considered. Some special cases of the succested estimator are than pointed out. In section 9.4 the case where an unbiased estimator of 2 is not available (such as rates, products etc.) is considered. Lastly a ratio estimator which utilizes the apriori value and the detailed information on a supplementary character is briefly discussed. Results of this chapter are based on a paper by the author in collaboration with As. Roy. ## 9.8 The Estimator, its Man and Mean Square Error: Let Θ_0 be an apriori value of the parameter Θ_0 which the statistician believes to be quite close to Θ and let D be the difference between Θ and Θ_0 , that is where $d = \{t - \theta_0\}_0$ t being an unbiased estimator of θ . Alternatively, t_0 may be locked upon as a weighted estimate of θ_0 and t_0 that is $$t_0 = kt + (1+k)\theta_0.$$ (9.2.2) The factor k may be obtained by minimising the mean square error of to which will give its optimum value. It may also be chosen to satisfy extain other oritorias for instance k may be taken as a random variable, instead of a fixed constant, and if its expectation is unity then the estimator to will remain unbiased for 0. The estimator to in general, is biased, we have $$B(t_0) = k\theta + (1+k)\theta_0$$ hence the blas of to is $$B(t_0) = B(t_0) + \theta$$ $$= (k-1)(\theta-\theta_0) = (k-1) h \qquad (9.2.5)$$ The sampling variance of to is given by $$V(t_0) = E(t_0^2) - E^2(t_0)$$ = $x^2V(t_0)$. whore $$V(t) = E(t^2) + E^2(t)$$ is the variance of the unbiased estimator to The mean square error (mse) of to thus becomes $$H(t_0) = V(t_0) + B^2(t_0)$$ $$= k^2 V(t) + (k-1)^2 D^2, \qquad (9.2.4)$$ The optimum value of k which minimises this mee can be obtained by differentiating $M(t_0)$ with respect to k and setting the derivative equal to zero. This gives $$k_0 = \frac{y^2}{y^2 + y(t)}$$ (9.2.5) Suppose $\delta = (\frac{1}{4})$ is the relative difference between θ and θ_{0} and $\theta(t) = \sqrt{V(t)}/\theta$, denoted by simply θ , is the relative standardd exter (rse) of the estimator t_0 . Then the optimum weight k_0 can be expressed as $$k_0 = \frac{\delta^2}{\delta^2 + \delta^2}$$ (9.2.6) Since $e^2 \ge 0$, we have $0 \le k_0 \le 1$. Now putting this value of k_0 , the minimum value of $M(t_0)$ is seen to be $$N_{0}(t) = (\frac{2}{3^{2}+3^{2}})^{2} V(t) + (\frac{2}{3^{2}+6^{2}})^{2} D^{2}$$ $$= \frac{1}{(3^{2}+6^{2})^{2}} (3^{6}V(t) + 6^{4}D^{2})$$ $$= \frac{2^{2}(3^{2}+6^{2})^{2}}{(3^{2}+6^{2})^{2}} V(t)$$ $$= k_{0} V(t), \qquad (9.2.7)$$ where $V(t) = e^2 e^2$ and $J^2 = e^2 e^2$. The relative efficiency of to as compared to the usual umbiased estimator t is given by Eff. $$(8_0) = \frac{V(t)}{K_0(t_0)}$$ $$= \frac{1}{K_0} * (9.2.8)$$ Evidently to will be more efficient than t since ko is less than unity. But the difficulty in construction of the estimator to, using optimum weight ko, is that ko involves the parameter & itself and hence in practice we can use only the approximate optimum weight. Nort section is devoted to use such approximate weight. ## 9.3. Use of Approximate Optimum Weight: The optimum value k requires an exact knowledge of e and a. Of these two quantities, the value of e may be known in many cases especially when the survey is planned to achieve a prespecified degree of precision. The value of c is needed also at other stages of sample selection, for instance in determination of the sample size etc. But the exact value of a is always unknown in practice. Hence we can obtain only an approximate value of the optimum weight k, using some idea about the magnitude of a, and also of c, if it is known. In this permeation we discuss below two possible cases vize. Case li An approximate value of 31 is used in place of the exact value 3 and exact value of o is known. Gage 2: Approximate values of and of are used in placed the universe values of and of Case 1: The proposed estimator in this case becomes $$t_{01} =
k_{01} t + (1 - k_{01}) \epsilon_0$$ (9.3.1) ahore $$k_{01} = \frac{\delta_1^2}{\delta_1^2 + \epsilon^2}$$ (9.3.2) The use of t_{01} may be obtained by substituting the value of k_{01} for k in the expression for M(t) in (9.2.4). This gives $$\frac{M(t_{01})}{s^{2}} = (\frac{s^{2}}{s^{2}})^{2} s^{2} + (\frac{s^{2}}{s^{2}})^{2} s^{2}$$ $$= \frac{s^{2}}{(s^{2}_{1} + s^{2})} (s^{2}_{1} + \frac{s^{2}}{s^{2}})$$ $$= \frac{s^{2}}{(s^{2}_{1} + s^{2})} (s^{2}_{1} + \frac{s^{2}}{s^{2}})$$ $$= \frac{s^{2}}{(s^{2}_{1} + s^{2})} (s^{2}_{1} + s^{2})$$ where o' = 00 / 310 Now tol will be more efficient than to if that is, if $$a_1^2 (a_1^2 + e^{e^2}) < (a_1^2 + e^2)^2$$ or $(a_1^2 - e^2) < 2 a_1^2$ or $s_1^2 > \frac{(s^2 - s^2)}{2}$. (9.3.4) Thus if $$e^2 \geq a^2$$ which implies for any value of $|a_1| \neq 0$, the condition (9.3.4) is satisfied and in which case the ostimator t_{01} becomes more efficient then t. Further, since $e \geq 0$ always, a slightly stranger condition for t_{01} to be more efficient than t may be written as Thus even if ∂_1 differs from ∂_2 \mathbf{t}_{01} will be more efficient than \mathbf{t} as long as (9.3.4) is satisfied; however, too much departure of ∂_1 from ∂ will reduce the gain in efficiency of the estimator. Evidently a small value of $|\partial_1|$ which violates (9.3.4) will make \mathbf{t}_{01} loss efficient than \mathbf{t}_{0} . The expression for the efficiency of \mathbf{t}_{02} with respect to \mathbf{t} is given by Bfg ($$t_{01}$$) = $\frac{(\partial_1^2 + e^2)}{\partial_1^2} \cdot \frac{(\partial_1^2 + e^2)}{(\partial_1^2 + e^2)}$ (9.3.6) which is greater than $$\frac{\partial_1^2 + \sigma^2}{\partial_1^2} = \frac{1}{V_{01}}$$ if o > o', that is, if |01 | > |0|. Thus it is interesting to note that in case $|\partial_1| > |\partial|$. We efficiency of t_{01} is more than what it would have been if $|\partial_1|$ were the true value and the optimum value k_{01} in that case, were used. The values of lift (t_{01}) have been given in the tables in the end of this cosphere. Case 2: In this case the proposed estimator becomes wheno As in (9.3.3), we get $$\frac{11}{3} \left(\frac{1}{3} \right)^{2} = \left(\frac{3^{2}}{3^{2}} + \frac{3^{2}}{3^{2}} \right)^{2} = 2^{2}$$ $$= \frac{2^{2}}{3^{2}} + \frac{3^{2}}{3^{2}} \frac{3^{2}}{3^{2}}$$ where $$e^{*0} = \left(\frac{01}{01}\right)\left(-\frac{1}{01}\right)$$. The condition for t_{02} to be more efficient than t becomes $\frac{M(t_{02})}{a^2} < o^2$. That is or $$\theta_1^2 e^{n^2} = \theta_1^2 < 2\theta_1^2$$ or $$\delta_{\lambda}^{2} > (\frac{\delta^{2} - \sigma^{2}}{2})(\frac{\sigma_{1}}{\sigma})^{2}$$. The above condition will be satisfied if $a_1^2 > (a^2 - e^2)/2$ provided $a_1 \le e$. Thus when anticipated values of |a| and e are to be used in detramination of e, it would be safer to take a slightly higher value for |a| and smaller value for e for calculation of e. It may be mentioned, however, that as the distance between the anticipated values and the true values increases the gain in efficiency of the proposed estimator decreases. Below we give two special cases of e and a_1 . - 1) a is zero: This implies that $k_0 = 1$ and that the proposed estimator and the usual unbiased estimator t are identical. It is quite logical, since e zero means $V(\hat{v})$ is zero which is the minimum value that an estimator can attain and honce to \hat{v} - 11) $\frac{\partial_1}{\partial_1}$ is unity: This implies that $(1 \frac{\theta_0}{\theta}) = 1$ that is $\theta_0 = 0$. In this case, we get $$k_0 = \frac{1}{1 + a^2}$$ (9.3.7) and the estimator to becomes $$t_{00} = (1 + e^2)^{-1} t_*$$ (9.3.8) The mean aquere error of too then becomes $$N(s_{00}) = \frac{(1+s_0)}{V(t)}$$ (9.3.9) The relative efficiency of t_{00} as compared to the usual ostimator t is thus given by Eff $$(t_{00}) = (1 + e^2)$$ (9.3.10) which is greater than unity. However, the relative efficiency of t_{00} as compared to t_{01} is given by Eff $$(t_{00}) = (\frac{\partial_1^2 + o^{*2}}{\partial_1^2 + o^2})(\frac{\partial_2^2 + o^2}{\partial_2^2 + o^2}).$$ (9.3.11) Set the term in second bracket is less than unity since $|\partial_1| < 1$ and a sufficient condition for t_{00} to be less efficient than t_{01} is that o' < e that is $|\partial_1| > |\partial_1|$. <u>Romark</u>: Although in the above discussion we have assumed that the value of k₀ can not be known exactly in practice, but situations delet where we can get the value of k₀ even though and c may not be known separately. For instance, since ko can also be expressed as $$k_0 = \frac{1}{1 + \sqrt{2}}$$ (9.3.12) where $A = c/\delta$, and in case the value of A is known we can get value of k_0 . In some cases, however, the upper or lower bound of A may be specified which helps in determining the value of k_0 . Simple random sampling: Let us consider the parameter to be estimated is \bar{Y} , the population mean and let \bar{y} denote the usual unbiased estimator, the sample mean, when sample is selected with-replacement and with equal probability, then t_{00} in (9.3.8), where δ is assumed tokumity, becomes $$\vec{y}_{00} = k_0 \vec{y}$$ $$= \frac{1}{1 + c_y/n} \vec{y}$$ $$= \frac{n}{n + c_y} \vec{y}$$ (9.3.13) where c_y^2 is the population coefficient of variation. This estimator was suggested by Searls (1964). Efficiency of this estimator is given by the entry corresponding to $|\delta| = |\delta_1| = 100$ in table: Selel - Selel. The ostimator too for sampling without-replacement with equal probability vectors of a welemarked evaluation copy of CVISION FDFCompress where f = = f . However, when the apriori value \vec{y}_0 of \vec{Y} is not taken as zero (i.e. when θ_1 is not unity) the estimators corresponding to t_{01} for the sampling with and without replacement with equal probabilities will be given by $$\bar{y}_{01} = \bar{y}_0 + \frac{n}{n+f^2} (\bar{y} - \bar{y}_0)$$ (9.3.15) and $$\bar{y}_{01} = \bar{y}_0 + \frac{n}{n+2\sqrt{2}} (\bar{y} - \bar{y}_0)$$ (9.3.16) respectively where $\lambda^2 = c_y^2 / s_1^2$. Now, whenever an approximate value of λ is known these estimators may be utilised efficiently. A lower bound of λ which is usually assumed to be the population size N it-self, may also be used in building up these estimates. ### 9.4 Use of Mased Estimator: So far we have assumed t to be unbiased estimator of 9. However, in many situations, a simple unbiased estimator of 9 may not be available in general. For instance, the parameter 9 may be birth rate, death rate, per capita consumer expenditure, total crop production etc., when the usual estimator of 10 biased. In such cases the suggested estimator, denoted by to a se of the same form or to , that is $$t_0^* = \theta_0 + k(t + \theta_0)$$ (9.4.1) but its bias and mean square error are respectively given by $$B(t_0^*) = (k + 1)D + kB$$ (9.4.2) and $$M(t_0^2) = K^2V(t) + (k+1)P^2 + 2k(k+1)BD$$ (9.4.3) is the blas in to Differentiating H(tj) with respect to k and equating the derivative to sere, we get optimum k as $$k_0 = \frac{D(B+D)}{V(t) + (B+D)^2}$$ (9.4.4) which on substitution in M(t) gives the optimus mean aquare error as $$M_0(t_0^2) = \frac{p^2}{V(t) + (B+D)^2}$$ (9.4.5) Thus the proposed estimator will be more efficient than t if $M_0(t_0^*)$ is less than $M(t) = V(t) + B^2$. That is if $$V(t)[1 - \frac{t^2}{(B+D)^2 + V(t)}] + B^2 > 0$$ (9.4.6) which is always truca Here again the exact value of k₀ will not be known in practice. The efficiency of this estimator using approximate optimin weight may be obtained as in the earlier sections. It is expected that with reasonably good approximation of the optimum weight the proposed estimator will be move efficient than t as in unbiased case. Next, we consider the aituation where both the type of information namely, the apriori value θ_0 and detail information on the supplementary character κ are available and we are interested in using these informations, let θ_1 denote the parameter based on the character κ then assuming that θ_1 is known, as usual, we suggest a retic estimator of θ_1 given by $$t_{0r} = \left(\frac{t_0}{t_1}\right) s_k \qquad (9.4.7)$$ where \mathbf{t}_0 is the estimator suggested in (9.2.2) for \mathbf{e} and \mathbf{t}_1 is an estimator of \mathbf{e}_0 similar to \mathbf{t}_0 given by $$t_1 = \alpha t^2 + (1 + \alpha)\theta_1$$ (9.4.8) where t' is the usual unbiased of a and a is a constant to be suitably chosen. A suitable choice of a, as in the chapter VIII, is $$\alpha = \left(\frac{a^2}{a^0}\right) \delta^{aT} \tag{3.4.8}$$ where co and cl are the coefficient of variation of y and x and correlation between them. If n denote the size of the sample selected from the population then writing $\mathbf{t} = \theta(1 + \mathbf{e}_0)$ and $\mathbf{t}^0 = \theta(1 + \mathbf{e}_1)$ where $E(\mathbf{e}_0) = E(\mathbf{e}_1) = 0$ and assuming n is large so that $|\mathbf{t} \cdot \mathbf{e}_1| < 1$, the bias and use of \mathbf{t}_{0p} , to order \mathbf{n}^{-1} , are given by $$B_{0x} = B_0 + (1 - k) + \alpha^2 c_1^2 - \alpha k + (c_{01} - \alpha c_1^2)$$ (9.4.10) and $$\mathbb{N}_{0x} = \mathbb{P}_{0}^{2} + (1-k)^{2} \Theta_{0}^{2} \alpha^{2} c_{1}^{2} - 2k(1-k)\alpha \Theta_{0} \Theta(c_{01} - \alpha c_{1}^{2})$$ $$+ ke_0^2(e_0^2 + e_0^2e_1^2 - 2ee_0e_1^2e_1)$$ (9.4.11) where Bo is the bias of to. Substitution of the value of a we get $$B_{0x} = B_0 + (1 - k)\theta_0 c_0^2 c_0^2$$ (9.4.12) and $$M_{OP} = R_0^2 + (1 - k)^2 e_0^2 e_0^2 e_1^2 + ke^2 e_0^2 (1 - e_0^2)$$ (9.4.13) It may be mentioned that the estimator \tilde{y}_T^* suggested in the provious chapter turns out to be a special case of t_{Or} for k=1, since in that case $$t_{0x} = t_{x}^{2} = (-\frac{x}{2}) \cdot \theta_{1}$$ (9.4.14) Thus for $\Theta_1 = Y_1$ of is some as $\mathcal{F}_{\mathbf{r}}^*$ in (8.21). Table (1):
Showing the efficiency of tol as compared to t for different values of 3, 31 and c. (all expressed in percentage). Table (1.1): 0 = 15 per cent | 9 | 100 | 50 | 80 | 15 | 10 | 5 | |-------------|----------|-------|-------|-------|------------|--------| | (O) | 1 | [8] | (3) | (4) | (5) | (6) | | L0 0 | 102.2 | 104.0 | 104.4 | 104.5 | 104.5 | 104.5 | | 50 | 87.4 | 109.0 | 117.1 | 117.8 | 118.4 | 118.7 | | 80 | 16.2 | 54.1 | 156.2 | 185.4 | 214.0 | 235.8 | | 15 | 8•8 | 33.0 | 144.0 | 200.0 | 276.9 | 360.0 | | 10 | 4.7 | 18.4 | 105.6 | 174.2 | 325.0 | 676.0 | | 5 | 2.8 | 11.1 | 69.0 | 122.0 | 270.3 | 1000.0 | Table (1.2): e = 12 per cent | 1 | 100 | 80 | 20 | 15 | 10 | 5 | |-----|-------|-------|-------|-------|-------|-------| | (0) | | | | (4) | (8) | (8) | | 700 | 101.5 | 162.5 | 103,0 | 103.1 | 103.1 | 103.2 | | 50 | 89.3 | 105.8 | 110.7 | 112.1 | 112.1 | 113.0 | | 20 | 18.4 | 56.8 | 136.1 | 158.6 | 169.8 | 184.9 | | 15 | 9.2 | 34.1 | 120.6 | 186.5 | 209.2 | 262.1 | | 10 | 4.2 | 17.2 | 102.2 | 151.2 | 244.0 | 437.8 | | 5 | 2.6 | 8.4 | 48.1 | 108.6 | 190.3 | 676.0 | Table (1.3): 0 = 10 per cent | 7 | 100 | 50 | 20 | 15 | 10 | 5 | |----|-------|-------|-------|-------|-------|-------| | 6) | | (8) | (8) | [4] | (5) | (6) | | 00 | 101.0 | 101.8 | 102.0 | 102.0 | 102.0 | 102.0 | | 50 | 95-2 | 104.0 | 107.5 | 107.8 | 108.0 | 108.1 | | 20 | 21.48 | 61.40 | 125.0 | 137.0 | 147.0 | 153.8 | | 15 | 10.0 | 35.2 | 116.6 | 144.4 | 174.2 | 198.8 | | 10 | 4.0 | 15.4 | 80.0 | 123.1 | 200.0 | 320.0 | | 5 | 1.6 | 6.2 | 38.5 | 67.6 | 147.0 | 500.0 | Table (1.4): e = 5 per cent | 8, | 700 | 50 | 20 | 15 | 10 | 5 | |-------------|----------|-------|-------|-------|-------|-------| | | <u>C</u> | | 13) | 16) | (5) | (6) | | 10 0 | 100.2 | 100.4 | 100.5 | 100.5 | 100.5 | 100.5 | | 5 0 | 96.1 | 101.0 | 101.8 | 101.9 | 102.0 | 102.0 | | 20 | 44.1 | 81.2 | 106.2 | 109.7 | 112.2 | 112.5 | | 15 | 20.8 | 55.1 | 103.7 | 111.1 | 117.6 | 121.9 | | 10 | 6.0 | 21.6 | 78-1 | 100.0 | 125.0 | 147.0 | | 5 | 1.0 | 4.0 | 23.6 | 40.0 | 80.0 | 200.0 | ## REFERENCES - Basu, D. (1953): On sampling with and without replacement; Sankhya, 20, 237-294. - Brower, K.R.W. (1963): A model of systematic sampling with unequal probabilities; Aust. Jour. Stat., 5, 5-13. - Burkholder, D.L. (1960): Nffect on the minimal complete class of changes in tasting problems; Ann. Math. State, 31. 323-331. - Cochran. W.G. (1942): Sampling theory when the sampling units are of unequal sizes; Jour. Amor. Stat. Asen., 37, 199-212. - Cochran, W.C. (1946): Relative officiency of mystematic and stratified random samples for a certain class of population; Ann. Math. Stat. 17, 164-177. - Cochren, W.G. (1963): Sampling Tochniques; 2nd Edn. John Wiley and Sons. New York. - Delonius, 2. (1950): The problem of optimum stratification I; Skand. Akt. 53, 203-213. - Dalenius, T. (1962): Recent advances in sample survey theory and methods; Ann. Math. Stat., 33, 325-349. - Delemius, T. (1965): Current trends in the developments of sample survey theory and methods. Unpublished. - Das, B.C. (1966): Multivariate investigation of blood chemistry and Morphology, Proc. Sympo. Adop. Phy., Defence Institute of Phisiology and Allied Science, Madras. - Deming, W.R. (1956): On simplification of sampling decign through replication with equal probabilities and without stages; Jour. Amer. Stat. Asea. 51, 24-253. - Des Raj (1956): Some estimators in sampling with varying probabilities without replacement; Jour. Amer. Stat. Assm., 51, 269-284. - Dos Raj and Khamis, S.H. (1958): Some remarks on sampling with replacement. Ann. Math. Stat., 39, 550-557. - Des Raj (1964a): On double sampling for pps estimation; Ann. Math. State, 35, 900-902. - Dos Raj (1964b): A note on the variance of the ratio estimate; Jour. Amer. Stat. Asm., 59, 481-486. - Dos Raj (1965a): On a method of using multi-euxiliary information in sample surveys; Jour. Amor. Stat. Assn. 60, 270-277. - Des Raj (1965b): Variance estimation in randomised systematic sampling with probability proportionate to sise; Jour. Amer. Stat. Assn., 60, 279-284. - Don Raj (1968): Sampling Theory: Mc Graw-Hill, London. - Aurhin, J. (1953): Some results in sampling theory when the units are selected with unequal probabilities; Jour. Rey. Stat. Soc., B, 15, 262-269. - Durbin, J. (1959): A note on the application of Quenouille's method of bias reduction to the estimation of ratio's, Biometrika, 46, 477-480. - Fellegi, I.P. (1963): Sampling with varying probabilities without replacement rotating and non-rotating samples; Jour. Amor. Stat. Assn., 58, 183-201. - Godambe, V.P. (1965): A unified theory of sempling from finite populations, Jour. Roy. Stat. Soc., B, 17, 269-278. - Godembo, V.P. (1960): An admissible estimate for any sampling design, Sankhya, 22, 285-288. - Godenbe, V.F. and Joshi, V.M. (1965): Admissibility and Bayos estimation in sampling finite populations I; Ann. Math. Stat., 36, 1707-1722. - Griffith, A.L. (1946): The efficiency of enumerations; Forest Research Institute, Debradum, Indian Forest Leaflets, 63-91, 93-96. - Hajek, J. (1958): Some contributions to the theory of probability samplings Bull. Int. Stat. Inst., 36(3), 127-154. - Hajek, J. (1959): Optimum stratogy and other problems in probability sampling; Casipis Post. Math. 84, 387-286. - Hanson, M.H. and Hurwitz, W.N. (1943): On the theory of sampling from finite populations; Ann. Math. Stat., 14, 333-362. - Honson, M.H., Hurwits, W.N. and Hadow, W.G. (1953): Sample Survey Methods and Theory: Vol. I and II. John Wiley and Sons, New York. - Hamurav, T.V. (1962a): An existence theorem in sampling; Scalebya, A. 24, 327-330. - Homurav, T.V. (1962b): On Horvitz and Thompson's cetimator; Sankhya, A. 26, 429-436. - Hamurav, T.V. (1965): Optimum strategies and some related problems; Ph. D., Thesis submitted to the Indian Statistical Institute. - Hanurev. T.V. (1966): Some aspects of unified sampling theory, Scaldnya. A. 28. 175-204. - Hemurav, T.V. (1967): Optimum utilisation of auxiliary information π PS sampling of two units from a stratum; Jour. Roy. Stat., Soc., B, 29 - Harmrev, T.V. (1968): Myper-admissibility and optimum estimators for sempling from finite populations; Ann. Math. Stat., 39, 621-642. - Hartley, N.O. and Rao, J.N.K. (1962): Sampling with unequal probabilities and without replacement; Ann. Math. Stat., 33, 350-374. - Hartley, H.O. and Rose, A. (1954): Unbiased ratio estimators; Nature, 174, 270-271. - Hogo, V. (1965): Sampling designs which admit uniformly minimus variance unbiased estimates; Bull. Onle Stat. Assn., 14, 160-162. - Hogo, V. (1966): Adminsible estimates for any sampling design; Bull. Cal. Stat., 15, 120-126. - Hoge, V. (1967): An optimum projecty of the Horvitz and Thompson estimate; Jours Amer. Stat. Amer., 62, 1013-1017. - Hodges, J.L. (Jr.) and Lohmann, E.L. (1951): Some applications of the Cramer-Rao inequality; Proce. Second Bork. Symp. of Math. Stat. and Prob., 13-22. - Morritg, Defend Thompson, DeJ. (1952): A generalisation of sampling without replacement from a finite universe, Jour. Amor. Stat. Assn., 47, 663-685. - Jesem, R.J. (1942): Statistical investigation of a sample survey for obtaining farm facts; Iowa Agr. Expt. Sta. Ros. Bull. No. 304. - Joshi, V.M. (19654b): Admissibility and Bayes estimation in sampling from finite populations II and III; Ann. Math. States 36, 1723-1742. - Joshi, V.M. (1966): Adminibility and Bayes estimation in sampling from finite populations IV, Ann. Nath. States 37, 1658-1670. - Joshi, V.M. (1968): Admissibility of the sample mean as an ostimate of the mean of finite population; Ann. Nath. Stat., 37, 1658-1670. - Keyfits, N. (1957): Batimates of sampling variance when two units are selected from each stratum; Jour. Amer. Stat. Assn., 52, 503-510. - Kish, L. (1965): Survey Sempling John Wiley and Sons, New York. - Koop, J.C. (1981): A note on the bias of the ratio estimate, Bull. Int. Stat. Inst., 33, 141-146. - Koop, J.C. (1963): On the amions of sample formation and their bearing on the construction of linear estimators in sampling theory for finite populations, I, II, III, Metrika, 7, 81-114 and 165-204. - Keop, J.C. (1964): On an identity for the variance of a ratio of two random variables; Jour. Roy. Stat. Sec., B. 26, 484-486. - Koop, J.C. (1968): An expresse in ratio estimation; Amer. Statistician, 22, 29-30. - Lamri, D.B. (1951): A method of sample selection providing unbiased ratio estimators, Bull. Int. Stat. Inst., 33 (2), 133-140. - Lohmann, E.L. (1947): On families of admissible tests; Ann. Math. State, 18, 97-104. - Medow, W.G. and Medow, L.H. (1944): On the theory of systematic sampling I, Ann. Math. Stat., 15, 1-24. - Mahalamobis, P.C. (1940): A sample survey of acreage under jute in Bongal; Sankhya, 4, 511-630. - Mahelanobis, P.C. (1944): On large scale sample surveys; Rey. Sec. Phil. Trans., B. 231, 329-451. - Mahalanobis, P.C. (1986): Recent experiments in statistical dempling in the Indian Statistical Institute, Jour. Roy. Stat. Soc., 109, 325-378. - Midmuno, H. (1952): On the sampling system with probability proportionate to the sum of sises; Ann. Inst. Stat. Math., 3, 99-108. - Murthy, M.N. (1987): Ordered and unordered estimators in sampling without replacement, Sankhya, 18, 379-390. - Murthy, M.N. (1962): Almost unbiased estimators based on interpenetrating sub-samples; Sankhya, A, 24, 303-514s - Murthy, M.N. (1963a): Generalised unbiased estimation in sampling from finite populations; Sankhya, B. 25, 245-262. - Murthy, M.N. (1963b): Some recent advances in sampling theory; Jour. Amer. Stat. Assn., 58, 737-755. - Murthy, Malle (1964): Product method of estimation, Sankhya, A 26, 69-74. - Enryly, M.H. (1967): Sempling Spory and Methods, Statistical Publishing Society, India. - Murthy, MaNa and Nanjama (1959): Almost unbiased ratio estimates based on interpenstrating sub-samples; Sankhya, 21, 381-392. - Murthy, M.N. and Singh M.P. (1966): some aspects of recent
developments in sampling theory; symp. Proc., BHU Varanasi. Murthy, M.N and Singh M.P. (19686): On-the concepts of best and admissible Murthy, M.N and Singh M.P. (19686): On-the concepts of bost and admissible estimators in sampling theory; to appear in Sankhung - Neymon, J. (1934): On the two different aspects of the representative method: The method of stratified sampling and the method of purposive selection; Jour. Roy. Stat. Soc., 97, 558-625. - Meyman, J. (1938): Contributions to the theory of sampling human populations; Jour. Amer. Stat. Assn. 33, 101-116. - Olkin, I. (1988): Multivariate ratio estimation for finite populations, Riemotrika, 48, 184-165. - Pathak, P.K. (1962): On sampling units with unequal probabi- - Pathak, P.K. (1964): Sufficiency in sampling theory; Ann. Hath. Stat., 35, 795-808. - Proble Ajgeomker, S.G. (1968): On a class of linear estimators in sampling with verying probabilities without replacement; Jour.Amer. Stat. Assn., 60, 637-642. - Quemouille, M.H. (1956): Notes on bias in estimation, Biometrike. 43. 363-360. - RaO. J.N.E. (1957): Double ratio catimate in forest surveys; Jour. Ind. Soc. Agr. State. 9, 191-204. - Rec. J.N.K., Hartley, N.O. and Cochran, W.G. (1962): On a simple procedure of unequal probability semiling without replacement; Jour. Roy. Stat. Boc., B. 24, 482-491. - Rao, J.N.K. (1963): On two systems of unequal probability sempling without replacement; Ann. Inst. Stat. Hath., 15, 67-72. - Rec. J.N.E. (1965): A note on estimation of ratios by quenouillo's method. Biometrika, 52, 647-649. - Rao, J.N.K. (1966) F On the relative efficiency of come estimators in pps sampling for multiple charactoristics; Sankhya, A. 28, 61-70. - Rao, J.N.K. and Bayless, D.L. (1968a): An empirical study of the stabilities of estimators and variance estimators in pps sampling n=2; to appear in Jour. Amor. Stat. Assn. - Rao, J.N.K. and Bayless, D.L. (1968b): An empirical study of the stabilities of estimators and variance estimators in pps. sampling (n > 2), to be published. - Rao, J.N.K. (1968c): Rable and regression estimators: Proc. Spap. Foundations of Survey Sampling, Chapel Hill (in press). - Rao, T.J. (1966): On certain unbiased ratio estimators; Ann. Inst. Stat. Math., 18, 117-121. - Reo, T.J. (1967): On the choice of a strategy for ratio method of estimation; Jour. Roy. Stat. Soc., B, 29, 392-398. - Rac, T.J. (1987): Contributions to the theory of sampling strategies; Ph.D. Thesis submitted to the Indian Statistical Institute. - Rao, S.R.S. and Manholkar, C.S. (1967): Generalised multivariate estimator for the mean of finite populations, Jour. Amer. Stat. Assn., 62, 1009-1012. - Roy, J. and Chakravarti, I.M. (1960): Estimating the mean of a finite population; Ann. Nath. Stat., 31, 392-398. - Saito, K. (1958): Theoretical considerations on the use of supplementary information in sample survey designs III, Sophia, Boon. Rev. 86. - Samphord, M.R. (1967): On sampling without replacement with unsqual probabilities of selection; - Searls, Donalt T. (1964)! The utilization of a known cofficient of variation in the estimation procedure; Jour, Amer, state Assn. 59, 1225-26. - Sem, A.R. (1952): Present status of probability sampling its use in estimation of farm characteristics; (abstract), Econometrica, 20, 103. - Sem, A.R. (1953): On the ostimate of the variance in sampling with varying probabilies; Jour. Ind. Sec. Agr. Stat., 5, 119-127. - Seth, G.R. (1961): Some aspects of sampling theory and practice; Presidential address, Proceedings of Indian Science Congress, 48th Session. - Soth, G.R. (1966): On estimates of variance of estimate of population total in varying probabilities; Jour. Ind. Soc. Agr. Stat., 18, 52-56. - Singh, D. (1956): On the efficiency of cluster sampling: Jour. Ind. Sec. Agr. Stat., 8, 45-55. - Singh, D. and Singh, 8.D. (1965): Some contributions to twophase samplings Aust. Jour. State. 7. 45-47. - Singh, M.P. (1965): On the estimation of ratio and product of population parameters; Sankhya, 3, 27, 321-328. - Singh, M.P. (1966): Some aspects of recent developments in sampling theory; Symp. Proce. Benaras Hindu University (with M.N.Murthy). - Singh, MaP. (1967a): On the efficiency of systematic sampling in ratio and product estimation; Metrika, 11 (3): 199-205. - Singh, MeP. (1967b): Ratio cum product method of estimation; Metrika, 12(1), 34-42. - Singh, M.P. (1967c): The relative officiency of some two-phase sampling schemes, Ann. Hath. State, 38, 937-940. - Singh, M.P. (1967d): Multivariate product method of estimation for finite populations; Jour. Ind. Soc. Agr. Stat. 19, 2. 1-10. - Singh, M.F. (1968): Comparison of some ratio our product estimators; (Tech. paper No.24, NSS, I.S.I.) presented at the 56th session of Indian Science Congress. - Singh, M.P. (1968): On the concepts of best and admissible estimators in sampling theory; (with M.N. Murthy, to appear in Sankhyā, 31), presented at the 56th Session of Indian Science Congress. - Singh, M.P. (1968): On the utilization of an apriori value of the parameter in the ostimation procedure; (with A.S.Roy, Tech. paper No.30 NSS-I.S.I.) presented at the 56th Session of Indian Science Congress. - Singh, M.P. (1969): Some estimators using supplementary information in sampling finite populations, (submitted for publication, with K. B. Pathak). - Srivastava, S.K. (1965): An estimate of the mean of a finite population using several auxiliary variables; Jours Ind. Stat. Assus. 3(4), 189-194. - Srivastava, S.K. (1967); An estimate using auxiliary information in sample surveys; Cal. Stat. Assn. Bull., 16, 121-152. - Srivastava, 5.K. (1969): A generalised estimator for the mean of a finite population using multi-suxiliary information. (abstract, Ann. Math. Stat. - Stevens, Welle (1958): Sampling without replacement with probability proportional to sise; Jour. Roy. State Soc., B. 20, 393-397. - Subrahmenya, M.T. (1965): On generalised estimators in sampling from finite populations; Metrika, 9, 234-239. - sukhatme, P.V. (1935): Contributions to the theory of representative method; Jour. Roy. Stat. Soc. Supp. 2, 253-263. - Sukhatme, P.V. (1983): Sampling Theory of Surveys with applications; Ind. Soc. Agr. Stat. and Iowa state college press. - Sukhatmo, P.V. (1959): Major developments in the theory and applications of sampling during the last - Supla, G. K. (1966)! An alternative multivarrete retos estimate for fimilia populations; Bull Cal. stal. Assn. 15, 127-134 - Swain, A.K.P.C. (1964): The use of systematic sampling in ratiostimates Jour. Ind. Stat. Assn., 11, 160-164 - Tin, M. (1965): Comparison of some ratio estimators; Jour Amer. Stat. Asm., 60, 294-307. - United Nations (1947-51): Reports of the sub-commission on statistical sampling to the Statistical Commission, New York. - Vijayan, K. (1966); On Norvitz Thompson and Des Raj cetimator; Smithya, A. 28, 87-92. - Vijeyan, K. (1966): Some contributions to Sampling Theory; Ph. D. Thesis submitted to Indian Statistical Institute. - Wald, A. (1947): An essentially complete class of admissible decision function; Ann. Hath. Stat. 18. - Wald, A. (1960): Statistical Decision Functions: John Wiley and Sone. New York. - Yatos, F. (1946): A review of recent statistical developments in sampling and sampling surveys; Yeros, F. (1960): Sampling mothode for Consuses and Surveyes. 3rd Sdn., Griffin, London. Yates, F. and Grundy, F. M. (1953): Selection without replacement from within strata with probability proportional to size; Jour. Roy. Stat. Soc., B. 15, 253-261.