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INTRODUCTION

Given a topological-properﬁy 7 and a pon-vold set X
let n{X) denote the set of topologies on X with property .
7(X) is obviously partially ordered by inclusion, A topologi-
cal space (X,I) is minimal = if T 1is a minimal element in
7(X). (X,I) is sald %o be maximal # if T 1S a maximel
element in 7(X), The study of maximal and minimal topological
space 1s, as a watter of fact, a study of maximal v and minimal
7 spaces, Topologleal spaces closely related to minimal
spaces are m-closed and Kat&tov » spaces, (X;g) 1s w-closed
if I has property 7 and X 1is a closed subspace of every r
space In which 1t can be embedded, 4w space (X,I) is Kat¥tov

- provided T 1is stronger than some minimal s topology on X,

The study of maximal topologies owes its origin to the
remarkable fact that a compact Hausdorff space is maximal
cbmpact, This was first observed by R..Vaidyanathaswamy in
his book [Va]published’&ﬁﬁﬁﬁﬁ vear 1947, The first.substantial
work 1n maximal topologies appeared in 1963 when N, Smythe and
C, A Wilkins characterised maximal compact spaces [SW], Ih'this
brilliant paper they also produced an example of a maximal
compact space which is not Hausdorff, It was followed up by .
J,P.Thomas in71968 when he studied maximal conngefed spe&es [Tnl,
In Chapter I of‘this'thesi% as promised by the title of the

chapter, we proceed to investigate maximal = spaces for some
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further topological properties like H-closed, connected,lightly
compact, pseudocompact, Lindeldéf and countably compact, The
paucity of published literature on maximal toplegies is largely
due to the simple reason that for most topological properties
the maximal 7 spaces turn out to bé discrete.

The impetus to study minimal topological space came from
the well~known topological result, first observed by A.S,
Parkhomenko [Pal in 1932, that a compact Hausdorff space is
minimal Hausdorff, Earlier in 1924 P,S, Alexandroff and
P, Urysohn [A4U] investigated ‘H~closed! spaces and proved that
a regular space is H-closed if and only if it is compact, VIn
considering the H~closedness of a Hausdorff space they were
guided by the important observation that if a compact
Hausdorff space X 1is embedded in a Hausdorff space Y, the
image of X 1s always closed in ¥, Parkhomenko found out
the relationship between minimal Hausdorff and H~closed spaces
by demonstrating that a minimal Hausdorff space is always
H-closed, It was left to Kat¥tov [K] %o obtain the characteri~
sations of minimal Hausdorff spaces, In 1941 E, Cartan [Bo1l
could obtain characterisations of both minimal Hausdorff and
H-closed spaces in terms cf filters, He is the first to
produce a non-compact minimal Hausdorff space, Since thep

1inimal v and m—clesed spaces have been studied for a wide
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spectrum of topologlcal properties including various separation
properties, In chapter II of this thesls we carry cut further
studies in minimal # and m-closed spaces for w = realcompact,
first countable realcompact, locally H-closed, El space,

P-space, Hausdorff P~space, analytic and borelian (Relevant

definitions are supplied later in this thesis).


http://www.cvisiontech.com

CHAPTER O

We shall denoté a topological space by a pair of the
form (X, I) where X 1is any non-void abstract set and I 1%
the class of open sibsets of X, If a fixed topology I is
under ciorisideratidh, T will be, usually, suppressed, Suppose
(X, 2‘) 1s any topologilcagl space, For.a subset A of X A
and £ respectively stand for closure of A #md interior
of A in (X, I), If T and § are two topologies on the
same set X, I-clA demotes closure of A in (XI)  and
T-intA denotes intgrior of A in (X, I), Similarly S-eld
and §-intA stand respectively for closure and interior of 4
in (X, 8.

M open subset U of a topqlegg.c@]. space (X, I} is.gaid

to be regular-open if U= ( T )0& The regular-open subsets

of X are _eési_ly seen to be glosed undef finite intersectlons
and thus form a base for a unicue topology :TQ on X, go s
called the semi-regular topology on X assoclated with the

topology 2, ~and (X, go) the semi-regular space. We shall

make the gonvention to denote the semi-regular topolagy associa-

ted with a space (X, I) by I,. & (topological) epace (X, I)

is called semi-regular if I = &, Here we list some important

properties of the semi-regular space (X,go) assoclated with the
space (X, I),

A\
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(1) (X

Hausdorff,

, I) is Hausdorff if and only if (X, I ) is

(ii) Ug I = TI-c1 U =1 -clU (Hence, for any U e J
we shall use U %o denote either of the two),

(1iii) I 1s regular = L = 1L,

O

Suppose (X, go) is a semi-regular space, Put E(EO) = {8 ML
a topology on X such ¥nat 3, = T Y. B(L)) is partially

ordered by the relation ''§' is weaker than S '', It is known

that E(EO) has a maximal element, A maximal element of E(T )

is referred to as a submaximal topology and X, endowed with a

submaximal topology is called a submaximal space, The above

facts are to be found in Bourbaki [Bo2].

An interesting
property of a submaximal space will be frequently called for

in later chapters and will be mentioned in the appropriate place,

By a G-delta we shall mean a countable intersection of

open sets while a countable union of closed sets will be called

an F-sigma, N, R and I will be used to denote the set of

natural numbers, the set of real numbers and the unlt interval
£0,1] respectively (unless specifically stated otherwise) all

of them endowed with thelr usual topologies,

An open filter

F is a non—empty collection of open

sets satisfying
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(i) ¢ F

(11) ifU,Ve F and G open _) UMV V then Ge K

Ain open ultrafilter 1s an open filter which is maximal in the

collection of open filters,

Let F. be any open filter in a topologlcal space (% D).
Then f*]{'ﬁ t Fe g} is called the adherence of F or ad (F)
in short, Further, an element of ad (F) 1is called an

adherent point of F,

If X and Y are tw topological spaces C(X,Y) stands
for the set of all continuous function from X into ¥, C(X)
is the abbreviation for C(X,R) and jF(K) for C(X,I), The set
£t {0} is called the zero-set of f, We shall fCIIGW'iﬁJ] in
order to.denote this set by 2Z(f) i,e,, for f ¢ C(X) 2zZ(f) =
jxeX:fx =0} = f—l.{O}, Iny set that is a zero-set of
some function in C(X) is called a zero-set in X, The family
of all zero-sets of X 1i,e,, {Z(f) *Tf e C(X)} will be denoted
by Z4(X), It is a matter of elementary calculation to see that
Z(X) = {Z(f) P fe PO

A non-void subfamily F of Z(X) is called a z-filter on
X provided that
(1) B¢ F
(11) if 2,%, ¢ F and Zy e Z(X) such that 2, )% {1 %
then 25 ¢ F. |
%
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By a z-ultrafilter on X igs meant a maximal z~filter,

It is mown that every subfamily of Z(X) with finite inter-
section property is contained in some z~ultrafilter, A z-filter
£ 1s free or fixed according as fﬁ{z c Ze I } = @ eor not.

BX, as usual, 1s the Stone-lech compactification of &

Tychono ff (i,e,, completely regular Hausdorfr) space X, Call

a Tychonoff space X realcompact if every z-ultrafilter with the

countable intersection property is fixed,

Let us denote the irrationals with usual topology by Z,

f is sald to be a compact correcspondence on 3 %o a Tychono ff

space X 1if for each ¢ ¢ X, (o) is a compact subset of X,

A compact correspondence f is called upper semi-continuous if,for

every open subset U of X, the set {G ey (O U} is open

i ! b

A pseudocompact space is a Topclogical space in which

every real valued continuous finetion ig bounded, Throughout
the term 'gpace! willl indicsate a topclogical space, A4 T2
space will, as usual, mean a Haﬁsdorff space, The separation
properties like regularity, complete regularity, normality will

include Hausdorff separstion axiom,
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MAXIMAL TOPOLOGIES

Summary: In this chapter we shall investigate some maximal
topological spaces, The topological propertieé under econsidera~
tion are compact, Lindelof, countably compact, H-closed,
connected, lightly compact or pseudoconmpact, The results can be
classified into two types, The first type of results conslsts
of characterisations of maximal = spaces where = = compact,
Lindelsf, countably compact or H-closed, while the other type
contains only necessary conditions to be satisfied by maximal
w spaces when 7 = comnected, lightly compact or pscudocompact,
__We start out with requisite definitions in sectlon 1, Our
results on maximal compact, maximal Lindelof, maximal countably
compact and maximal H-closed spaces arec presented respectively™
in sections 2,3,4 and 5, Sections 6,7 and 8 are devoted to
results on maximal # spaces where 1w = connected, lightly
compact and pseudocompact, Products and subspaces of maximal
r spaces and questions regarding embedding w spaces into maximal

7 spaces are dealt with at the end of this chapter,

1., Definitions

1.1 Given a topological property m a space (X, I) is said to be

1f (X, T) is a = space and § 1s a m-topology on

maximal

T
X with T (_8 then I = §,
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1.2 A space (X, I) is termed a P~space if #wery G-delta subset

-

of X 1s open in I. .

1.3 Call a space (X, I) countably compact if every countable

open cover of X admits a finite open subcover,

1,4 A space (X, I} 1s lightly compact if every locally finite

system of opan sets of X 4is finite,

1.5 A space X is called an E1 space if every point is the

intersection of a countable number of closed neighbourhoods,

1.6 Call a Hausdorff space H-closed if every homeomorphic
image of the space in a Hausdorff space is a closed subspace

therein,

1.7 A space X 1is sald to be cmbedded in a space Y if there
exists a homeomorphism of X intoc a subspace of Y, X ~1s said

to be densely embedded in Y if X 1is embedded in Y and the

subspace of Y which is homeomorphic to X ia dense in Y,

2. Compact spaces

Let us recall that any 1-1 continuous map from a compact
space onto a Hausdorff space (i,e,, a continuous bijection from
a compact space to a Tg space) is a homeomorphism, In the above
fact the Hausdorff property of the range space is a sufficient
condition and a close examination of the proof of it will reveal

that the closedness of every compact subset of the range space is


http://www.cvisiontech.com

[7}
precisely what is called for, The following theorem while

characterising maximal compact spaces brings out an intimate

relationship existing between moxiral compact spaces and those

spaces onto which any continuous bijection of a compact space

is a homeomorphism,

2.1 Theorems The following are equivalent .

(3) X 1is maximal compact

(b) The set of all closed subsets of X = the set of

all compact subsets of X,

(e¢) My continuous bijection f from a compact space

Y onto X is a Bomeormorphism,

Proof, The equivalence of (a) and (b) is due to Smythe and

Wilkins [SW]., We shall only prove (b) == {(¢) = (a).

(b) = (c) *© Let f Dbe a continucus bijection of a compact
space Y onto X, If A 1is a closed subset of Y, 4 is
compact, Butb Th e = r(w) s compact and so closed in
X by {(b), Thus 71 45 also continuous i,e., £ 1s a
homeomo rphi sm,

(c) == (a), Let I be the topology on X, Let § be a
topology on X which is finer than I and also compact,

Now the identity map 1 : (X, §) — (X,I) is a continuous
bijection from the compact space (X,8) onto (X,I), By (e) i

is a homeomorphism i,e,, I = 3, Naturally (X,I) is maximal.

compact, (Q,E,D.)
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From theorem 2,1 1t 1s casy to see that a maximal compact

space is Tl' Since aﬁy compact T2 space satisfies condition

(b) of theorem 2,1, it is maximal compact, Smythe and Wilkins

have explicitly c¢onstructed an éxamble of a maximal compact
space -which is not Hausdorff {SW], The example 1s reproduced
here | |

Let R be the set of real numbers, Let us choose two
points a,b ¢ R and let BE = Riy {a,b} with topology 21
defined by neighbourhoods (to be, henceforth, abbreviated as

nbhd)

1l

Y (CE: V_ )(x-a, x+d) for some d > 0} if x e R

—

Wy (x)

a 5

CC
v L21Y) k») (2n-1,2n) for some integer

W) =4{Vv CE
jnl=N v}

' o
¥,(a) = (v CE: VD fabar &J (en-a, 2ntl+d ) where
hﬂzN .
dy = 0 are real numbers for |n| =N,N+1,,,,, and

N some integer }.

3. Lindeldf Spaces

Theorem 3,1 is eclearly motivated by %heorem 2,1 and offers a

complete characterisation of maximal_Lindelbf_spaces.

3.1 Theorem, The following are equivalent. 3
(1) (X, I) is maximal Lindelof

(11) The set of all clused subsets of X coincides with

the set of all Lindeldf subspaces of X,
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(1i1) If Y is a Lindeldf space and f 1is any continuous

bijection from Y onto X, then f is a homeomgrphism,

Proof: (i) => (ii) Suppose there exists a Lindelof subspace
A of (%, g) which is not closed, Obviouély,_ﬁp(=X-A) & T
Let S be the topelogy generated by ELU}{AP}, Then

3= {(Acfjlj){} ViUVe g} and is strictly finer than I3
We shall now show that (X, 8) is Lindel5f, Iet 4W; i 1e T}
be an open cover of (X, 8)., Let Wi = (A°MY Ui) U Ve |
Obviously §J{7; ¢ 1e I}2)A and A 1s Lindeldf in the
topology I, So tﬁere exists a countable subset I1 of I
such that { J {V; ¢ 1 e I} 2 A Put Vo=V, i I)
Then Ve I. Consequently Ve is closed in I and is,

therefore, Lindelsf, Again VC (T 2°, Consider wiﬁ vC =

8N v, Vv YN vy = v (U U V), Thus
T|ve = g[v®,  Inasmuch as V° is LindelSf when I is

relativised to it, there exlsts a countable subset I, C1

a ! ST - C . 0

such that {} W; I ie I,} —) V" and thence { j{W;iie I;U 12}
DveLl) vV o= X, But I; A I, 1is a countable subset of I,
Hence, (X,8) is Lindelsf, A contradiction to the fact that

(X, I) is maximal Lindeldf, Thus (i) == (ii),

(i1) == (iii): Since - f is a continuous bijection onto X,

the inverse f 1 is well-defined from X onto ¥, Only we

need to show fhl is_cdntinuouso Sufficeg to show that for
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cach closed subset F of Y, (£ HHE) = £(F) 1is closed in
X, Now F 1is closed in Y =>F is a Lindelof subset of
Y == f(F) is a Lindelof subset of X 1i,e,, f(F) is a closed
subset of X,

(i11) => (1) 3 If T' is any Lindelsf topoiégy on X such
that I 1s contained in TI', the identity map 1 : (X;I') -
(X,I) satisfies the conditions of (iii), So I'= 1T, i,e.,

(X,g)ris maximal Lindel¥f, ' (Q.E.D.)

Fact ¢ It follows from above theorem that makximal Lindeldf
spaces zre Tl‘ If X 1is a countable set, the maximal
Lindelof space 1s nothing but the discrete space, Through the
next theorem we shall presently obtaln a connection between
maximal Lindelof Hausdorff spaces and Lindeldf P-spaces which
are Hausdorff, Mreover, in course of the preof it wiil be

discovered that every maximal Lindelcf space is a P-gpace,
3.2 Theoren, The followihg are equivalent .

(1} X 1is maximal Lindel3f and Hausdorff,

(11} X 1is a Lindelof Hausdorff P-space,

Proofs (i) == (ii) : By theorem 3,1 we know that a subset of

SO
X 1s Lindelof if and only if it is closed, Let G = (ﬁ\ Gn
n=1

be a G-delta subset of X where each Gh is open in X,
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(=] .
Now X-G = H Gy and G (=%~G ) is closed and, a fortiori,

Lindelof for each n, Naturally, X-G is a Lindelss stubspace of
X and so 1t ls closed, Consequently G is open in X, X 1is
thus a P-space, Since X 1is assumed to be Hausdorff, X bécomes

a Lindelot T, P~space, (We have, in fact, proved that d&ny

maximal LindelS8f space is a P-space),

(i1)=>(1) * Since X is Lindeldf, every closed subset of X
is Lindeldf, We need only to show that every Lindelof subspace
1s closed, Invoking theorem 3,1 we then conclude that X is
maximal Tindeldf, Suppose, A 1s a Lindelof subspace of X, Let
X € ﬂ, the closure of A in X, Suffices to prove that 4 = A,
Suppose x € A, Let F(x) denote the filter base of open nbhds
of x, Since xe A F = {V{qlA Ve Efx}} is a filter base of

open subsets of A, If {Vn{\ Aﬁ is a countable eolfection from E,
O GO, 1

(Y VN8 #6 pecanse MYV, w) = (W) ka=vVs#g
n=1 : = 1 | )

as Ve N(x) by (11), Since X is xzs{x}==f){V Ve Nx)} and
x d A= {x}° ) A toe, {4 TV ¢ N(x)} ) 4 But A is

Lindelsf} therefore there extst V. el(x),n > 1, such that

oo = (o_% gt oc . e g

AJ (VOIS T) o 1., Vo L % Y (C A%, But £V eN(x)
Iyi 1 T =1 B {1;1 o Q}, S
giving A(¥((1vn)== @, & contradiction, Sc A must be closed,

(Q.E.D,)
3.3, Corollary . BFEvery Hausdorff maximal Lindeldf space is
- %

regular and, hence, normal and paracompact,
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Proof! Let X be a Hausdorff maximal Lindelsf space and let
X be apoint in X and F a closed subset of X such that

x ¢ F, Since X 1is Ty, for cach y e F there exists an open
4 Vyo Now Vo 1 yeFl isan

set Vy in X such that x
open cover of F and, as F is Lindelsf, we can extract a

o
countable subcover 4V I ne N} from ¥y} Now F (C h:{ v,

- e
(— U Vo ad xd KV . Put V= LuJVn- Then
n=1 I n_—:l
T = v, IAJV, D) V. But X 1s a P-space implies that

e

L}ﬁh 1s a closed set and contains V, o k)vh = V, Put

U= (V)% Then xg U, F(V and UAN V=g S0 X is

regular, It is well~known fact that g regular Lindelﬁflspace

1s normal and paracompact, S X is normal and paracompact,
(Q.E,D.)

Hemark! We recall that any LindelAf Tychonoff (= completely

regular Tg) Space 1s realcompact and any normal T, space is

Tychono ff, Corollary 3,3 then shows that any Hausdorff maximal

Lindeldf space i1s realcompact, 4As is already mentioned that s

maximal Lindel5f space is always Tl a non-Hausdorff maximal
Lindelof space can never be regular, Thus we arrive at the
stronger conclusion that g maximal Lindeldf space is regular if

and cnly if it is Hausdorfe,

4, Countably compact spaces

Before formulating the thenrem which states necessary and
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sufficient conditions for a countably compact space to be maximal
countably compact let us_list some well-known properties of

countably compact spaces without proof (cf, Bourbaki [Bo2]).

4,1 (a) Bvery closed subspace of a countably compact space is

countably compact,

(b) Let f be a continuous mapping of a countably compact
space X into a topological space Y, Then f(X) is a countably

compact subspace of Y,

(¢) Tf X 1is Hausdorff and first countable,. then every

countably compact subspace of X is closed in X,

(d) Mny first countable, countably compact Tz-space is
regular (i,e,, Tj),
Theorem 4,2 which follows is also motivated by theorem 2,1, The
proof is omitted as it is similar to that of theorem 3.1,

4,5 Theorem « For a topological space (X,g)'the following are

equivalent ;

_— (1) (X,I) is maximal countably compact,

(11) The set of all closed subsets of X = The set of

all countably compact subspaces of X,

(ii1) Any continuous bijection f from a countably compact

space Y onto X 1is a homeomorphism,
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4,3 Corollary : My first countable, countably compact Hausdorff
space 1s maximal countably compact,

Proof? Suppose X satisfies the given conditions, By 4,1(a)
2ll closed subspaces of X are countably compact, Since X is
first countable too.and T2’ property 4,1(c) yields that every
countably compact subset of X is closed, Consequently a sub~
set of X 1is closed when and only when it is countably compact,
An application of theorem 4,2 helps us to conclude that X 1is

maximal countably compact, (Q.E,D,)

4.4 Corollary (Aull [Mul): &very countably compact E, space

is maximal countably compact,

Proof: Let X be a countably compact E space, We shall

al
establish that X is first countable, Then the coneclusion will

follow from previous corollary, Let =xe X, By definition there
exist open sets U, n=1,2,,,, such that x} =\ Uy We
elalm that given any open set V containing X there exists

Un such that x & Uﬁ C v, 1r not, Uﬁlﬂ} VS A ¥ for all B
o} o i

We can easily assume that U &= U, for n >1, Then

n+l
iEn{ﬁ\ ve o> l} i1s a countable filter base on X which ig
countably compact, Thé filter base must have non-empty adherence

loe. #+# () Unﬁ v C N T, M ve = vy ((O% T) =46
n=1 n=1 '

n=]1
as x # VS, A contradiction., Thus fU,sne N} forms a

A
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countable base at the point x, X is thus seen to be,lst

countable, X 1is already T, as every E; space is,

(Q.E.D.)

Some more interesting results on maximal countably compact
spaces will be noticed in the next chapter, Theorem 4,2,
incidentally, shows that every maximal countably compact space
is Ty, and, therefore, T,. We shall now present three examples
of maximal countably compact spaces such that the first one is
first countable but non—Haus&orff, the second one is Hausdorff
but fails to be first countable (cr E,) and the last one is

neither first countable nor Hausdorff,

Examples ;
(1) The example due to Smythe and Wilkins, occurring at
the end of section 2 furnishes, at the same time, an illustration

of a maximal céuntably compact space which is non-Hausdorff,

(2) Let X be any uncountable set, Let p be a point
not belonging to X, ILet Y=:){k}{p} denote the one-point
compactirication of X where X 1is endowed with the discrete
topology, Now Y 1is easily seen to be a Hausdorff countably
compact space which is not first countable (it is not even Ei),
If A4 1is any countably compact subset of Y then case (i)

p& A or case (ii) pe A, In the former case A (::K and

as 1t is countably compact A4 is finite and <o clnsed, In case
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(i1), since pe A, Y-4 1is a subset of X, Clearly Y-A is a

open making A closed, Thus any ccuntably compact subset of Y

is closed, By theorem 4.2, Y is maximal countably compact,

(3) Let E be the space ccnsidered in Example 1 and
we can without loss of generality assume that E and Y are
disjoint where Y 1is the space considered in Example 2, If
D= EL}JY is endowed with the union topology, D will turn out
to be compact and hence countably compact, Using Examples 1 and
2 it can be easily seen that T is non-Hausdorff and non-first-

countable, But D is maximal countably compact,

5, H-closed spaces

H-closedness (or absolute closedness according to Bourbaki
[Bo2]) is a sligh®t weakening of compactness and was first
introduced by Alexandroff and Urysohn LAU], Let us call a

Hausdorff space minimal Hausdorff if any Hausdorff topology

wcaker than the given topology necessarily equals it, H-closed
and minimal Hausdorff spaces are intimately connected as the

following fact testifies {Katétov[K] } 2

5.1 £ space 1s minimal Hausdorf{f if and only if it is H-closed

end semiregular,

The following statement contalng a very useful characterisation

of H-closed spaces in terms of minimal Hausdorff spaces and can
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be found in Bourbaki EBOZ, page 146] ¢

5.2 A Hausdorff space is H-closed if and only if its associated

semiregular topology is minimal Hausdorff,

Our first theorem asserts that every H-closed space admits a

maximal H-closed topology,

5.3 Theoren: Suppose (X, I} is an H~closed space, Then there
exists a maximal H-closed topology S on X such that I is
weaker than 2, Also every S-dense subset of X 1is open in

S

=3

Proof: BSince I , the associated semiregular topology of Ly

is weaker than I and T is closed, I-is alse Hvclosed, By
5,2 Eo is, in fact, minimal Hausdorff, A4s Eo is semiregular,
let us consider EQ§O§ = { U a topology on X |} gé = Eo}

(QO is the semiregular topology associated with U), Let 38
be a maximal element of E(EO) such that I (:;g. Then 85 1s

a submaximal topology (cfﬁ-Chapter 0), Since 5, = 20; by 5,2

is H-closed, To show the maximality of S let Us assume |

[ Tom N |[#5)

is an H-closed topology on X such that 8 (::Q, We shall
now show that for any U-open set V, Q;cl V=T-clV, As

U is H-closed U-cl V is H-closed [Bo2l, H-closedness being
preserved under continucus maps into Hausdorff spaces and the

identlty map of (X,0) —> (X,I) being continuous, U~cl V is
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H-closed in T and, in particular, closed in T Since I (U
and U-c1 V_) V we can conclude that U-cl V= T-cl V = V(say)
¥y

Now let V¥ be a regular open set in I, 4s
Ve U, Because of the last paragraph J-e¢l V = T-cl ¥, So

(U-c1 )¢ = (T-cl )°, Agaln, by the observation made in the

c c
last paragraph, (U~cl (U-cl V)°) = (I-cl{T~cl N°) =

i

T-int(T-cl V) = V since V is regular open in I, This shows

that V is a regular open set in U, Hence I, @« U . Since

U is H-closed, U  is minimal T, and this forces L, Al s
Immediately Ue B(I ) and § being a maximal element of E(T )
we can conclude that 5 = U, It 1s thus established that S is
a maximal H—clqsed topology stronéer than I, We have already
noticed that § is submaximal and hence every BS-dense subset

of X must be open in 8 [Bo2, p, 139]. (q E.D.)

The main theorem of this section is the following theorenm
which succeeds in obtaining necessary and sufficient conditions
for an H-closed space to be come maximal H~closed, The preof

depends heavily on *heorem 5,3

5.4 Ineorem o An H-closed space (X,I) is maximal H-closed if

and only if every I-dense subset of X is open in T.

Proof. We shall use the characterisation of submaximal spaces

given in Bourbaki [Bo2, p,139] ¢ (X, I) is submaximal iff every
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I-dense subset of X 1is open in I. Bo suffices to show that,
for an H-closed space (X,1),
I 1s maximal iff T 1is submaximal, Let us assume T to be
maximal H-closed and T , as usual, to be its associabed semi-
regular topology, Then T ¢ E(EO)_ Since I, 1s minimal
Hausdorff (by 5,1) we can say that every member of E(EO) is
H-closed (by 5.2), Naturally, I is a maximal element of

E(zo) i,e,;, T 1is submaximal,

Conversely, let I be submaximal, Inasmeh as I 1is
H~closed, by invoking theorem 5,3, there exists a maximal

H-closed topology 8 on X stronger than L. It was observed

m

in course of the procf of theoren 5,3 that S

B(I,) and as T,
by assumption, is a maximal element of BI)S=T 1.e., I

is maximal H-closed, _ (Q,E,D.)

5.5 Examples of maximal H-closed spaces

(1) Katdtov [K] proved that for any Hausdorff space X,
there is an H-closed space kX in whieh X is densely_imbed@ed as
ail open subgset and which has the characteristic property ¢ If
Y 1is an H-¢losed space containing X as a dense subset and if
1 1 X =Y 4is the identity man on X, then there exists a_
continuous onto map f ¢ kX —> Y such that £|X = il Cexfs, 1 el 0, i)
1) | et 5 be, in pafticular, the discrete space of natural

numbers N, It is known that BN and kN are identical as sets,
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But the topology of kN 1s much larger; in fact every point in
kN-N is isolated in kN-N, Now.the relétive topology of N as
a gsubspace of kN 1s discrete, If kN can support any larger
H-closed topology, the relative:topology,of N induced by fthis
topology 1s, of Course, dlscrete, Thercharaeteristic property
of kN alongwith the fact that N 1is dense open in kX will
show that kN is a maximal H-elosed épace. Conseguently every

dense .subset of kN is open,

(2) We shall now present an example of an infinite compact

Hausdorff space which is maximal H-closed,

Let 'Ni denote the one-point compactification of the set
of natural numbers N endowed with discrete topology. Nl is
comract T2 and so H-closed, Nl is, in fact, maximsl H-closed,

5

We shall return to this example sometime later in this chapter,

6, Connected spaces

We shall only present a necessary condition for a connected

space to be maximal connected, The theorem runs as follows

6,1 Theorem: Suppose (X,I) is a maximal connected space, Then

every dense subset of X dis openr in T,

The proof will be accomplished with the aid of the following

string of lemmas,
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6.2 Lemma : A space (X,I) is connected if and only if (X,go) is

connected, where I (as per our convention) denotes the associa-

ted semiregular topology [Bo2, p,155],

Proof, As I, is weaker than I, the commectedness of T = the
same for I., Conversely, if T is not connected, there should
exist nonempty disjoint open sets G and V in T such that

GAJV =X 4 G and V are both open and closed sets in T,
G and V are definitelﬁ regular-open’ i,e,, they are in EO.

So go is also not connected, (Q.E,D.)

6.3 Lemma: A maximal connected space (X, T) is submaximal,

Proof: I is a member of E(go). Lemma 6,2 together with

maximal connectedness of I implies that 5 il submaxima%.
" QoEtDo

6.4 Lemma: A topology T on X is submaximal if and only if
every subset of X which is dense in the topology I 1is open

in I, (cf, Bourbakl [Bo2]),

Now the proof of theorenm 6,1 immediately follows from

lemmas 6,3 and 6.4,

Agmark, J.F,Thomas [Th] has proved that any maximal connected
space is I,+ But we can arrive at the same conclusion from the
following proposition and lemma 6,3,

Proposition * Every submaximal tcpology is TO.
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Proof: SBuppose (X,IY 1s a submaximal space, - Lek X,y be two
distinct points in X, To show that there is a nbhd, of one
which excludes the other, If any one of them is isolated we are
done, Suppose nore of them is lsolated, Then X - {X} is dense
in I and, in virtue of lemma 6,4, is open in I. Now
ve X=4xls So (X,I) 1s T,

Theorem 6,1 states that a maximal connected space is

necessarily submaximal, But submaximality of a connected space

1s not a sufficient condition of its being maximal connected,

We shall substantiate this by means of the following example,

€,5 Bxample

————

X

i

{1,2,3,4 }
{ng, {1}, {2}, {1,2} {1,2,3},{1,2,4}}

(X,I) is easily seen to be connected and submaximal (dense sets

I

i

are sets containing both 1 and 2 and they are all open in .

Let us look at the topology
= Ll :
B {55, 13 42 2,2, 3,2 {1, 2,3}, {1, 2,4])
21 is connected and is strictly bigger than I, o £ 5 net
maximal connected,

Remark, It is still an cpen question whether there exists a

maximal connected Hausdorfr space,
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7. Lightly compsct spaces

To start out with we shall present few characterisations

of a lightly compael space,

7.1 Proposition ¥ On a space X the following are equivalent,

(a) X is lightly compact

() If U1is a countable open cover of X, then there
1s a finite sub-collection of U whose closures cover p

(¢) Every countable open filter base on X has an
acherent point,
For proof of the above prOposition we refer to Stephenson
lSte2, page 439, theorem 2,61,
It is evident from the above position that cempack, H-closed,
countably compact spaces are all lightly compact. The purpese
of Temma 7,2 is to show that a lightly compact space is pseuda-
compact,
7.2 Lemma® If X ig a lightly compact spaee then X is pseudo~
conpact,
Proof: Suppose f 1is any real-valued continuous funetion on X,
To show that £ is bounded, Put Vn = f—l{(-n,n)}. EKach Vn

©0 oo 1 : ' e

is open and §:{ VRS ﬁgi f “(~n,n) = X, Thus-{?n} is an open

ccver of X which is countable, By 7.1(b) there exists g
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ko
finite collection V. ,V_ ,,. .,V such that X=[J V_ .
= e § ny? gyttt ny 1 ni.
S : T
Now L)} Vp, = ( V. ) =1 "(-n,n) where n = max n;.
i it =7

i 1<i<k
B f ;

e s = . -
Again f 1(~n,n) be £ [-ngn] g a XS TE =i

~n?n] i.e.,

Ifl <n, S f is bounded, (Q.E.D,.)

7.3 Lemma t A space (X,T) is lightly compact if and only if

(X, go) is lightly compact, (Cf, Stepenson [Ste 3, page 116]),

Proof: Since go (_ T, from the definition it follows that

— =)

(X,I ) 1s lightly compact whencver (X,I) is lightly compact,

TP

Suppose, conversely, (X,I ) is lightly compact, Let U be a

countable cover of X consisting of sets from g If

a

) r = 5 5O L L, :
{Vy =ne Niy pat G = (V) I-int(I-c1(V )). Then

G, e I, and V, (_ G, sc that {Qn s ne N} is an open cover
of (X,I ) and hence admits a finite subfamily 1%, * 1313k
1

such that \ } { Eo—cl(Ghi) s i=1,2,,..,k} = X, Obviously
G, el for 1221 <% and 31ﬂco Ue T =4, -c1(U) = T T-c1(U)

i ko | K o
we have % J G =X i,e,, ih} (V W B Aoy . i;} v,

e 1= " P

This shows that (X, I) is lightly compact, CQ.E.D.)

Our next lemma states that every maximal lightly compact space is
submaximal, It 1s analogous to lemma 6,3, We shall omit the

proof since it resembles the »roof of lemma 65 3,
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7.4 Lemma [ Suppose (X, I) is maximal 1lightly eompact, Then

(¥,I) is submaximal,

The fbllowing Theorem is the natural consequence’ of Lemmas 6}4,
T2 18Nd 2. E5
7.5 Theorem ; If (X,T) is a maximal lightly compact space, then
every dense subset of X is open in I,

Next we shall show that theorem 7,5 provides us only a
necessary condition, That submaximality does not guarantee
maximallty of a 1lightly compact space is brought out by the

following example,

7,6‘§§amp1e

X = fny infinite set,
Lat X he a fixed poiht in X,
moo oy e : ofy

Let 2=V Xtx ¢ v} U{Q}&
Then (X,I) is a submaximal topological space, We shall first
see that (¥,I) is lightly compact, If {¢,} is amy countable
open cover of X, then X, € Gn for each n. %o Eh = % for
eaci n so that by proposition 7,1(b} X is lightly;é&mpact.

Let us now fix e X such that x; # x ., Iook at the

X ‘
topology S on X determined as follows | base for the nbhd

filter at x consists of the set {x,x } 4f x ¥ x ;% .

Y,
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base for the nbhd filter at X, consists of {Xb} and

the base at x4 comnsists of {Xl} alone,

8 1is strictly stronger than I, We shall prove now that

(X, §) is lightly compact, Let {Gh} be a countable open

o T = S & [z 13 .
cover of X, here exist nl'qnd Ny such thatxbeGh ,xlaqnzand
obviously S-c1(G 4]} Gng) = X, Then (X, I) is submaximal and
. [l
lightly compact but not maximal lightly compact, ( i ')
‘ Q.E,D,

8. Pseudocompact spaces

Our main result regarding maximal pseudocompact spaces is as
follows .

8.1 ITheorem; Every maximal pseudocompact space is submaximal,

The first step in order to prove the theorem is %the next

lemma,

8.2 Lemma : A space (X, I) is pseudocompact if and only if

(X,go) is pseudocompact,

Proof., The only nontrivial part is to show the 'if"part cf the
assertion, Denote by C(X;I ) the space of all contimuots real-
valued functions on (X,T ) énd by C(X;I) the spaece 41 5ll
continuous real-valued function on (X,I), We claim that

C(X;T)) = C(X;I), For this we need only to prove c(x:ry
C(X;Z ). Let fe c(X;I), ) and U be any open subset of the


http://www.cvisiontech.com

L7l

real line, Then fhl(U) e . Let xe¢ f—l(U). Then f£(x) e U,
By using regularity of the real line we can catch hold of a
Vel suchthat xe VCV (Cel(U) andso xev (C (O
CTCrHm, But (F)° e, s £2W 2. £ thus

belongs to C(X;EO). . . (Q. E.Do )

Proof of_ theorem 8,1. As usual let E(Eo) = { § I 8 a topology
on X with §O = go}o By\méximality of (X;g) and lemma 8,2

end since I e E(I ), we conclude that I is submaximal,

(QI E.D.)
Fact? Since by lemma 7,2 a lightly compact space 1is pseudocompaét,

Example 7,6 offers even an example of a submaximal-pseudocompact.

space which is not maximal pseudocompact,

We are going to close this section by mentioning an example
of a compact Hausdorff space which acts as an ommibus example for
a maximagl compact; maximal countably compact, maximal H-closed,

maximal iightly compact or maximal pseudocompact space,

8.2 Example
Let N, denote, as in Example 2 of 5,5, the one-point
compactificalion of the discrete space N of patural numbers,

Let Ni = EIL}{@}, Nl is compact T and so is maximal compact,

2
It has been already mentidned as an example of a maximal H-closed

space. FBverything will be shown in one stroke if we show that


http://www.cvisiontech.com

[2s] | .
Nl is maximal pseudocompact (Nl is obviously pseudocompact),

Suppose not, Then there must exist a strictly bigger topology
on M which is still pseudocompact, In that topology there
should be an open set V conﬁaining @ such that Niw'v is
infinite, It is easy to see that 'Nl-V is open in the ia;ter
topology, Define the function f ¢ Nl -~ R as follows

fCn) = . n 4if nie N -V

It

-1 if ne V

f 1s a continuous real-valued function on Ny, no doubt,. but

f 1is not bounded, So a contradiction arises,

9. Products and subspaces «f maximal spaces

In this section we intend to study the behaviour of maximal
topological spaces under products and make an attempt to determine
those subspaces ¢f maximal spaces which retain the maximality
property, Let ué first try to determine which subspaces of
maximal w spaces are maximal w where = = compact, LindelSf,
h-closed, countably compact, comnected, lightly compact or

pseudoccmpact,

In the cases when # = compact, Lindeldf or countably
compact we really possess complete characterisations of maximal
7 sSubspaces, Theorems 2J1, 3.1 and 4,2 imply that if TS compact,

Lindelof or countably compact, clcsed subspaces of maximal w
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spaces are precisely the maximal 7w subspaces,

We could not ascértain which subspaces of maximal lightly
compact or maximal pseudocompact spaces are of the same type.
In fact there is no characterisation available regarding which
subspaces of a pseudocompect space are pseﬁdocompact. The case
of 1lightly compact spaces is not so bad, In [BaCM] it was
proved that a spacé X 1is 1lightly compact if and only if the

closure of each open subset of X 1is lightly compact,

Turning our attention to connected spaces we find that

J.P.Thomas LTh] has established that connected open subsets of

a maximal connected space are maximal connected, DBut a maximal

connacted subspace of a maxinmal ccnnected space need not be

open, We shall demonstrate this by an illustration,

Let X= 1.9 ?} and

I= % 4 {1} {2} {1,2}]

-

(X,I) is obviousiy connected } in fact it is maximal connected,

il

Iook at the subset {1,3}, It is closed in I and not open,
The topology I restricted to {1,3} is as fellows

T 1 {1,3} = [§1,3} ¥, 1}]. Evidently 41,3} is

a maximal connected subspace »f X,

y
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A theorem of Thomnmas [Th,,theorem 5, page 701] helps us to assert
that any connected subspace of a finite maximal connected space
is maximal connected, Recently it has been proved by Guthrie
and Stone [GS, theorem 1] that everj-connected subspace of a
maximal connected space is maximal connected, However, no access
to the above paper could be made, A connected space need not be
maximal ccnnected despite the fact that all proper connected
subspaces are maximal connected, An example 1s here incorporated
to substantiate this statement, The connected space X of
Example 6,5 is not maximal connected, But all of its proper

connected subspaces are maximal cchnected,

In order to determine the maximal H-closed subspaces in a
maximal H-closed space let us first observe that any H-closed
subspace of an H-closed space is closed, On the other hand a
closed subset of an H-closed space need not be H-closed. The

following is an example °®

Let 2= ey Pigecn% B U1 = L,2,...,0= 1,200}

where all these elements are assumed to be distinect,

Define the followlng neighbcurhood system on Z | each aij
ig isolated and each bij is isolated, We define the

basic nbhis of c;, %, B as follows ;
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Q(ci) =’{Vn(ci) = %:z {aij,bij,ci} % = 1,2,...},
co O

B(=) = Jv () = = izn{aij, «} {n=1,2 ..},
o o0

B(8) = Vv, () = 19 }____,fl {150 B} 1 n=1,2,...}

It is well-known that Z is H-closed (in fact, minimal
Hausdorff), The subset {ci = 1,2,,0.} is a closed discrete

infinite subset and hence cannot be H-closed,

Submaximality has been characterised in lemms 6.4. The
next proposition shows that submaximality is a hereditary

property.

9.1 Proposition: If X 1s a submaximal space, then every subspace

of X is submaximal, [Bog2]

Proor! Let A be a non-void subset of a submaximal space X, To

show A is submaximal in its relative tovology it suffices to
show that every dense subsect of 4 is open in A (lemma 6.4), Let
B be a dense subset‘of A, Consider A° and choose a dense
subset D of A°, It is casy to see that BLJ D is dense in X

and hence open in X, Since B = (B D)} 4, B 1is open in A,
(R,E,D,)
The following proposition characterises maximal H-~closed

subspaces of a maximal H-closed space in terms of H-closed sub-

3paces,
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9,2 Propositlon 5 In a maximal H-closed space, the class of all

maximal H-closed subspaces and the class of H-closed subspaces

are identical,

Prcof? Let £ be a maximal H-closed space, We are done if we
show that every H-closed subspace of X is maximal H-closed,
Theorem 5.4 asserts that X 1s submaximal, If A is any H-closed
subspace of X, A 1is alsc submaximal due to proposition 9,1, An.

application of theorem 5.4 now yields that A is maximal H-closed,
(Q.E,D,)

Inasmuch as a compact Hausdorff space is maximal compact,
Hausdorff maximal compact spaces are just the compact T2 spaces,
Consequently, Hausdorff maximal compact spaces are indeed closed
under product (in fact, arbitrary product), In the case of non-

Hausdorff maximal compact space we intend to prove the following,

9.3 Propositiont If X is a non-Hausderff maximal compact

space, £ =X endowed with the product topology is never going

to be maximal compact,

Proof: Let D = {(x,x) } x ¢ X} denote the diagonal of X =X,

——————

D is easily scen to be compact, Since X 1is not Tp, D cannot

be closed, The existence of a non~closed compact set, viz, 18

shows that the compact space X =X cannot be maximal compact, -
(Q,E,D,)
Let us have a proposition regarding products of submaximal

spaces,
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9,4 Proposition ¢ If X 1g submaximal and X has a non-isoclated

point (or the topology of X is not discrete), then X <X is not

submaximal,

Proo £ Lef p be a mon-isolated point of X, Put Y = X:f{p}?
Y 1is then dense in X and as X is submaximal Y is open in X,
Consider the subset B= Y ><Y"Lji(p,p)} of X =X, B 1is dense
in X >X as Y =Y is already dense in X =X, It is easy to
see thatlB is not open in X ><X gince it does not contain any

nbhd of (p,p). This shows that X <X cannot be submaximal

(lemma 6,4), (QiE-D')

A Interesting application of the last proposition is the

next theorem °

9.5 Theorem; If X is a maximal H-closed space with at least
one non—~isolated point, X > X with the product topology is

H-closed but never maximal H-closed,

Proof: Since H-closed spaces are known to be closed under

products [CF], X =X is definitely H~closed, X is assumed to
maximal H-closed and, heﬁce, submaximal (thecrem 5,4), Since
the conditicns of proposition 2,4 are satisfied, X <X 1s mot

submaximal, So X >X camot become maximal H-closed, (Q.E.D.)
[ ] @ »

Products of maximal connected spaces, like maximal H-closed

spaces, are not in general maximal connected, As an illustration
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we mention the following

X

il

Ja, P} with a,b distinct,

i

i

{X,Q,{a}} , (X, T) is maximal connected,

The product topology I T on X =X 1is given by
(X =X,0,i(a,a)}, X >{a}, {a} =X, (X >{a]) kJ({e} =X
which 1is definitely not maximal connected as we can

produce a strictly larger connected topology as follows
(X =X, ﬁ,{(a,a)},{(a,b)}, {a} <X, X k:{a},(X *1{3})§}

' ({a} =<x)1,
It is worthwhile to mention that the study of products of
‘maximal 7 spaces where v = Lindelsf, countably compact, lightlj
compact or pseudocompact is rendered uninteresting by the fdot
that these topological properties are nct, in general, productive,
2till we shall examine some special cagses and see what we are
able o establish, Let us take up the c¢gsc of maximal Liﬁ&%lﬁf-
spaces, If we happen to consider a non~Hausdorff Maxiﬁal
Lindeldgispace.X such thgg: X >X is Lindelof when endowed with
the product topology, X =X cannot be maximal Lindelsf due to
the fact that diagonal of X ><X 1is not closed but Lindeldf
(the argument is analogous to one used in Proposition 9,3), In

the Hausdorff case, however, we can prove the following assertion,
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9.6 Theorem ¢ If X 1s a maximal Lindeldf space and if X <X
is Hausdorff and Lindelsf, then X =X is a maximal Lindelof

space,

Proof® By invoking theorem 3,2 we can assert that X 1is a
P-space. By hypothesis X ><X 1s a Lindeldf Hausdorff space,
If we can show that X >X ig a P-space, theorem 3,2 will

vield that it is maximal Lindelsf, Let 4 (_ X <X be any

G-delta 1i,e.,, A = fgﬁ Gn where cach G11 is open in X =X,
If (x,y) ¢ 4, (x,5) sﬂ]én for ecach n, Then for each n, there
exists U and V_open in X such that (x,y) e Uy >V, (C g,
so (x,y) ¢ CﬂUn) ><(ﬂ Vn) (: ﬁ'x. By hypothesis

ﬂUn and f')Vnnare open Islubsc—:ts of X, Thus 4 is open in

X =X i.,e, X =X 1is a P-gpace, ‘ le‘ﬁ’;D.)

A trivial consequence of corollary 4,3 1s that every first
countable compact 'T2 space 1ls maximal countably compact, Thus
if we start with a- first countable compact Hausdorff space X,
the product space X =X -is also a space of the same type and,
a fortiori, maximal counbtably compact, But arguments similar to
those of Proposition 9.5 show that 1f X is a non-T, maximal
countably compéct space X =X 1is not going to be maximal
countably compact when it is given that X =X is countably

compact,
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With respect to products maximal lightly compact or
maximal pseudocompact spaces behave like maximal H-elosed
spaces, If X 1is a maximal lightly compact (or resp, pseudo-
compact) space and if X =X isg known to be lightly compact
(or resp. pseudocompant), the product space may fail to be
maximal lightly compact (or resp, pseudocompact) mainly because

of Proposition 92.4.

10, Conditions under which 7 shaces can be imbedded into maximal

T Spaces

In this section we make an attempt to find out conditions
under which a » space admits an embedding or a dense embedding
into a maximal 7 space where 7 = compact, Lindelof, countably
compact, H-closed, connected, 1lightly compact or pseudocompact,
In some of the cases necessary and sufficient conditions are

lacking,

If 7 1is compact, Lindeldf or countably compact, then in
order that a m space X be embedded in a maximal # space, 1%
is necessary and sufficlent that X be maximal w. In these

cases the problem of dense embedding is trivially solved\

For 7 = H-closed, connected, lightly compact or pseudo-
compact we know that maximal = spaces are submaximal, We also

note that submaximality is hereditary. So we can conolude p
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A necessary condition for a » space X to be embeddable

into a maximal 7 space is that X is submaximal,

Whether this condition is also sufficient while dealing with

lightly compact or pseudocompact spaces is not known to us,

If 7 stands for H~closedness, we Tecall that such a space
1s maximal as soon as 1t is submaximal (Theorem 5.4). So sub-

maximallty is a necessary and sufficient condition for an

H-closed space to be embedded in a maximal H~closed space,

Finally when we come to connected gspaces we recall that
a comnected subspace of maximal connected space 1s maximal

connected {GS], We can immediately infer that a necessary and

sufficient condition for s connected space to be imbedded in a

maximal ccnnected space is that the space‘is maximal connected,

11, Locally Llndolof Hausdo rff P~spaces and 1mbedd1ng in a

maximal Llnﬂclof space

In the last section it has been established that a Lindelof
sbace allows an imbedding into a maximal Lindelsf space if it
1s already maximal LindelSf, The aim of this section is to
introduce a certain type of spaces.which admit an embedding in
meximal Lindeldf spaces, We admit that our results‘in this
direction are naturally guiied by the simple observation that

the one-point compactification of a locally compact T2 space
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is nothing but an embedding of the space in a maximal compact
(Hausdorffj space (a compact T2 space being maximal compact),
The study of locally H-closed spaces, introduced by Obreanu [O],
also supplled the motivation for locally Lindelsf Hausdorff P-

spaces, (Cf, Section 4 of Chapter II),

11,1 A locally Lindelof space is a topological space in which

every point has a LindelSf neighbourhood,

11,2 Call (Y,8) a one-point maximal LindelSf extension of a
topological space (X, I) if X (C Y, T = 8|X (i,e,, T is the

topology obtained by relativising 8 to X), (Y,8) 1s maximal

Lindelof and Y-X is a singleton,

11,3 A topological space (Y,8) is said tc be a maximal Lindeldf

extension of a space (X,I) if (Y,8) is a maximal Lindeldf space

and X is embedded as a dense subspace of Y,

11.4 The onempoint Lindelof extension of a topological space

(ng) is the set X' = XIL}{p} {(vhere p ¢ X) with the topology
I' where

I' =AUV i V(O Xand XV is a closed Lindelsf
subset of XJ,

The one-point Lindel&f extension (X!',T!') of a topological

space (X,T) is LindelSf and X is an open subspace, If X is

Lindelof to start with, then {p} is an isolated point of the
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one-point Lindelof extension, Conversely, if p dis an isolated

point of X', then X is closed in X' and is therefore Lindelsf,

Let us call a topological space (X,I) a locally Lindelsf

Hausdorff P-qpaceA(to be abbreviated as 11h P-space) if (X,I)

is a locally Lindelsf space and at the same time a Hausdorff

P~space also, The reason behind introducing this concept will

be clear from the following theorem,

11.5 Iheorem! If (X,T) is a locally Lindelsf Hausdorff P-space,
then the one-point Lindeldf exbension CX',;}) of the space (X,I)

is Hausdorff,

Proof The Hausdorffness of (X’,E')‘will be established if we

separate a point x e X from p by means of disjoint open sets,
By hypothesis X is a Hausdorff P-space, So every Lindelof sub-
space of X is going to be closed in X (cf, theorenm 5,2 Mbveover’
(X,I) is a locally Lindeldf space,so x has a Lindel5f neighbour-
‘hood in X, say F, Then F 1is a closed and Lindelgf subspace of
X containing x, By definition of I', now XHF‘Q}{p} is an open
nbhd of p in (X', T'), Thus x and p are separated by disjoint

nbhds, | ' (Q.E.D,)

11.6 Proposition; Let (Y,3) be a one-point maximal LindelSt

Hausdorff extension of (X,I), Then
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(a) (X,I) is a 1lh P~space
(b) Xe 8.

Proof: (a) Let {r} = ¥-X, Since (¥,9) is maximal Lindelof T,
(Y,8) is a P-space and X, being a subspace of ¥, is a Hausdorff
P~space. In order to show that (X,I) is locally Lindeldf let

x ¢ X, Obviously x # r. There exists Ue § such that r ¢
closure of U in Y and x & U, Clearly closure_of Uin Y is a

subset of X and being closed in Y is Lindeléf, .Thus X haé a
Lindelsf nbhd in (X,T), 8o (XI) is a'ith-space,
{(b) Y is T, = {r} is closed in-Y => X is open in Y

i.e., Xe 8. | | (Q.5.D.)

The ehbove propcsition tells us that a necessary condition
for a btopological sbace to possess a one-point maximal Lindeldf
extension is that it should be a 1lh P-space. Naturally one
may want to know whether every locally Lindelof Hausdorff
P-space always admits a one~point maximal Lihdelﬁf extension,

The following proposition provides an affirmative answer,

11,7 Proposition! The one-point Lindelof extension (X',I') of

a 1lh P-space (X,I) is, in fact, 2 one-point T, maximal

Lindelof extension of (X,I),

Prooft We need to show (X',I') is a maximal Lindelof Tp space,

By theorem 11,5, (X',T') is Hausdorff., It has been proved
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(Theorem 3,2) that a Hausdorff space is maximéi‘Lindelbf if and
only if it is a Lindeldf P-space, Since. (X!,T*) is élrgady
Lindelsf we are done if we can show that (X‘,E‘) is a P-space,
In view of the well-known fact that a space is a P-space iff
every point is a P-point (a point is a P-point if countable
intersections of nbhds of the point are again nbhds of that
point, cf LGF]) we are reguired to show that every point of X!
is a P~point, Let x e X', C%se (1) x # p, Then xe X and
X 1s a P-space and every open set in X 1is also open in X', 8o
x 1is a P-point in X', Case {ii) =x==p, Let {Gn ‘'ne N} be a
coUntable collection of open nbhds of p, X‘—-Gn = X~(Gh~{p}) is

a Lindeldof subspace of X (by definition) for each n, X' - G =

o0 oo
1 - = X‘... 3 ~ 3 ~Tm~ ~ 3
X g:} G égé( Gh) is then a L1n§olof subspace of X and

hence closed, Consequently, by definition, G is an open nbhd

of p in X', p 1is then a P-point, | (Q.E,D.J

It is well-known that every locally compact Tgnspace‘has a
unique {i,e,, unique upto a homeomornhism) one-point Hausdorff.
éompactification, The above statement can be reformulated as 4
every locally compact T2 space has a unigue one-point maximal
compact Hausdorff extension, Similarly, it is quite a pertinent
question to enquire whethep a locally Lindeldf Hausdorff P-space
has a unique one-point maximal Lindelof extension, The answer

is contained in the following proposition,
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11,8 Proposition 3 Suppose (X%,I) is a 1lh P-space, Lét (Y,9)

be a one~point maximal LindelSf extension of (X,I). Then (X',I")
and (Y,8) are homeomorphic where (X!,T') is the one=poimt

Lindeldf extension of (X,I),

Proof: Let Y =‘X£j{r}, Define f ¢ X! = Y as follows § bl
£{x) = x if xe X and f£(p) =71, f 1is obviouslya bljection,
In ordef that f be continuous we should show that £ is
continuous at each point of X', TFor each x ¢ X, 1t is trivial
for f d4s identity on X, Let U be an open set containing r,
Since p e f—l(U)y to show -f"l(U) is open we shall prove that
X'-£71(U) is a Lindelsf subspace of X(then it will be automati-
cally closed as X is a Hausdorff P~gpace), Now X“~fﬁl(U) =
f—ICY“U) = Y-U as Y-U 1is a subset of X and f is identity
on X, Agaln Y-U is a closed subset of Y and therefore
Lindelsf, Thus X'~f 1(U) is a Lindel5f subspace of X, So f
becomes a continuous bijection from the Lindeldf space (X',T')
onto the maximal Lindel5f space (¥,8), TFrom theorem 3,1 it

follows that f is a homeomprphism, ' (Q,E,D,)
- : & o L

Remark: The proof of Proposition 11,8 shows that.we;need;ﬁot
assume that the space Y 'is Hausdorff, The last proposition
shows that any non-Lindelof locally Lindeldf Hausdorff P-space
X always admits an embedding (as a matter of fact, a dense |

imbedding) Into a maximal Lindeldf space, viz, In 1ts one-point
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Lindeldf extension (X',1'), We continue our study of 11lh P-spaces

in the next section,

12, More on locally Lindelsr Hsusdorff P-spaces

We recall that in a locally coempact T2 space, at every
point the compact nbhds form a base for the neighbourhood filter,

Malogously we prove |

12,1 Proposition | In a locally Lindelsf Hausdorff P-space

Lindeldf nbhds ¢f a point form a base for the nbhd system at
that point,

Proof. ZILet (X,I) be a 1lh P~space, Let xe X and U be any
nbhd of x, Consider the cne-point Lindeldf extension (X',I') of
(%,I), By Proposition 11,7, (X',I') is a maximal Lindeldf
Hausdorff space, So X! is resular, Now U is also a nbhd of
x in TI', By regularity therc exists' V e I' such that

x ¢ V (_ closure of V in X (_ U, Since U‘(: X, VeI and
closure of V in X' = closure of V in X = V(say)., So x ¢ V_(:
T (U, 4 7is aclosed subset of X', it is also LindelSf.

Thus V is a Lindel5f nbhd of x contained in U, (Q.E.D.)

12,2 Corollary. My open subset of a locally Lindelof Hausdorff

P-gpace is also locally Lindelof,

12,3 Propcsition! Suppose X 1s a dense locally Lindelof subset

of a Hausdorff P-space Y. Then X is open in Y, (Compare . any

locally compact dense subspace of a Hausdorff space is open),
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Proof: Suffic?s to show that each x e X has a nbhd contained
in X, As X 1is locally LirdelST x has a Lindeldfnbhd V contain-
ed in X, Since V is a LindelSf subset of X it is so in Y and
Y veing a Hausdorff P-space V 1is closed in Y, Let U be a
nbhd of x in Y such that U{Y X =V, Now V=l Vin Y=
cl(U(%X) 1in Y = ¢1(U) in Y(as X is dense in Y), We conclude

VCU(CelUinY=V, S U= V, X 1is then open in Y, .
(Q-E-Da)

It is clear from proposition 12.1 that a maximal Lindelst
T2 space becomes a 11h P-space as soon as one point is removed,
Conversely, proposition 11.7 has already cestablished that any
11h P-space can be transformed into a maximal Lindelsf Hausdorff
space just by adjoining one point, In fact we can agssert the

following,

/21 ) Propositiont Let (X,I) be a non-LindelSf Hausdorff P-gpace,

Then the following are equivalent 3
(1) (XD is locally Lindelsf,
(2) X 1is open in some Hausdorff maximal Lindeldt
extension of (X, 1),
(3) X 1s open in every Hausdorff, maximal Lindeldf
extension of (X, I),

Proof: {1) => (2), Since X 1is non-Lindeldf, the one-point

Lindelof extension (X',T') of (X,T) is a Hausdorff maximal
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Lindeldf space containing X as an open dense subset, that is

(XT,I') ia a maximal Lindelof extension in which X is open.
(2) =» (1) Follows from corollary 12.2.

(1) => (3), X becomes a dense locally LindelSf subspace 1z a
Hausdorff maximal Lindelof extension and is therefore opeﬁ in

virtue of proposition 12,3,

(3) => (1), Follows from cormllary 12,2, " "
(Q.E,D,)

Finélly, we shall establish that any non-Lindeldf
11h P~space contains a strictly weaker maximal Lindelsf Hausdorff
topology. To start with let us take a 1lh P-space (X,I} which
1s not already Lindelof, Let (X',I') be, as ﬁsual, the one~point
Iindelcf extenslon cf (X, I). Suppose B(x) denctes the =rbdré
filter of x in (X,I), If & = {YAA X%V anthd of p 1n X'},

G 1s a Tlter on X, Fix ae X, Let § be the topology en X

generated by the following neighboturhood filters ¢

i

(x) = B(x) if x# a

“(a)

i

{los]

{I\T'U GLNe 3(a, Ge G}

(1) (X,8) is a P-space 5 Let us first observe thak a
- .m’:

spece is a P-space if and only if every reint 1s a Pspoint,
If x# a, B(x) = B'(x) = x i a P-point in the topology 8.

We have to show now that a is a P-point in 8 1,e,, every

LI
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countsble intersection of nbhds of a 1is again a nbhd of a,

(e8]
We look at ﬂ(NiU G;) where NiU G, e B'(a), Clearly,

i=1

A o (R o). A
Y. &) a) ) (("}N.) {J ( YG,), By hypothesis N = (3N,
i=1 iﬁ) 1 =1 * j=1 * _ = =

CO
and G = 1(:} G, belong to _Q(a) and G respectively, Then
co — 0o '
Y (N RJG) 0) NiJGe B'(a) and hence (Y, 4 60 e B'(a),
i=1 i = i=1 .

(i1) 8 1is Hausdorff ! Let x and y be two distinct

points in X ; If both are different from a, they can be
separated by means of T-open sets and, hence, by §-open sets,
Let x=a, A I' and I are T2 topologies we can get |
yeVelD NeBla) and Ge G such that V{¥(NLJ G) = 4,
But Ve B(y) = B'(y) and N\JGe B'(a)., S § 1is T,.

(1ii) (X,8) is Lindeldf % Let ¥ be an open cover of

(X,8), Since 8 is weaker than I and every I-open set is
also open in I', ¥V is an open cover of X in (X',I%), Tet
S NiJ G

VO € V such that a e V Then by definition of 35, V
G, From the definition of & it

= o*
where N e B(a) and G e
follows that GU{p} is a nbhd of p for each G e G, So

VO*U {P} is an open nbhd of p in X', Let y = ;;r = {V_O}' Then
EU{VOU {p}} 1s an open cover of (X',T') which is Lindeldf and,

consequently, it has a countable subcover, The countable subcover
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must contain the set VoU4ypr}. Suppose {Wi$Wé,gq-}.ﬁogether
with the set VbLJ{p} denotes the countable subcover, “Then
clearly {VO, Wi,,..,Wh...} is a countable subfamily of ¥ which
covers X, Thus (X,8) is Lindelst,

(1v) § is strictly weaker than T % We note that (X,1)

s not Lindelof <= fp} is not isolated in (X!,T1) <=> G is a
filter on X, By definition we have B'(a) (T B(a), We shall
show that B'(a) # B(a) when S 1is a filter on X thereby
establishing that 5 is strictly weaker than I, Suppose not
i,e., B(a) = B'(a), Wote that T' is I, 1,e,, a and p have
disjoint open neighbourhoods in (X',T1) i,e,, there exist N and
v belénging to I' such that a e Ny peVand N}V = @, Since
N (X, N=N{XXe B(a) and G = VX e G. Now N e B'(a) by
hypothesis, So, N = N1\J G, where N, e B(a) and Gy & G,

But 0 = (V0 = (6NN (¢ Gy) = 66 = @4, A contra-

diction as G 1is a filter on X, We are then forced to conclude

that 8 is strictly weaker than A

So far we have succeeded in showing that (X,8) is a
Lindel6f Hausdorff P-space strictly contained in the non-LindelSt
11h P-space (X,I), Since a LindelSf Hausdorff P-space is
maximal Lindelof (Theorem 3.2} we arrive at the following

conclusion
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12,6 Theoren ; If (X,I) is a non-Lindeldf locally Lindelof
Hausdorff P-gspace, T contains a strictly weaker maximal Lindeldf

Hausdorff topology on X,

12,7 Examples of 11lh P-spaces, Iny diserete topologleal Space

is an example of a 11h P-gspace, Let us look at the following
example

Let Y be the set of reals with the topology in which
every x # 0 1is isolated and a typical nbhd of 0 is a
cocountable set (i,e, complement of a countable set), Y 1is
an example of a non~discrete P-space, It 1s, in fact, a
Lindelof Hausdorff P-space and hence maximal Lindeldf, We shall
loock at the space Y from amother point of vieﬁ. Let
X=Y - {O}, If T denotes the relative topblogy of X, then
T is discrete, According to a remark above (X,I) is a
11h P-space, Let (X', I') be the one-point Lindelof extension
of (X,I), 4s (X,I) is a 11h P-space, (X!{,IT') is 2 Hausdorff
maximal Lindelof Space,‘ Ir X' =X L}{p}, an npen nbhd V of
p in X' is such that X'~V is a closed Lindeldf subset of
X, But X 1is discrete, so X'~V is a Lindeldf subset of X
and hence must be countable, Thus cocountable subsets of Xt
containing p are the nbhds of p, Thus we canlidentify Y as

the one-point Lindeldf extension of (X,I).
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Aﬁ easy observation based on theorem 12,6 is that a non-
Lindelof 1lh P-space does not admit any finer Lindeldf topology.
Every Hausdorff maximal Lindeltf space being a 1lh P-space, an
important implication of theorem 12,6 is that every non-LindelQf

AV P-space admivs a strictly weaker 1lh P-space,

13, 1In this penultimate section we shall settle the following
question } ''Is a given Lindelof topology always weaker than

some meximal Lindelof topology? '!

The answer to the above question 1s, in general, no, The fact
that a maximal Lindeldf space must be a P-space (Theorem 3,2)

will be exploited to produce an example corroborating our claim,

G

= Real line

1351 Exggpr le, X
T = TUsual topology on X,

(X,I) 1s a Lindelof T, space which is not maximal LindelSf

2
(because X is not a P-space in the usual topology). Suppose
§ -1s a maximal LindelSf topology on X finer than T. Let

x e X, Then {X} is a G-delta in I and so in § also, 4s
(X, 8) is a PFépace yx} must be open in § i,e,, § is
discrete, Then (X, $) canmot be LindelSf, A contradiction,

We, therefore, conclude that the usual topology on the reals is

not weaker than any maximal Lindeldf topology on the real

numbers, Of course, any topology on a countable set is Lindeldf
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and is weaker than the discrete topology which is, obviously,
maximal Lindelof, '

Remark., In the above question if 'Lindeldf' is replaced by
'H~closed' the answer is, always; yes as theorem 5,3 shows,
For the other properties 7 considered in this chapter we do

not know definite answers,

14, Historicgl Notes

In 1947 Vaidyanathaswamy [Val showed that every compact
T2 space is maximal compact, Maximal compact spaces have been
characterised in an excellent paper of N, Smythe and C, 4,Wilkins
[SW] published in 1963, These characterisations have been
incorporated in theorem 2,1 and were chiefly instrumental in
our obtaining similar characterisations for maximal Lindelsf
and maximal countably.compact spaces that appear in sections
3 and 4, Necessary and sufficient conditions for an H-closed
space %o become maximal H-closed have heen obtained by us in
1970, During the proparation of this thesis and after we had
obtained thesec results we came to know that these results had
been independently obtained by Mioduszewski'and RudqlfA[MR]
in 1969, They are included as theorems 5.3 and 5,4, |
J.P.Thomas [Th] has studied maximal connected spaces (1968) and
has shown that a maximél connected space is T, (Cf, the Remark

following lemma 6,4), a connected open subset is maximal
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connected and other related results, He also showed that
maximal connectedness 1is no%t, in general, productive by means
of an example, Our example is just a variant of his, He has
raicsed the question about the existence of maximal connected
Hausdorff spaces, The contents of Sections 9,10,11 and 13
are inspired by some interesting questions raised by
Prof, M,P,Berri through = personal communication to the author,
4s a concluding remark it may be mentioned that this chapter
is the result of further addition to and elaboration of the

contents of the paper of Raha [Re2],
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CHAPTER 11

MINIMAL TOPOLOGIES

1, Summary

Given a topological property = a space (X,I) 1is called
minimal 7 provided (X,I) is a w-space and there is no 7
ﬁopology defined on X which is properly contained in T (i.e.,
strictly weaker than I), Closely associated with minimal

spaces are v*closed_(or r-complete) and Kat&tov spaces, A
space (X#;) is w~closed if X 1is a closed subset in every =
space Into which X can be homeomorphically imﬁedded, A7 space
(X,T) is said to be Kat¥tov v in case T is stronger than some
minimal v topoclogy on X, We devote this chaptér to investiga-
tions of minimal 7 and other related spaces, stated above, for

7 = realcompact, first countable realcompact, locally H-closed,

P-space, locally Lindeldf Hausdorff P-space, El’ analytic or

borelian, Necessary definitions follow.

2, Definitions

2,1 A Hausdorff space is locally H-closed if every point has a

neighbourhood which is H-closed (H-closed spaces have been

defined in Chapter 1),

2.2 (Y,8) is a one-point H-closed extension of (X,I) if X is a

subset of ¥, T = g[X, (¥,8) is H-closed, Y-X is a singleton and
X dter dense dm ¥
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2.3 A space X is called an E space if every singleton point
of X is a G-delta,
2.4 Call a completely regular Hausdorff space (i,e, a Tychonoff)
space analytic if X 1is an USCO-compact image of irrationals
z (1 e., there exists a correspondence f defined on 5 onto X
satisfylng (1) for o ¢ Z £(0) is a compact subset of X and
X-—kjﬂf(q),d e 2}, (1i) For every non-void open subset U of

X, fo'1 £(0) (C U} 1s open in 3),

2,5 By = completely régular filter base B in a space X we mean
an open filter base such that for each C e B there exist

De £ ond a continuwous function f from X 4nto [0,1] such
that D (CC, f=0on D and f=1on XC, For such a
filter base, {}B = ﬂ{C v Ce :,5} = nth s Ce =B} where C

denotes the closure of C in X, A completely regular filter

base B 1s fixed (free) if {)B # Q(ﬁ=B =

3, Realcompact Spaces

~

In this section our main result is that both minimal
realcompact and minimal first countable Pealcompact spaces are
compact, Although either of spaces under consideration enjoys
the same property, separate proofs are needed for their.establish-
ment, The following results will Play important roles in the

proofs of our theorems,
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3.1 A completely regular Hausdorff space X is realcompact if

and only if for every vy & BX-X there exlsts a continuous function
h ; pX —> [0,1] such that £(y) = 0 and f > 0 on X, where

8X 1is the Stone-8ech compactification of X, (Cf,Engelkingl[E])

3.2 A realcompact space is compact if and only if it is pseudo~

compact, (Cf, Engelking [E])

3,3 A space Y is pseudocompact if and only if every countable
completely regular filter base on Y is fixed, (Stephenson [Ste 2,

page 438])

Let us recall that by a first countable realcompact space
we mean a realcompact space which is; at the same time,‘first
countable, Now we are in a position to state our theorems,

These theorems are to be found in Raha [R1],

3,4 Theorem % Let (X,I) be a topological space, The following

are egquivalent ¢

(1) X is minimal realcompact,
(i1¢ X 1is realcompact-closed,

(ii1) X is compact Hausdorff,

Proof: (i) => (1i) ! We assume that (X,I) is minimal real-
compact, In order to show that (X,I) is realcompact-closed let
Y be a realcompact space containing X as a subset, We wish to

- show that X 1s closed in ¥, Let g & closure of X in Y, Let
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denote the open:fil'ter of open neighbourhoods in ¥ of g, Then

=

¢ = N[X= {NﬂX  Ne g} is a completely regular filter on X,
Suppose q ¢ X i,e,, X is not closed in Y, thenﬂg =g i,e,,
C 1s free, Fix x, € X, Consider the topology T'on X

generated by the followlng neighbourhoods ¢
B'(x) = B(x) 1f x# x

B'(x )= {U C XU )YVC for some Ve QCXO) and
Ce g}

where B(x) stands for the neighbourhood filter of x in (X,I)

for each x & X,

Before we proceed further let us introduce some notations
to be followed throughout this proof, F(X) = The space of all
con‘t° funetions on (X,T) — [0,1], 8X denote the Stone-lech
compactification of (X,I) and F(gX) = The'sp'ace of all cont,

functions from pX — [0,1],

(a) I+ (CT but I' # I % Obviously B'(x) (C B(x ). So
suffices to show that _]_E’J'(xo)‘?! E(XO). We have % =()g =
(\{ C: Ce L}, So there exists Ce § such that x ¢ C
i.e., the.fe exists VO £ Q(XO)' such that Voﬂ C =@ (here C =
closure of ¢ in 1), If B'(x)) = Blx)), there exist Ve B(x )
and D e C such that V:LJD - V.. Then D (CV, and

V() C=#¢, which implies that Df\C = @, A contradiction,
{ 5
Thus B'(x ) # B(x)).
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(b) I' is Hausdorff i Suffices to separate a point x # x
from x by means of I'-open sets, As I is Hausdorff there
exist U e B(x) and Ve B(x ) such that U{} V=g, Now
x ¢ () § => there exist U' ¢ B(x) and C e C such that
U(YC=¢ Tet W= UfY U' and then WA (VU ©) = g,
But We B(x) = B'(x) and VU Ce¢ ]=3'(x0), :

(¢) I' is completely regulsar ; Let xe X é.nd U an open
neighbourhood (to be abbreviated as nbhd,) of x in I', Case (1)
X =%, The U can be'taken to be of the form VAJC for some
V e Q(XO) and C e G, By complete régul.arity of T and
definition of G there exist f, ge F(Xy and D e £ with

D (CC such that  f(x) =0, f£(X-V) =1 g(D) = 0 ana
g(X-C) = 1, Set h = min(f,z), Then h(x)) =0 and h=1

on X - (VigC) = X-U, Obviously h e F(X).,‘ If we put

F'(X) = The space of all continuous functions on (X,I') —>[0,1],
h belongs, in fact, to F'(X), Case (ii) x # X,+ By Hausdorff
property of ¥' we can get U'e B!'(x) and vice Q"(xo) such
that U (VL) 0= 4, we can, without loss of generality,
asgume that U = U', Now, by complete regularity of I we

can find - £ & F(X) such that f£(x) = 0 and £ = 1 on X-U ‘
which incidentally implies that £(V{JC) =1, S f g FI(X),

(d) (X,I') is realcompact: First, let DC;(X) = The set of all

zero-sets of (X,I'), Suppose G (:'DO"(X) be a maximal subfamily


http://www.cvisiontech.com

[57]

with respect to countable intersection property, To show that

’ (\§}=.(}{G . Ge Q‘}_ﬁ'ﬁe Suppose not i€, {1 G= g, We set .

A= fge FI(X) gﬁl{O}fe G} (here we note that théere can _
éxist more than one function in A corresponding to one € & 8.
Let A! = .{g' e F(pX) ' g € A}. (Wote that A (C F(X) (: P(X)
and thus every ge A has a unigue ‘conti'nuous extension gt

to pX), Clearly there is a 1-1 correspondence between A ang
A', Let & stand for closure of G in gX for each G e G,
Now Ge G= G = g—l {O}for some g €A and also G @ g‘ﬁl.fo}
where g' e A corresponds to. ge A, Again' G = ,
ANT = XN 70} w0 that (Vo= NC3AD =) x g Lyoy -
g'ed'} de,Ne=xNND XN ((’}{g'”l{o]; ~§9‘g'eA'}),,

By hypothesis ﬂ;(} = #, So ﬂ {g‘_l{O} :"'g'e}l'} is disjoint
fram X and (%G (C N {g‘_l{O} L gleaty, (Here Nt =n{ﬁ 5

G e =G}) As G has countable intersection property, the set

il

: { G Ge __g} -will have countable intersection property and, a
fortiori, finite intersection property, By compactness of BX
vo have ﬂa # @, Since $1C il {g‘__l{O} P B'eat) - %“’X‘-ix, ‘
n G is a nonempty subset of pX-X, Let us fix y ¢ (‘i.‘é, Since
% e X, x ¢ N .{g‘—l.{o} b g‘qA’} and, hence, there -exi;sts

gie A" with property that 'gi(xo) >0, Put o= Vgifxoij.-.
Clearly gi(y) = 0, We can get a continuous ‘function £3{0,1]
= [0,1] sueh £(0) =0 and =1 on [x/2,1], Then |
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h=7°Ffo gi'f-:' F(e X} éuch that h_(xo) = 1 and h{y)’ = 0, . Tﬁen
f o gl becomes the res.triction of h to X and belongs to
F'(X). as g € F'(X), On the other hand X 1is realcomi)act in
the topology I and y € pX-ZX, So there exists p e F(X) such
that p(y) = 0 “and P >0 on X (By 3,1), ILet r = max(p,h) :
e F(gX), Then r >0 on X r(y) =0 and r(z ) =1, Let
u = r restricted to X, Then u e F(X), Note that xdsu-'-lil}.,
Now XrHy1§ D) xNn7Hy1y = xN g T LeT 11D e T (2, 11
gil(o(/&l] = a I'-open nbhd of X, because gq ¢ F'(x), 8o

u e F'(X).and has the properties that u{x,}) =1 and u >0
on X, Now r(y) = 0 and so r-l[O,l/n) is an open nbhd of

vy in BX for each n >1, Again ye(YG=ye¢ G for all

Ge_g%%rﬂll:()', 1/n)ﬁG#ﬁfo;' all Ge G and n=1,8,,.. .
This implies r-l[O,l/n] intersects every Ge G, for each n, |
Ths 6 # r1[0,1/n1{) G = wt0,1/0] N Glsince 6 (C X) =

Znn G(say) for ecach Ge & n=1,2,,,, , As ue F' (X3,
Z, & D)(X) for n = 1,2,00c o Now G is a‘m,agx_imal subfamily

of D‘(X) with respect to countable interséqtion property and
nG (Zf for all Ge G and n = 1,2,,,. , We, then, must

3

conclude that 7 e & for n=1,2,,,, and, as a result,

0')5 : ?jaul[osl/n]=u {0}&'!3 as u >0 on X,
il .

A contradiction, (X,I') is thus realcompact, But T! ig

strictly weaker than T and is just shown to be a realcompact
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topology on X, This is a contradiction to the hypothesis
that (X,I) is minimal realcompzct, A4s a result X is closed
in Y, ' '

(ii) = (ii1):We assume that (X,I) is realcompact-closed,
We are to show the compactness of X, Consider B8X, the
Stone~éech-compactification of (X,I), Now X 1is a dense
subset of BX which 1s trivially realcompact, 4s X 1is
realcompaqt~closed X dis also a closed subset of s8X, So

X=pX i,e,, X 1is a compact T2 space,

(1i11) = (1) : If (X,I) is a compact T, space, 1t is real-
compact, Now the well-~known fact that s compact Hausdorff
space is minimal Hausdorff clearly implies the minimal real-

compactness of (X,I), (Q.E,D,)

Let us recall that a first countable realcompact space

(X,I) is referred to as a minimal first countable realcompact

space 1f any topology on X which is wesker than 2 and is

first countable realcompact necessarily coineides with T, and

X 1is called first countable recaleompact-closed if it becomes

a closed subset in every embedding of it into some realcompact

and first countable space.

3.5 The followlng statements are equivalent for a topological

Space |
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(1) X is minimal first countable realcompact.
(i1) X 1is first countable realcompact-closed,

(111) X is first countable compact Hausdorff,

(1) => (i1) ; We assume that (X,I) is minimal first
countable regicompact, To Show that (X,I) is first countable
realcompact-closed let Y be a first countable realcompact
space containing X as a subset, * We intend to show that X
is closed in Y, Let q & closure of X in Y, Let Y denote
a countable fundamental system of open mbhds of q in Y, Then

= N|X = {Nfﬁ\X s We g} 1is é,countéble completely regular
filter base on X, Suppose g & X i,e., X 1is not closed in
Y, then {} =@ i,e., § is free, Let ¢ = { tn 1)
Fix X, inr X, Consider the topology I' on X generated by

the following neighbourhoods

o

"x) = Blx) if x# x

B'(x,) = filter generated by {VLLCn.trn 1, Ve Q(xo)}
Arguments very similar to those which appear in the proof of
theorem 3,4 obtain that (X,I') is a first countable completely
regular Hausdorff space, and T' 1s strictly weaker than I

(ef, [Ste 3, lemma 2 8])

(X,I') 1is realoompact + First, let D'(X) = {f {0} °f g Ff(x)}

= the set of all zero-sets of (X,T!) ! where F'(X) = the space
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of all continuous functions on (X,zT') — [0,1']'; Let us conglder
a z-ultrafilter G* on (X,I') which has the countable inter-
section property (i,e,, a maximal subfamily G' of I?é,(X) with
respect to '“c’:ountable‘intersection property), We eish to prove
that G' is fixed (i,e., (1G' # #), 1Ir X, e (¥ Q' ‘there is |
nothing to prove.i Let us suppose then that there exists a set

Gl ¢ G' with x ¢ G', Since I'! is weaker than T, if follows

from Zorn's 1emfna.that there is a z-ultrafilter G on (X,I)
such that G! _(: S, If G has the countable intersection
property, then, by the realcompactness of (X,I), & and, a
fortiori, G' are fixed, So, the proof will be complete as
soon as we show that G has the countable intersection

property,

Let 23 $1 21§ (G We may assume that 2% = (f,)
= £71 0] where f,e F(X). Also, let. G = g {0} = #(g) for
some g € F”(X),\ Since o & ¢ G, _g(xc) >0, Put « = g(xo),
There exists a continuous function r § [0,1] — [0,1] such
. that r“l{O}'w {0} and r=1on [x/2, 1], If f=ro g,
then f e F'(X), f equals 1 on some T!-nbhd of x, and

Gl = 2(f) e DI(X), We set h; = max (f, f;), then hy e F".tX)
and h;l{o} = 2Z(hy) = z(e) [} ) = o' Z(ry) = ') Z4.80 each
G’r% Z;, being equal to Z(hi), belongs to DC';CX);' Now for

each 1 > 1, Gty Z; has non~empty intersection with every
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member of the z-ultrafilter G' and, hence G‘ﬂ?i e G',

Inasmuch as G' has the countable 1ntorsection property
(0]

N @ Nz = Glﬂ(ﬂ zi}s g Zg. Since G i3 a
i“l

-ultrafllter ﬂ 4 & G Thus the realcompactness of
il

(X,I') has been established,

Now, we see that (X,I') is a strictly weaker first count-
able realcompact space than (X,I), This contradicts the hypo~
thesis abaut (X,T), We are then forced to conclude that
qQe X i.e_., Xis closed in Y.

(11) = (111) Ve assume that (X,J) is first countable real-
compact—-closed, We have to"shaw thak (}ik_l;)f 1ls psendocompact
in order to establish the compactness of X (3,2), In view

» of 3,3 we only need to show that every countable completely
regular filter base is fixed, Let g = 'tﬂ}m % m> 1} be a
countable completely regular filter base, Suppose it is free
ie,, {1E ’f\'{c ‘m21} =2, Take p 7 X let Y= X{Mn}.
If T denotes the topology of X we define a topology £ on

Y as follows .
= I\ v C Y V:)_{p} {J ¢, for some m > 1},

g

Claim ¢ ¥ 13 a first countable realcompact space in which X
is imbedded as a proper dense subset,
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Proof of the claim § It is fairly easy to see that Y 1is a

first countable Tychonoff space in whiech X is dense, Let us
note that {p}.is a compact subset of Y and X 4s a real-
compact subspace of Y, Invoking the following theorem of
Gillman and Jerison [G,J, page 121] the realcompactness of
Y follows ¢

In any Tychonoff space, the union of a compact set with

a realcompact set is realcompact,

The claim is thus justified, But this contradicts the first
countable realcompact-closedness of (X,I), Therefore we

conclude that‘.g is fixed,
(111) == (i) 1 The proof of (1ii) => (i) in theorem 3.4 is

applicable mutatis. mutandis, (Q S Be Dy )

It is well~known that a compact Hausdorff space is of the
second category, The following corellary is immediate from

theorems 3,4 and 3.5,.

3.6 Corollary ¢ Any minimal (first countable) realecompact

space is of the second category,

Since for o = recalcompact or first countable realcompact,
minimal + and w-closed spaces are identical, any m-closed
space is, trivially, Kat¥tov w, That this is not the case

for general » spaces is the contention of our next example,
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3.7 Example
Let Q dernote the set of rational numbers with usual
topology, @ is a realcompact space} in fact it is a first
countable realcaompact space, @ is not Kat¥tov first count-
avple realcompact as‘ @ cannot support any compact Hausdorff
topology weaker than the usual topology (Baire category

theorem implies that any countable, compact Hausdorff space

has isolated points),

4. Locally H-closed spaces

Parallel %o the concept of locally compact Hausdorff
spaces, locally H-closed spaces were introduced, The natural
analogue of one-polnt compactification has- also been deduced,
the nomenclature being one-point H-closed exﬁension of a
locally H-closea space, DBefore we mention the results on
minimal locally H-closed spaces we quote below a theorem, due
to Obreanu L0}, regarding one-point H-closed extensions from
Porter [Po2, theorem 2,2, p.,195], This will be needed in the

sequel,

4,1 Theorem §: TLet (X,I) be a locally H-closed space which is
not H-closed end let X' = XTL){p} where p 1is not a point
of X,

(a) E’:EU{{p}UViveg} is a topology on X!

where G is the open filter which is the intersection of all
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free open filters in (X,I),
(b) (X',T') is a one-point H-closed extension of (x,1),

(¢c) G 1is the open filter generated by Ve I ; XV
is H-closed], |
M,P.Berri ([Bell, theorem 5,2, p,104) has shown that if (X,I)
is a locally compact non-compact Hausdorff space, g contains
a strictly weaker compact Hausdorff torology on X, Motivated
by this result we prove the locally H-closed analogue of it

in the following lemma,

4,2 Lemma ; If (X,I) is a non H-closed Jocally H~closed space,
there exists an H-closed topology S on X, strictly weaker
than T,

Proof; By theorem 4.1 there exists a one-point H-closed
extension (X'.I') of (X,I), Obviously X is an open dense
subset of X', If E(p) demotes the nbhd filter of p in X',

G CBpYNVX and G 1s an open filter on X, Obviously G
has no adherent point in X, Fbr-any x ¢ X, let N(x) denote
the filter of I-nbhds of x. Fix a point a e X, We shall
define the topoclogy £ on X by the following neighbourhood

systems |
N'(x) = NM(z) if x# a

N'(a) = yWUF: Ve Na), Fe Bp)M) 3}
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(1) § is Hausdorff § Suffices to separate a point x # a from

a by means of S-open sets, Since (X', I') is Hausdorff it is
possible to find U e N(x), Ve N(g) and G e G such that

UNEWYGE =98, Now Ue N (x) and VIiJGe N'(a) as
Ge §= Ge B(p)} X%

(i1) 8 1sstrictly weaker than I . By definition § is weaker
than I as N'(x) (C §(x) for cach x e X, We shall show
that N'{a) # N(a) which proves that § # I. If not, let

= N(a), Wow a#p and (X',I') is T,, so we can find

=
Fan ]
o
—

‘-open sets V and W such that ae V and pe Wand
AW=4 Since VITW= #, YV, in fact, belongs to N(a),
Again We B(p) and We I, S W Xe G Put G=wlX

lir3

<3

Since Ve N(a) = N'(a), we, definitely, can find v, e N(a),
F e B(p) N\ X such that V = Vlij ¥, But this will mean
ric=¢ which is false as they belong to 3(p){)X. Thus
N'(a) # H(a),

(111} (X,5) is H-closed ! Let F be any open filter base on
(X,8). Suffices to show that F has an adherent point, If

F has an adherent point in (X,I), T alsc has an adherent point

in (X, §) since $§ is weaker than T, Suppose F has no adherent

point in (X,8), Obviously, F cannot have any in (X,I) then,
Since any T-open set 1s also I'-open set,

F is an open filter base on (X', T') and the latter being
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H-closed F will have non-empty adherence in I'., Then by
hypothesis, p will be an adherent point of F in* (Xt, T1),
This means that every member of B(p) intersects every member
of F, which, in view of the fact that every member of Fis a
subset of X, implies that for each Fe F and Ge B(p) A X,
F NG+ 4a, As a result, every §-nbhd of a intersects F for

every e F i,e

2., & 1s an adherent point o &, B A (X, §)

A contradiction, So (X, §) is H-closed, (Q.E D.)

From the definition it is evident that an H-closed space
1s always locally H~closed, Lemma 4,2, then, implies that any
non H-closed locally H-closed space always admits of a strictly
weaker localiy H-closed topology, It has been mentioned in
Chapter T (fection 5) that any H-closed topology contains a
minimal Hausdorff topology (i,e,, an H-closed space is Kat¥tov
Hausdorff) and further a minimal Hausdorff space is H-closed
[Bo2l. We can immediately conclude the following from the

previcus lines 2
(i) A minimal locally H-closed space is H~closed,
(11) A minimal Hausdorff space 1s minimal locally H-closed,
These observations help us to arrive at our main theorem ¢

4,3 Theorem : A space is minimal locally H-closed iff it ig

minimal H~closed iff it is minimal Hausdorff,
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Let us recall that a minimal T2 space-is semiregular,
In virtue of the theorem 4,3 we can state ! Every minimal
logally H-closed space is semiregular, Let us observe that ‘
1f X is any non H-closed locally H-closed space, theqreﬁ 4,1
asserts that X has a one-point H~closed extension X',‘ We
see that X 1isg én Qpen dense subset of X' which is H*cioged;
Here, X 1s trivially embedded into an H-closed space, viz,
X', as a dense open subset, We recall that a locally H-closed
space 1s called locally H-closed-complete if it is a closed
subspace in any loeally H-closed space in which it is embedded,
By definition X camnnot then be locally H~closed-complete,

Obviously we infer the following *

4,4 Proposgsition § Every locally H-closed~complete space is H-closed,

An important conclusion from lemma 4,2 and theorenm
4.3 is. that every locally H-closed space contains a minimal
Jocally H-closed topology i,e.,‘a'locally'H~glosed space 1s
Katetov locally H-closed, In this context it méy be mentioned
that J,R,Porter [Poll has established the following in his

dissertation,

4.5 Proposition ! A Hausdorff space which is locally H-closed

eXcept at most one point is Katdtov Hausdorff,

Remarks; Lemma 4,2, the key result of this section, is slightly

generalised by proposition 4,5, It was not possible to contact
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the aforesaid dissertation in original, We have been appTised
of the proposition 4,5 by Porter through & personal communica-

tion,

5. E, spaces

!

Let us recali'that a topological space is an E,-space if
every point is the intersection of a countable number of closed
nbhds, GClearly every Ei space is Hausdorff, In fact, a

first countable T, space is E as is showa by the following

. 2
lemma, though there exist regular E; spaces which are not

1st countable (e, f. Kelley [Ke, p.771),

5.1 Lemma ; If X is a first countable T2 space, then X
is an Eh space,

5,2 Lemma ¢ JAny countably compact subspace of an Ei space

*is eclosed, '

Proof: Let A be a countably compact subspace of an Iy space

X, If A4is not closed let x & A4, As X is an E, space

there exists a sequence JV } of open sets such that

{X} = f~\ Vo Fut Gh =P Vn) « Then LJ B -{x}

n=1

By countable compactness of A there exist Gi’Gz"‘“ka’ say,

k ' k . e
such that L”, Gi._)A i,e. x¢ (ﬁ\‘Vi (C A%, This implies
that the open nbhd () V; of x does not interscct A —a contra-

1=1
diction to the fact that x ¢ A, Hence 4 is closed, (Q.E.D.)
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Lemma 5,2 together with theorem 4,2 of Chapter I implies
that a countably compact El space 1s maximal countably compact'
(Cf, Corollary 4,4 of Chapter 1), As a matter of fact, we can

arrive at the following proposition,

5.3 Proposition | (C,E, mll [4u, p,SO])‘ Every countably

compact E& space is maximal countably compact and minimal El'

Proof! TLet (X,I) be a countably compact E, space, Then,

as we have already mentioned, X is maximal countably compact,
If (X, I) fails to be minimal E let § be a strictly smaller
E; topology on X, But (X,3) still continues to be countably
compact and, ipso facto, is maximral countably compact, This

contradicts the hypothesis that (X, I) is countably compact, .
(Q.E,D,)

5.4 Lemma : A countably compact El space 1s regular,

Proof ¢ Let A4 be a closed subset of countably compact Eﬁ space
I oG

X and x 7 A, We have open scts {Un} such that {X} = MU,
=1

©0
_— ) [
So, A (_ \J)Vn where Vh = Uh)c, an open set in X for
n=1

n >1, Being a closed subset of X, A is countably compact

and, hence, there should exist a finite subcover, say, Vi,...,V..
n =iy et i i

Then xe (YU (LMY T, (LA, Now U= fy U; and v:{_{vi

i 1=1 i=

i=1 i=]1 i=
are open sets with the property that xe U, 4 (C V and

vy = #, Thus X is regular, (Q.ED.)
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Now, 1f a countably compact El space X 1s embedded Iinto an
E1 space Y then (identifying X as a subset of Y), by dint of
lemma 5,2, X 1s a closed subset of ¥ as X is countably compact
in ¥ (c.f. Chapter I, 4,2), This observation, naturally, has
led us to study those El spaces which when embedded into ﬁﬁ
spaces become closed subspaces, that is to say, E, closed
spaces, Needless to saﬁ, a countably compact Ei space is
El-closed, Historically such a consideratiqn gave rise to
H~cloged spaces from compact T2 spaces [AD}. The last point
needs some elaboration in order to adumbrate or, at least,
anticipate our characterisations of,E&~clqsed spaces, We know
that for a compact T2 space every open cover admits of a finite
open subeover and such a space is H-closed too, An H-closed
space has been proved [Bo2] to be a T, space for which every
open gover of the space has a finite subfamily whose closures
cover X (such a finite subfamily is called a finite proximate
subcover), Similarly a countably compact E; space possesses
the property that every countable open cover of the space
admits a finite subcover, Following the instance of H-closed
spaces we are naturally led to consider spaces which satisfy
the condition ; every countable open cover of the space has a
finite proximate subcover, These spaces are nothing but thg
lightly compact spaces introduced in Chapter I, See, 7 (cof,

[8te 2]). That our guess is accurate will be testified by the
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next theorenm,

5,5 Theorem ; Let X be an El space, The following are

equivalent ¢
(1Y X is E,~closed,

fii) Ev‘éry countable open filter base on X has an

adherent point,

(11i) Every countable open cover of X has a finite

proximate open  subcover,
M: (1) = (ii) o Let _f"..—:. {F ‘tn ;’ l} be a countable

co
open filter base on X, Let [} Fn(: adherence of the filter
n=1

base) be, if possible, empty, Let p be a point not belonging
to X, Set Y= XU{P}. We define a topology S on X as
foilows ¢ A subset U (CY 4is open if (1) UMY X is open in X
and (ii) if pe U, U :)Fn for some n, (Y,8) is an El-'spacre'.?

Letye ¥, If y=p, put G = FnU {p‘}. Then Gn is open

n
in Y, If Cl(A), A (: Y, stands for closure of Ain ¥ and

B, B (L X, stands for closure of B in X, C1(G) = C1(F,) U{p} =

(o] (o]
F‘nU fo} so that IQl C1(G) = (N f‘n)U {P]: = {p}. If ye X,

n=7
as ﬂ ?‘n = ), there exists U open in X containing y and
L : 4

™

F, ¢ F such that U N Fn = J, Then p ¢ C1(U), We know there


http://www.cvisiontech.com

(73]
exists a countable sequence of open sets {Vn} in X such that
{y} (F\ '. - Without loss of generality we ¢an assume that

Ve (U for each n, so that CIL(V,) (_ C1(U) for &ach n,

Then p ¢ C1(V) and, hence, C1(V_) = V for each n, Then we

. _ | 2 otk _

have {y} = fﬁ\ Vo= () (V). Thus (Y,8) is an E, space
n=l W ST s

containing X as a dense open subspace, S X cannot be

E,-closed, Sinco X is assumed to be Ei"closed fﬂ\F # ﬁ

(11) = (111) ¢ Let Vp sn 2 1} be araountable.open cover of
an El space X, Let us suppose this open cover has no finite
proximate open subcovar Suppose {Gh} is the countable

collection of open sets which are finite unions of the sets

Vye Let F= {Fn t B (qn) } By hypothesis F is an

open filter base on X, Since i) is also countable, adherence
(& o]

of F = (\F #0, Then X# SE{(F )¢ = tJ(FC)O LJ(G )97)
n=1

LG, = X, 4 contradiction, So (11) => (iii),
n . '

(1ii) => (i) * Suppose an B) space X 1is a subset of another

Ey space Y, To show that (iii) = X is elosed in Y, SuppOSe
X 1is not closed in Y, then let ye X - X where X = closure

of XIn ¥, Since Y is an Ei space there exist open sets
[ @]

Un, n>1 in Y such that {y} Q Ope. S0, X C ¥ -{v} =
n=l - - : :

L} v where Vg = ﬁh, n 21, Since every countable open cover

n=1 :
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of X has a finite proximate open subheover, we should get open

sets V. Vz,.._, (say) such that X (: C_n_)? » Now since

f’]m'( T.)¢ = ﬁ (v)° = ('n'l] .(fl 0) ﬂ U, = U (say) and

i=1  * i=] * i=1 1=];

xN (.(I%l(vi)'é) =, Um X o {Z'; But U is an open nbhd of
i= : : :

¥yin ¥ ‘and ye X so that v x 4, The contradiction

proves our ceontention, ! : (Q.E.D.)

What is the relationship between El-closed and minimal
El spaces ? Is a minimal El Space always ‘El-closed‘? {Compare
with the fact that a minimgl T2' space is H-closed), The

answer is yes and we prove the following,

5.6 ?roposition v A minimal El Space is El-closed and

semiregular,

Proof: Iet (X,1) ‘be mirimal E,+ Consider the semiregular
topology I, on X, We intend to establish that T 1s By
and therr it will follow that L= I,s tee., T is semlrcgular

Let x e X, By definition there exlsts a sequence Un, of open

sets in T such that fx} ?r" U Let Vn = ( Un) . Then

—

Vpe I, and V =U, and x¢ Vn for all n, ®bviously

O

oo ‘
{x} = nrgl Un O ne Thus go is a topology of El space,
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If (3%,__1') is not B -closed, suppose there exists an E
space Y containirg X as a dense subspace, Let p e X=X,
Let N = {N t N=G6NX for some open nbhd'G_of B iR Y}.
For A __(___:_XJ C1(4) demotes closure of A in X, 1,- the closure
of Ain Y, S8irce ¥ converges to b, adherence of N in X =
m {Cl(N) s Ne :N} =, Pix ge¢ X, We define g topology S
on X as féllows : If x A 4 the open nbhds of x 1in g =
the open nbhds of x in ;[‘ where I is the original topology
of X, If x= g the open nbhds cf g = {VUN e Ne Nand v

an open nbhd of a in Il

Obviously the topology 8 is weaker than L. Since s
is a filter base on X, the topology S is strictly-weaker than
I. We shall show that (X3§) is an El space, Suppose x ¢ X,
Case (1) x # a, Since (X, I) is B, and adherence of J is
%, we can get Ue I, VeI ang e ¥ such that x e U,

aeV anda VUNMNU= ¢ and VUN is an open nbhd of a

Ing. S0 ad closure of U ip £ 1i.e., closure of U ip

Hy

g = C1(¥). Again there exist open sets U e I, n >1I such

So fx} = () 8-C1(U,), Case (i1)

0.
that Uy (L U and fx} = () C(Ty). Since U, (C U,
n=1 : - '
S,
n=1

Cl(Un) = closure of Un in

X = a, First there exists g Sequence of open sets Wn in ¥
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such that f%ﬂ ﬁh = {a}, similarly there exists a sequence
w= 1

_
{Gn} of open sets in 'Y such that {p} = g:}ﬁh' Then, for

each n, (W {J qn)f] Xe § and contains a, We first observe
that for n > 1, §-C1(3)) = 01(Z) Jhere 7, :O'Xﬂ W, 6),

It is not difficult to see that () Z = [\ C1(Z) = Jai.
' n=1 Zh n=1 % ‘ { }‘

So (X,8) is an E, space, By hypothesis (X,I) is minimal B
Sc we arrive at a contradiction, Consequently (X,T) is
Elﬁclosed, I
(Q.E,D,)
The earlier proposition brings dut a ﬂecessafy condition
for a minimal E& space, In fact, this condition is sufficient

too,

5,7 ITheorem: 4in B, space (X,I) is minimal E; if and only if

it is Eﬁ—closed and semiregular,

Proof: The 'only if! part is the proposition 5,6, We need only
to prove the 'if' part, Let (X,I) be an B -closed and semi=
regular space, Let (X,g) be a strictly wesaker El space, 4s

I is semiregular and £ ¥ T there exlsts a regular open set

Uel -8, Obviously, # # U (_ U # X (where A refers to closure
of Ain (X,I) for 4 { X), Since U ¢ 8, we should get a point
x e U such that U does not contain any S-nbhd, of x, As S is

an El topology a sequence {Vn} (::§ is available such that
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-2 g Q §-C1(V.)) and V, D) Vn-.bi!j." How (T IAXV, # 8

n -

for each n, For, if not there should exist m > 1 with the
property \{n (: T and since U 1is regular open and Vm e Ty
v =V (C (T P=0U (here £ = interior of 4 1in the tops-

logy I, & (_ X), But U cannot contain any V_ as 1t 1s an open
§-nbhd of x, Naturally B= {(T)°(\V_ in=1,2..}isa
countable open filter base on (X,I) which is B -closed by
hypothesis, Consequently B has non-void adherence 1,e,,

» e

@'?’adherenceof B = n{V ﬁCU)c 1}(
Ny 7,0 CU>°' 1y C (n V)ﬂw@)%{x}ﬂ U°-=¢
n=1
A contradiction, Therefore, (X,§) cannot be an El space
and this establishes that (X,I) is minimal E,, S
(Q.E.D,)

5,8 Lammg ¢ Suppose X is an E1~cloaed space and f 1is a
continuous function from X into an E; space Y, f(X) is then
El-clgsed.

Proof! The.proof is easy and is omitted, (Q.E\Dr)

5.9 Corollary-: Let (X,I) be Ej~closed and (X,§) be an E
space, § is weaker than T implies (X,8) is also E,~closed,

Now we.are in a position to characterise B,-closed spaces

in terms of minimal El sSpaces,
:
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5;10 Propositiont Ah Elrspace is Eﬁ*closed if ang only 1f

its associated semiregular space is a minimal-El épace.
. i i ) ] o ) ) . 1 . ‘

Proof: Suppose (X,I) is an E; space which is E;-closed, Let
| (X,go) be the assoclated semiregular space, (ngo) is an
E, space and by Corollary 5.9 it is Ei¥closed, Thereom 5,7

then declares (X,T ) to be minimal .

'Cénversely, suppose we are told that the associated semi-
regular'space'Cngo)rof an B sPace_(ngj is m@ﬁimalri&. Tet
us_takefgny countable open cove? {Vn} of (X,I), Put W, w(?ﬁ)o
(the closures aﬁd interiors being taken with respect tb s).

As Vﬁ.(; Wh and W, 8*0; {Wﬁl: n gl} 18 an open cover of

(X;go); (X,I,) is minimal B, and, as a‘result, there'exist

‘ P
Wﬁ ;.;.,Wh such that ) i%;.ﬂ X (because for any 4 e I,
1 P o =1 i :
I-c1(4) = I -C1(4)), Now note that W =7V  foreach n so

P -
that X = U Wh = \U V., . By theorem 5,5 we see that x,I
=1 71 i=] 1

is Eh"closed. , ‘ L v"A(Q—E—D')
It has been already proved that every countably compact

Ei space is minimal E. The existence of a minimal Ei space

which is not countably compact is demonstrated by the next

eXample,
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8,11 Example of a ron~countably ¢ompact B, space -

Let & X = { aj.j’ bij’ Ci, a.,b b4 i 1 2,...,3 1{2”&4&}

where all these elements are distinct,
Define the following neighbourﬁood dystem on X %

Each 8y 4 and eaéh bij are isolated; The basic ned ghbour-

hoods of ¢4y a, b are as follows |

Bleg> = {T°(e;) = i‘:ﬁ fargs bygs 4} n= 1,203

B€a) = {VHCa} =

T
uCS g"CS

{aij’ a} . n .= 1_3,2,0..}

8

- B(p)

i !

i) = {bija by

X is minimal Hausdorff, non-compact and satisfies 1st axiom

bt

b n=1,2..}

of countability, Thus X is én E& space (lemma .5,1) and

SO minimal El” Since countable compactness for a countable
space is identlcal with compacbness X Is obvicusly non~countab-
ly compact Other oxamplos w111 be giVen after a short while,
The example, just presemted, is due to Urysahn [U] and was
cited as the first example of a non-compact minimal Hausdorff

space by E,Cartan [Bol] in 1941,

We shall now present another characterisation of minimal

El spaces using open filters,
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5,12 Theorem: A necessary and sufficient condition that an

E  space (X,I) be minimal B, is that T satisfies

properties |}
| ;&(i) VEVery countable-qpen filtef base has an adhergnt
point, ) ' N
E1C1i3 If an open cdunmable—filter base ﬁas a unlque

adherent point, 1t converges to this point,

E;QQQ: Necessity | Suppose (X,I) is miﬁi@al E. -Theﬁ; due
to Proposition 5,6, (X,I} is By-closed 1,e,, it satisfies
Elfi). In order to see that it satisfies E;(ii) let us take
- & countable open filter-base F={JF in 2 1} on (3D
. , : ' 0
which has a unlque adherent point, say, x 1i,e,, €x}==‘(\ K.
. : n=1

Set -G =4F, U Vinzl and V an open nbhd of x}. §
is a sub~famlly of 'J, Consider the topology £ on X genera~
ted by the following-neighbourhood'systéms &

If y # x, the neighbourhoods are unchanged

G 1is the base for the neighbourhoods at =x,
§ 1s evidently weaker than [, The interesting fact is that

(X,8) is an E; space, 4s a rasult I = §, Therefore, § is

a base for the nbhds of x in T and clearly the filter base

gonverges to the point x,
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Sufficiency ¢ Let (X,I) be an E, space satisfying E (1)
and Elfii).: Sihce I satisfies Elfi), 1t is By~closed,
If we show that (X,I) is semiregular, it will be minimal E;

by theorem 5,7, If I is not semiregular let go indicate the' 
assoclated semiregular topology on X, Obviously there exists
##Ue I-I,.Then U # X, There should exist x e U such
that xe We I == W is not contained in U, Inasmuch as
(X’=O) is an B, space, {x} = f£1 V, wvhere Vn e I and xe V,
for each n > 1, We can easily assume )V+1 for all n,
Clgarly {Vn} is an open filter base on (Xig) which is count-
able also, x 1s the unique adherent point of this countablé
open filter base and so by B (ii) it converges to x in [.
Since U e I there should exist a V such that =xe V_ €
A.contradigtioﬁ, We, therefore, conclude that (X,I) 1s semi-

regular i,e, (X,I) is minimal E, : (Q,E,D,)

5,13 Corollary : Every minimal B, space satisfies first

axiom of countability,

Proof ; Suppose =x is any arbitrary point in a minimal E1
ST o0

space X, We know {x}== r\ ﬁh where ecach Un is an open
nbhd of x in X, No loss of generality in assuming

U ) Upgq for n=1,3,,,,, so that (U} is a countable

open filter base with a unique adherent point x, By property
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El(ii) of theorem 5,12 the filter base {Uﬂ}:must eonverge to
® e, Uﬁfs formm a base for the neighbourhood Fiiter of x,

Consequently X 4is first countdble, gE. &
l LQCE.Dd)

Corollary 5,13 at once gives the following in view of the

fact that any 1st countable T, space is K,

5,14 Corollary . Every minimad E, space is minimal first

- countable Hausdorff,

5.15 Proposition i A countably compact E, space is minimal

first countable Hausdorff,

Proof: Immediately follews from proposition 5,3 and corollary

ety | (3.E.D,)
Remark { Tet us note that in Chap, I, Section 4 (Corollary 4,4)
1t has been established that a counsably compact E, space is
first countable and then using Corollary 4.3 of the same chapter
it can be readily seen that a countably compact E; space is
minimal 1st q?ggtable Hausdarff, In fact the following statement

I

i S trueg

.

5,16 Propogition [ Every countably compact, first tountable

Hausdorff space is minimel first countable Hausdorff ( of,

Stephenson [Ste 3], lemma 2,12, p,119),

Proof. TFollows easily from lerma 5,1 and proposition 5,15
(Q.E.D.-)
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Proposition 5,6 can, as well, be a starting point for a probe

into first countable Tg-closed spaces exactly_in the same

manner as has be@ﬁ initiated by proposition 5,3 in the‘case of
Eﬁ~closed spaces, The paragraph juét preceding theorem 5,5
contains the hint that the characterisations of 1st countable
Hausdorff-closed and minimal lst.countable Hausdorff spaces
are likely to resemble those of Ei-closed and mlnimal El
spaces respectively, As a matter of fact, they do and we can
get them simply by replacing by 'first countable Hausdorff!
the term ’Ei' in theorems 5,5-5,7, But R,M,Stephenson Jr,
has obtained the same results on first countable Hausdorff-
closed and minimal first countablel T2 spaces while he has been
studying various minimal first countable topologies, [Ste 3,
theorems 2,4 and 2.5], Thus his starting point has been

different from ours,

Let us suppose that X 1is a minimal 1st countable Hausdorff
space, In the light of the characterisations mentioned in the
last paragraph X is lightly compact and semiregular, Appli-
cation of i\mma 5,1 together with theorems 5,5 and 5,7 yields

?ﬁ a minimal E1 space, Use of Corollary 5.14 then finally
leéds to %

5$17 Proposition | X is minimal first countable T2 S

\\/\1
is minimal Ei.
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Despite the observation that minimal first countable Hausdorff
spaces are ldentical with minimal E1 spaces, first qountable T2—'
closedness and B -closedness are distinct concepts, From the
properties of 1lst countable T,-closed spaces, mentioned earlier,
it, however, follows that the former spaces are always E.-closed,
We are going to cite an example of an El-closed space that fails
to be first countable T2~closed. The example has been taken
from Bourbaki [Bo2] where, of course, it appears in a different

context,

5,18 Bxample,

1

(o, 1]

11 S
i

Usual topology on X

g= {A.(: X7 X= A is countable }

Let § be the topology on X generated by € and I. Obviously,
(X, 8) is an E; space, We shall show that (X,8) is lightly
compact, It is easy to see that Ae C=> A 1s dense in (X,I),
Again C 1is a filter base, Since (X,I) is compact T,y 1t is
evidently H~closed and semiregular, It now follows from an
exerclse of Bourbaki [Bo2, page 138, Ex, 20] that (X, 8) is
H-closed and from the definition of 1ightly compact spaces it

is clear that an H-closed space is lightly compact, (X,8) is

thus both 1ightly-compatt-and El‘ By theorem 5,5, (X,8) is
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E,-closed, As soon as it is shown that (%,8) failts o be !
1st eountable (X;ﬁ) will be an éXample of an E1~clos¢d space
which is not first countable T2~closed, Let x e X, Suppose
{0, +n > 1} 1is a countable base at x, We further assume
that U 's are decreasing, Choose e U =0 1, n 21,

If G 1is the set consisting only of x,'s, G 1is countable
so G e L. Obviously, ¢ e £ and is a nbhd of x, There
should exist U such that x e U, (C 6°, But by choice

O

o}
X, € Un and X, 7 GC, Hence this is impossible, No point of
o o) o 1k .

(x,g) can have a countable base for its neighbourhood filter,

5,19 At the end of example 5,11 we promised to prodﬂce'further
examples of minimal E1 spaces vwhich are not countably compact,
According to proposition 5,17 it suffices for us to produce
such examples of minimal first countable Hausdorff spaces, Here
we refer to two minimal first countable Hausdorff spaces, due to
Stephenson [Ste 4], neither of which is regular (and hence

neither is countably compact by lemma 5,4) or minimal Hausdorff,

5,20 Category of minimal'El spaces

Minimal E, spaces, like minimal Hausdorff spaces, can be
of either category, One of the two examples referred to in 5,19
offers an illustration of a second category minimal El'space

while the other is an evidence of a minimal E1 space which is
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of the first category., Let us look at the follow{hg result
which has been taken from Bourbaki [Bo2, page 147].

5.2l Propositien! Let X be a countable H-closed spdse,

Then isolated points of X are dense in the topology of X,

5,22 Corollary % Any countable H-closed space is of 2nd

category,

5.23 Proposition ¢ Let X be a countable set and be endowed

with a first countable Hausdorff~closed (resp, Ei-closed)

topology, Then X 1is H-closed,

Proof! Let us note that a LindelSf space 1ls H-closed 1ff it is
lightly compact and T2, Since any countable topological space
is Lindeldf, X d1s Lindelof, Again by our characterisations, X

is 1lightly compact so that X nmust be E-elosed, (Q.E.D, Y

Combining Corollary 5,22 with proposition 5,23 we can state

the following ¢

5.24 Theorem! Bwery countable E,-closed or first countable

Hausdorff-closed space is of the second category,

5.25 Remarkas Let us note that every E,-~closed or 1lst countable
Tg—closed space contains a minimal Eﬁ (which is same as minimal
first countable Tz) space, Thus an B ~ciosed space is Kat¥tov

El and a first countable T2~closed space Kat¥tov first countable
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To.  Further it is easy to see that a countable T, space is
1ightl? compact if and only if it is H-closed. Using this
fact we are able to demonstrate that\ah;El space need not be

Kat&tov E&, The example is as follows °©

Example | Let Q be the set of rationals with usual topology,
Q is a first countable T, space, so 1is E,. If Q has to
support a minimal Ea topology wesker than the usual topology, .
the topology ought to be lightly compact (theorems 5,5 and 5,7)
as Q is countable it would be H-closed,' Now appealing to
Proposition 5. 21 wngnow that @ then should have isolated points,
But the usual,topolégy of @ has no isolated points and hence
no weaker topology can have isoleted points thereby rendéring
the existence of any minimal El topology on‘_Q weaker than the
usual topology impossible, The same argument élso establishes

that @ is neither Katdtowv E& nor Kat&tov first countable TZ'

We shall conclude this section by demonstrating an
application of Proposition 5,16 to metric spaces, We shall

exhibit an alternative proof of the following well~known fact,
5,26 Theorem { A countably compact metric space is compact,

Proof; If X is g countably compact metric space it isg definitely
a 1st countable countably compact T2 space, By appealing to

theorem 5.16 we know thot X is minimal first countable T2. As
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any metric space is a 1lst countable Hausdorff space, X has to
be a minimal metric space. Scarborough and Stephgnéoh -Lssel
"have shown that a minimal metric space iS'cémpact} ot B
| | (Q.E.D.)

6, P-spaces

In Chapter I we Lave already come across P-spaces which
are defiﬁed to be spaces in which eVefy'G—delta subset is open,
The nomenclaﬁure 'P-space' has been taken from Gillman and
Jeriéon [GJ,'4J page 62], To stért with let us list some
important properties of P-spaces, Most of them can be found

in {&],
6,1 (1) Every discrete and cvery indiscrete space are P-spaces,

(11) Every countable subset of a P-space is closed and

discrete, Hence every countable P~space is discrete,
(i11) Bvery subspace of a P-space 1s a P-space,
(1v) Finite products of P-spaces are P~spaces,

(v} X 1is a P-space if and only 1f every point is. a
P?poiﬁt (i,e., every G-delta containing the poimt is a

nbhd of the point),

(vi) Every Lindelof subspace of a Hausdorff P-space is

closed (ef, Chap. I, Section 3,2 for the proof),


http://www.cvisiontech.com

[89]
The implication of 6,1(i)} is that both the smallest and the
largest topclogies on any set are P-spaces, Thus the questions
regarding minimal as well as_maximairP—spaces are, rather,
trivially answered, We need to consider more restrictive set-up,
as for example; P-spaces which are Tl' Here we can state an
interesting result regarding minimal Tl P-spaces, It is as

follows ¢

6.2 Theorem : On any set X the collection of T; P-space

topologies has a unique minimum,

Proof: Case (i) X is countable, In this case the discrete
tepology is the only T; P-space topology (6,1 (1i)) and is,

naturally, the minimum,

Case (i1) X is uncountable, The minimum T, P-space
topology is given by the topology whose non-woid open sets are
complements of countable subsets, Let thig topology be denoted
by I, Suffices to show that any Tl P-space topology § on X
is stronger than go Let @3 Ve E. Then X~V is countable,
X-V is an F-sigma as I is T; = V 1is a G-delta in I =>
V is a G-delta in 2 =>7V 4is open in 8 (since § is a P-space),

So I 1is weaker than 8. (Q,E,D,)

-

©

€.3 Hausdorff P—spaces » From now onwards we shall only consider

Hausdorff P~spaces (to be abbreviated as HP-spaces), The follow—

ing theorem is meant for showing how naturally the concept of


http://www.cvisiontech.com

{901

minimal HP-spaces enters our discussion,

6.4 Theorem | Let (X,T) be a maximal Lindelsr Hausdorff space,

Then (X}g)_is a minimal Hausdorff P—spéce,

Proof; Suppose not, Theéen there exists astricﬁlysmaller
Hausdorff P=space topology Son X, Consider the identify
mapping 1 ° (X, 1) ~= (Xt§i. Obviously 1 48w continuous
bijection and hence S 1is a Lindelsf Hausdorff P-topoiogy.
So (X,g)ris!maximal Lindeldf due to theorem'3;2 of Chapter I,
By theorem 3,1 of Chapter I i must now be a homeomo rphism
i.e,, §=1. So (XI) is a minimal Hausdorff Pespacey = 7

2, . -~ (Q.E.D,)

Now we wish to study HP-closed spaces, First let us

Qbserve thatlif a maximal Lindeldf T2 space is homeomo rphically
‘imbedded in a Hausdorff P-space, the homeomorph, belng a Lindelsf
subspace of an HP-space, necessarily bturns out %o be a closed
subset (6,1 (vi)), Thus maximal Lindelsf Hausdorfr spaces
provide examples of HP-glqsed spaces, Necessary and sufficient

conditions for HP-closed spaces are obtained in the following

theorem,

6.5 Theorem ; ‘The following are equivalent for a Hapsdorff

P-space {X,I),

(a) (Xﬁg).is.an HP-closed space, |
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(b} BEvery open filter on X such that every countable
interseetion of sets in the filter is also in the filter (1,e.,
every open filteér that is closed under countable intersections)

has non-empty adherence,

(¢) Every open cover Y of X has a countable subfamlly
o |

{V,} such that A Vo= X vn being the closure of V in X),
' n=1

Proof: (a) == (b) : Let F be an open filter on X which is
closed under countable intersections, To show that ﬂ{f‘ s Fe =F}
= adherence of F # ¢, Suppose not, Put Y= XU{p} where
p& X, Asubset U of Y is open if (i) UNX is open in

X and (ii) if pe U then U = .{p}UF for some Feg F, To
cheek that Y 1is a P-space we are to show that p 1is a P-point
and that 1is trivially done by using the propex;ty of I A T B
Hausdorff 3 let x & X and the other point be p, Since

x ¢} { F:Fe g‘}, F = the closure of F in (X,I), there exist
T-open set V containing x and Fj ¢ F such that VﬂFo = g,
as vV (C X, v (FOU{p}) =@ and V and F 1) fp} are
disjoint open neighbourhoods in Y of x and p respectively,
Consequently, X is a dense open subset of a Hausdorff P-space

Y - a contradiction to the fact that X is HP-closed,

(b) => (¢) ¢ Let ¥ be any open cover of X, Suppose, also,

that for every countable subfamily € of V, U .{Tf Ve __G} # X,
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Without loss of generality we can assumethet ¥V 1% also closed
under countable umions, Put "__1_“ = open filter genergted by
.{(V)-’Q * Ve ;T]. Easy to see that F i1s an open fi}:ﬁér:clésed
under-countable -intersectior{s, By hypdthesis ﬂ{(V)UE_Le g}ﬁ
(fF 7o g} #0 te, D Te g} £ % Stnco (1))° -
(M, XEULM® 2 Fe Fp= U 1 Ve J) ZrUVivelj=x,
A cantradiction,

(¢) = (a) ¢ Let X be a dense subset of a Bausdorff P~space
Y such that T is the relatiwe btopology of X, Take p & Y-X,
Suppose N = the family of open nbhds of p in Y, Set G =
Hausdorff fp} = C1yN 2 We N} and so #= X(}fp} =
({(C1y MM\ X} Fow C1y(NY Xy = X[ 01y (NIYX) =(CI MV X
(since X 1is dense in Y) => =ﬂ{01xél§ﬂx) s N s g‘} =
(1{C1xC 2 G e G} giving X = | J§%C1y(6) ¢ Ge G, By hypothests
there exlsts a countable subfamily {G“n} of & such that

{Xﬂ NiNel}, 'As Xdis demsein ¥, ## G, Since Y 1is

<O o
X = }z__)l Cly(X-C14(G)) whieh yields IQ CIz(C ) has empty
interior in X, As X is a P-gpaco, m G, is open in X and
0o _ n=1
()6, C () e, &ﬂemyﬁ Now G e §=> G
n=1 n=J
XnNn for some N e N, Therefore, ﬂanN ) “'q G, =8

o0
i,e., Xn ( (\1 Nn) = g, But Y is a P~space ﬁ&- Nn = Ne N
n: =
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so that X()N = @, A contradiction to the fact that g ¢.G,
| (.E.D.)
6.6 Lemma ; Suppose (X,I) is a P-space, If (X,EO) is the semi-

regular topology associated with (X,I), then (X,I.)

is also a P-space,

Proof: Suffices to show that egvery x ¢ X is a P~point, Take

any xe X and suppose {Vn T n> 1} is a countable family

of regular-open nbhds, of x, Since (X,T) is a P~space,
= fﬂ\ Vh is an open set in I containing "x, In order to

show that V ¢ I, we shall, in fact, show that V is regular-
open, Since V (_{\V (closuro with respect to (X,I)), ()° (:
<8 V Y~ (\(V')o (\\T (as each v, is regular-open by choice),

Since Ve I, VI (M° Cv i.e., V is regular-open,

(Q.E.D,)

6.7 Theorem ¢ A minimal HP-space is semiregular and HP-closed,

Proof: Let us recall that a topological space is Hausdorff iff
its associated semiregular topology is Hausdorff [Bo2], Now
with the help of lemma 6,6 it is casy to sce that a minimal
HP-space should necessarily be semiregular, Suppose a minimal
HP-space (X, T) is not HP-closed i,e., there exists an open
filter I on X closed under countgble intersections such that

I has no adherent point, Fix X, € X, Consider the topology
on X generated by the following neighbourhood filters,

i
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B'(x) = B(x) if x # X,
B'(x,) = {G (C X% G _I)VIUF for dome V ¢ B(x,) and
F s‘g}
where B(x) denotes the nelghbourhood filter of x in (X,T),
. B 1 ‘ s £ A
Since B'(x ) (L B(x)) but B () #_@(gb),_ S is strictly
weaker than I, S is easily seen to be Too To show that

(%,3) is a P-space we shall show that X, 1s a P-point in the

topology 8. TLet {G = V. (JF , n = 1,2,...} be a countable
oo

family of S-nbhds of ;'co. Now ) G Ny VN F)=1V Ur
, s _ :
where V =(1Vn & g(xo) and F =‘r1Fh e F, 8o (‘Gh e B'(x)).

Thus (X, 8) 1s a Hausdorff P-space strictly wesker than (X,T),

The minimality of (X,I) is then contradicted, (Q.E.D.)

Theorem 6,7 furnishes necessary conditions for a Hausdorff
P~space to be minimal HP, The next theorem is called for to

establish the sufficiency of these conditions,

6,8 Theorem | Any semiregular and HP-closed space is a minimal

HP-space,

Proof: Suppose (X,E) is a semiregular and HP-closed space, Let
(X,8) be a strictly weaker P-space, Since S ¥ T and T has a
base consisting of regular-open sets, we can get a regular—-open

set Ue I-3, Obviously, ## U (C_ U # X (& refers to closure of

i
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Ain (X,T)), 4As U¢ 8, there exists x e U such that U does
not comtain any §-nbhd of x, Put B = B(x,8) = {V C XV is
an S-nbhd of x }, Naturally U ¢ B and so U{\V # 8. for all
Ve B, We can claim that (D)°(YV # ¢ for all Ve B for,
if otherwise, we should be able to find Ve B with V (_T i,e,,
v CM°=u (where, of course, £ denotes the interior
operation with respect to I), Now Ve B =93VO e B and this
means Ue B as U :) VO_ Ir F= {ﬁC() Ve Ve g{ﬁ\g}, F is
an open filter base which is also closed under countable inter-
section in virtue of (X,§) being a P-~space, If G 1s the open
filter generated by F, it will, of course, be closed under

countable intersections and by hypothesis it will have nonempty

adherence in I i,e,, B # adherence (£) = adherence(F)= (\{ﬁcr}VZ
veBNsy COITH N TVevedn s3= (NHNEC
= (N N ve, - Clearly, (| V =-(\ﬂ? Ve B f\g} # {%,} since

{Xb} (\ % = B, We at once conclude that S 1is not Hausdorff,

for in a Hausdorff space the intersection of the closures of all
the open nbhds of a point must equal the singleton point, We
have thus established that X cannot support any Hausdorff
P-space topology strictly smaller than T, Naturally (X, m

[

is minimal HP,

(Q.E.D,)
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It follows fréom theorem 3,2 of Chapter I that maximal
Lindelof T2 spaces afe nothing but the Lindeldof HP-spaces, .
Consequently a Lindeldf HP~space is HP~closed, We recall that
in a Lindeldf'space every open cover of the space has a countable
open subcover, Weskening the condition of Lindeldfness by
demanding that every open cover of the space should possess a
countable proximate opeﬁ subcover (i,e,, a countable subfamily
whose closures cover the space) is just to follow the genesis
of H-eclosed spaces from compact T2 spaces and lightly compact
spaces from countably compact spaces, dwelt on in some detail in
Sec, 5., Theorem 6,5 vindicates our emulation, Any Lind&lof
Hausdorff P-space, according to theorem 6,4, is minimal HP,

Does there exist a minimal HP-space which fails to be Lindeldf
The following example affords us tc offer an affirmative answer

to this question,

6,9 Exawmple of a non-Lindeldf minimal HP-space

Suppose @, denotes the first uncountable ordinal,
Let X be the set {@qﬁy bqg, C v L 5o B < wi}{,}{a’b}’

B

g Cor? a,b are all distinet,

where aﬂﬁ’

The topology I on X is determined as follows

8t and boqa are isolated points, 1 <o, p < Wy e
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Basic open neighbourhoods of ¢, are of the form

VBO‘(cq) = {cq, 8o qu 2158, “B} 138, < W

Basic open neighbourhoods of a are of the type

Ve (o) = Ja, a4 1%, 59, 158 <oy}, 1 s« <a,

=

Basic open nbhds of b are as follows

V. (b) = {b, gt

: 0 5% 13p <o), 1s <o,

(X,I) is a Hausdorff P-space which is not Lindeldf, With the
assistance of theorems 6,5 and 6,8 it can be shown that (X,I)

is a minimal HP-space,

6,10 Lemma { The continuous image of an HP-closed space Into

an HP-space is HP-closed,

23292; Let f be a_contiﬁuous function on an HP~closed space
‘X into a Hausdorff P—spéce‘Y In order to show that f(X) is
HP-closed, let us consider an open cover {Vq} of f(X) i.e.,
v Ve ) £(D and V. 1s open in Y, Qonsider the open cover of

X formed by {f“l(v )}. . According to theorem 6,5 there exists
L

a countable subfamily Jf l(V )t ne N} such that c1 f-l(V )
n=}1 %

= X, Now continuity of f 1mplles that f(ClX "l(V }) ( ClYVn

and, therefore, f(X) (_ k,) ClyV,. As {Vn} is a countable
=il

i3
’

H
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subfamily of {Vﬁ}, in view of theorem 6,5 again, f(X) is HP-
closed, | ‘ (Q;E;D;)
6,11 Corollary: If (X,g) is HP~closed and (X,8) is a Hausdorff
P-space such that § 1s weaker than I, then (%,8) is I;IP—closed;

6,12 Proposition; A Hausdorff P-space 1is HP-closed iff its

associated semlregular space is a minimal HP-~space,

Progf: If a Hausdorff P-space (XI) 1s HP-closed, the assoclated
semiregular topology (X,__T_.‘O) is, due to lemma 6.6 and Corollary
6.11, HP-closed and, no doubt, semiregular, By appealing to
theorem 6,8 it is immediate that (Xg__l‘o) is a minimal HP-space.
Conversely,if.(Xf,__’.l_?o) is minimal HP, (X?-—T'o) is HP-closed and
semiregular because of theorem 6,7, If ¥V 1is any open cover
of (X,I) let W= (¥)° fof Ve V [the closures and the inter-
iors are in the topology of (X,I)], Now We I  and V Cw
implying thereﬁy that W= %FW} forms an open'cover of (X9:To)

and now we can extract a countable subfamily {Wn} of W with the
co
property that q Wn = X (since closures in I and I  are
ST e |

identical), DNote that Wﬁ = (ﬁn)o for some Ve ¥ and, ipso
facto, Wn = Vn‘ ThenUVn =an,= X, JApplying theorem 6,5

we infer that (X, I) is HP-closed, .
(Q.E,D,)
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Another characterisation of minimal HP=-spaces will be

described now,

6,13 Theorem | A necessary and sufficient condition that a

Hausdorff P-space (X,T) be minimal HP is that T should satisfy

properties

HP(1) Every open filter closed under countable intersections

has an adherent point,

HP(1i) If an open filter which is closed under countable inter-
sections has a unique adherent point, then it converges to this

point,

6.143£§@E§ v Mn HP=gpace which satisfies HPfii) also satisfies
HP(i),; Hence such a space is minimal HP, | '
EEEEfz Assﬁme that there exists an dpen filter g-which_is ciosed
under countable intersections having no adherent point, Fix

p e X, Let N be the filter of open neighbourhoods of p, Set
F = {NLJ-G c Nel Ge g},-g-ia-an open filter which is closed
under.  countable intersections, p is the unigue adherent point
of F., By HP(ii) L' converges to p., By construction Fis
weaker than G so Q-converges.to ph‘ Hance p is an adherent
point of G, A contradiction, 8o HP(1i) implies HP(i) for an
HP-gpace and hence, by theorem 6,13, an HP-dpace satisfying

HP(ii) is minimal HP, (Q.E,D,)
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Proof of theorem 6,13; Necessity % Let (X,T) be minimal HP,

Then (X,I) is HP~closed and so EP(1) must be satisfled (Theorem
6.5), To show that T satisfies HP(i1), let F be an open

filter closed under countable interseetions having a unique
adherent: point x(say), Then (\{F': Fel}= {x}. Let B
denote the filter of I~open nbhds of x, We shall show that

given V e B There exists Fe F “such that F C:'V, Obviously

FﬂLJV e B for all Fe F, Suppose F does not converge to x

1.e.; there exists V e B such that P (_V  for o Fe F,

Gonsider ¢ = {FlJV : Fe I, Ve B} which is contained in B,
Consider the topology S8 on X generated by the following

neighbourhood systems °*

'If y # x, the neighbourhooda are maltered
and G, i3 the bése for the neighbourhoods of =z,

B, 8 1is weaker than I. In fact, 8 is strictly

Since G (

weaker than T as V) e T but -V ¢ 8. It is easily checked
that x 4is a P-point in (X,8) so that (X,S) becomes a P-space,
If we can separate any pdint y different from x by means of
g-open sets it follows from the nature of the topology' S that
it is Hausdorff, ILet y e X such that y # x, Since T ié,,

originally, Hausdorff there are open sets U,V in T such that

xe U, yeV and \Ulﬁ)V =0, Mow Vel and x?dV=1"Veg 3,
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Agaln y # x = tﬁere exists i aCRY 3 such that.'y'ﬁ F (the
closure 1s with respect-to I) 1.e,, vy e (F)°, Again x ¢ (P
glves us the following ! (F)® e § so that y ¢ ¥V (V(F)® which .
belongs to 3, ﬁbreover, v (-1'?‘7)c C v FCI(: N FC=CU'£3F-)C_,
Now x a‘UiJ'F which is an §-open nbhd o f X, Consequentl§
(X,8) is a Hausdorff space, So the minimal- HP~space property of
(X,T) is contradicted. Hence [ converges to x, i;e.,fg

satisfies HP(i1),

Sufficiency { Let (X,I) be a Hausdorff P-space satlsfying HP(l)

and HP(ii), Since I satisfies HP(i), (X_Il/is HP-c¢losed, If
(X,I) 1is semiregular, then it will be minimal HP(theorem 6.8);
Let xe X, Let 5‘:‘{ U( X$U is a regular-open set

containing x }9 For every Ve I (V)° is regular-open and

(V)°=.?. S0 x e (}{“ﬁ tUe F} ﬁ,{\iﬁ :Veland xe¢ v} = Jx}

as (ng) is Hausdorff, Thus x is the only cluster point of

the open filter base [ which is closed under countable inter-
sections, By HP(ii}, F must Qonvérge to x, 8 F 1s a base
for the neighbourhoods of x i,e,, I is semiregular as x is

entirely arbitrary. : S e : ‘(Q B D.)

5.15 Locally Lindelof Hausdorff P-spaces 3 “These'spades, to be,
henceforth, abbreviated as 11h P-spaces, have been introduced

in the previoﬁS'Chaptef in Sec,11 in connéction-with‘one;point‘
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Lindelsf extensions of topological spaces, #n important obser-

vation supplied by theorem 12,6 of Chapter I reads as follows ¢

6,16 PropOsition‘: If (X,T) is a non~Lindeldf locally Lindelsf

Hausdorff P-space, T contalns a Strictly weaker maximal Lindelsf

Hausdorff topology on X,

As mentioned earlier a maximal Lindeldf T, is a Lindelsf
HP-space and; a fortiori, is a 11h P-space as well, 6,16 at
once yields that every non-LindelSf 11lh P-space admiﬁs a
strictly weaker 11h P-space, This immediately gives rise to
the following theorem,

6,17 Theorem : (X,I) is a minimal 11h P-space only if (X,T)

is a Lindelof HP-space,

But Lindelof HP-spaces, being identical with maximal Lindelof
T, spaces, have been earlier found to be minimal HP, As a

corollary we therefore get

6,18 Corollary : A minimgl 1lh P-space is a minimal HausdorffP-spacae,
Minimal HP-spaces need not, in general, be minimal

11h P-spaces, Example 6,9 offers a ready illustration, The

space (X,I) is minimal HP but not a locally Lindeldf Hausdorff

P-space because if it were so, in virtue of theorem 6,4,

proposition 6,16 and (X,I) being non-Lindeldf, (X,I) would turn
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out to be strictly stronger than a miqimal HP~space which is
impossible,

It has been established {(Chap,I, Sec,11) that every non-
Lindelsf locally Lindeldf Hausdorff P-space X has a unique one-
point maximal Lindeldf extenéion (which turns out to be a
Lindeld{ HP-space) in which X is a dense open subset, Thus
such a space alvays admits of a dense embedding into a 1lh P~space
(since any Lindelof HP-space is, trivially, a 11h P-space),
Consequently a 11h P-space which is a closed subspace in every

11h P-space in which it is embeddea i,e,, a 11h P-closed space

must be Lindelsf and, ipso facto, minimal HP, Summing up we

get the following,
6,19 Theorem | The followlng are cguivalent for a 11h P-space X,

(i) X is minimal 11h P-gpace.
(11} X is 11h P-closed,
(iii) X 4is minimal HP,
Proofs (i) => (ii1): Suppose X is a minimal 11h P-space, By
theorem 6,17 X is a Lindeldf HP-space. Inasmuch as every
Lindelof subspace of a Hausdorff F-space is closed, X must

be 11h P-closed,
(ii) == (iii) { By the remark preceding this theorem, the 11h P-
closed space X is LindelSf, so that X is a Lindelof HP-space and

is thus minimal EBP,
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(iii) =+ (i) 3 Obvious, | : (Q;E;D;)

From proposition 6,16, theorem 6,19 and the fact that
any Lindeldf Hausdorff P-space is minimal HP, it is evident that

any locally Lindeldf Hausdorff P-space is a Kat&tov 1lh P-space,

7, Mnalytic and borelian spaces

Let X be any topological space (no separation axiom
is assumed)whic is an USCO-compact image of irrationals Z, i,e,,

there exists a correspondence f defined on Z onto X satisfying

(i) for o ¢ £, f(o) is a compact set in X and X =

@) 10 ¢ 2},
(i1) for any non-void open set U of X; {UV: f(3) (: U‘}

is an open set of Z,

Let the topology of X be demoted by I, If S5 1s any topology

on X weaker than T, then we prove the following useful lemma,
7.1 Lemma ; (X,8) is an USCO-compact image of irrationals,

Proof® Let f be the USCO-compact correspondence under which
(X,I) becomes an USCO-compact image of irrationals, 4As §
is weaker than I, f(o) is still compact in the topology 8.

Let U ¢ §, then fd (o) (: U} is open in 2 as U also
belongs to I, Naturally, (X,8) is an USCO-compact image of

2. under the correspondence f, (Q,E,D,)
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If, in the previous paragraph, the space (X,I) satlsfles

the follewing condition in addition to (1) and (ii) :
(iii) ¢,0, are distinct points of % = f(dl)fﬁ]f(dg) = f,

We then call (X,I) a DUSCO-compact image of Z, The proof of

lemma 7.1 will immediately lead us to 1nfer,

7.2 Lemma ¢ If (X,I) is a DU3CO-compact image of Z then so. also

(X,8) where £ is any topology weaker than T,

2. FroliklPr] defines an analytic space X as a Tychonoff space

which is an USCO-compact imaze of £, According to him a
borelian space X is a Tychonoff space that is a DUSCOecompact
image of Z,

Our main results about minimal analytic spaces and minlmal
horeliasn spaces are recorded in the following theoreﬁs,
7.3 Theorem ; A minimagl analytic space is compact,

-

7,4 Theorem . A minimal borelian space is compact,

Our proofs for both the theorems are almost identical and rely
on the fact, first proved by Banaschewski [Ball, that every

minimal Tychonoff space is compact,

Proof of theorem 7.3 ¢ DLet (X,I) be a minimal analytic space,

If it is not compact, as X 1s a Tychonoff space it cannot be a

[

minimal Tychonoff space, S0 there exists a strictly weaker
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Tychono ff (or equivalently completely regular‘TZ) toﬁology S

on X, "Since (X;g) is a Tychonoff space, an appliéationAaf lemmg 7,1,
yields that 1t is also an analytic space. § is strictly weaker

than T now leads to a contradiction, So (X,I) is a compact

space. @Dy

Proof of theorem 7.,4! Same as the proof of theorem 7.3, the

only change being the use of 1Qmma 7.2 in lieu of 1ém@aa7;1‘\
| | (.E,D,)
Let us make the following observation [Frl,

745 Lgmgg 3 Any analytié space 1s Lindelof and hence realcompact,

. Alternative proofs of theorems 7,3 and 7,4 can-be construct-
ed based on the previous lemma and theorem 3,4, The proof of
theorem 7,4 follows, The same proof works for theorem 7,3 |

matutis mutandis,

7.6 Alternative proof of theorem 7,4 ) Let us note that any

borellian space 1s analytic and as a result realcompact (lemma
7.8), If (X,I) is any minimal borelian space which is not
compact, it is definitely not minimal realcompact (thé&rem D)
Naturally,.X admits a strictly weaker realcompact topology, say,
S, As any realcompact spaéé, by definition, is Tychonoff lemma
7.2 implies that (X,8) is a borelian space, A contradiction to

the assumption that (X,T) is minimal borelian, (Q. ‘ )
] . . B, D,
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Suppose (X,I) is a compact Hausdorff space, Then the
correspondence which associates X to every o & £ 1s obviously
as USCO-compact correspondence. Consequently every compact
Hausdorff space is analytic. This observation together with
theo rem 7,8 characterises minimal analytic spaces as mentioned

below,

7.7 Theorem % The class of minimal analytic spaces is identical

with that of compact T2 spaces,

Proof: The only fact that remains to be shown is that every
compact T2 space is minimal analytic., A compact T2 space 1is
analytic and minimal T2 st the same time, Naturally it is

minimal analytic, . (Q.E,D,)

iny non-compact analytic space X, being Tychono ff, can be
embedded Into its Stone—ﬁech dompactification pX which is
analytic being compact, As a result such a space always admits
a dense embedding into another analytic space, This clearly

indicates that an analytlc-closed space must be compact, We

have proved; :
7.8 Theorem ¢ The following are equivalent for an analytic

space X
(i) X is minimal analytic
(i1) ¥ is analytic-closed

(111) X 1is compact T,
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We shall presently derive the analogue of theorem 7,7 for
borelian spaces. The main fact needed is that every cbmpact T2

space is borelian, We shall sketeh the proof below,

Let X be a compact: T2 space, Fix 9,8 Z, Define the

correspondence f from X into X as follows 3
flo,) = X
_f(cr)_r—@’ if ‘aez—{ao}-

Now { o 1 f{a) (:U}= L if U=X

1

Z—{do} if Uéis any open set‘f X,

L]

. « £ 1is, obviously a DUSCO~compact cbrnespondence'gnd X is
the immage of Z uhder‘f, So X 1is a borelian space, In fact

X is minimal borelian,

Combining this fact with theorem 7,4 we conclude the following

7.¢ Theorem | A_borelian space is compact if and only if it is

minimal borelian,

As any compact T, space is shown to be borelian, the arguments
shdwihg‘the compactness of any analytic-closed space also show
that any borelian-closed space 1s compact, We can assert the

following,
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7.10 Theorem | If X is any borelian space; the following are
equivalent
(1) X is minimal borelian
(i1) X is borelian-closed

(1iii) X is compact T,

7+11 Connection between classical analytic snd Borel spaces

and analytic and borelian spaces of Frolik : 2, Frolik LFr]

has clearly established that restricted to separable metric
spaces his analytic and borelianh spaces coincide with analytic .
spaces and Borel spaces respectively of Kuratowski [Kul, Uging
this simple connection te shall cite an example of a borelian

space which is not Kat¥tov borelian,

7.12 Example

Let Q dencte the set of rationals with usual topology,
@ is known to be a classical Borel space and so, by remarks
in 7,11, is a borelian space, As mentioned earlier that the
fopology of Q is not stronger “han any compact Hausdorff
topology, theorem 7,4 indicates that § cannot be Kat¥tov
borelian, As aﬁy borelian space is analytic and any minimal
analytle space is aiso compact this example automatically
shows that & is not Katdtov analytic too,

Needless to say that both minimal analytic and minimal borelisn

spaces are of second category,
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8, Subspacesf

If is;any one of the properties Realcompact, first
countable realcompact, analytic ér borelian, a closed subspace
of a7 space X is also a 7 space, Next theorem describes the
minimal « subspaces of minimal 7 spaces,
8,1 Ehggzgg :-iLet 7 denote any‘ohe'df reélédﬁpaét,'fifst
‘counﬁaﬁleiéeélcémpact, analﬁtic,or“bbrelian andllet X be a
minimal 7 space, - The collection of minimal 7 subspaces of X

coincides with that of closed subspaces of X,

Proof! By theorem 3.4, 3,5, 7,7 and 7.9, a r space X is minimal
T iff X 1s compact Hausdorff, The conelusion follows now from
the well-known fact that a subset of a compact T2 space is
compact 1ff it is closed, ,(Q;E;D;)
8.2 In virtue of theorenm 4,3 minimal locally H-closed spaces
and minimal Hausdorff spaces are identical, So the collection
of minimal locally H~closed subspaces of a minimal locally
H-closed space X coincides with,c1ass of all H-closed subspaces

of X which are semiregular,
Let us note the following bharacterisation of lightly
compact spaces [BaCM], |

8.3 Lemma A space X is lightly compact iff the closure of

every open subset 1s lightly compact,
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8,4 Theorem { A space X is El-closed if end only if the closure

of every open subset of X is E1~closed.

Proof: Suppose a space X is E,-closed, Then by theorem 5,5

X is lightly compact, By application of lemma 8,3 the closure

of every open subset of X is lightly compact, As any subspace

of an El—space is El, the closure of every open subset is lightly
compact and E, implying thereby that it is E ,-closed (Theorem
5.5}, The sufficiency part is trivial for X is the closure of

an open set, namely X, (Q EID )

The following theorem is an immediate consequence of

theo rem 8,4 and theorem 5,7,

8,5 Theorem : Let X be a minimal E1 space and let A be an open
subset of X, Then A 1s minimal El 1f and only 1f it is semi-

regular (c,f, theorem 5.2 of Stephenson [Ste 3]),

8,6 Bemark . In the above theorem the assumption of semiregulari-
ty is needed., For, an example can be constructed such that
closure of an open set A need not be semiregular, The example

follows (due to Stephenson [Ste 23]),
8.7 Bxample!

Let R be the set of real numbers, Let us choose two points
a,b ¢ R and let E = RUJfa,b} with topology I defined by neigh-

bourhoods |
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W(x) = Jv (CE V) (%4, x+d) for some d > 0} if x ¢ R,

=
<!

W(a) = A (:

n=-

2 {a}u ézé(zn,2n+;)lJ kh)N(2n,2n+;)lfor
some integer N}

W(b)

D) MUU (2n-1, 2n)U U (2n-1, 2n)

n=~N

I
‘,—\
=
<:

for some integer N}

(E,I) is a first countablo minimal Hausdorff space and so is

minimal By, Let A be the open subset L“J(2n entl), Then
n=i

A L_) [en 2n+1]lh}{a}. A basic nbhd of a in 4 is of the form

n=1
{a}k} k%} (2n 2n+l) for some positive 1ntoger N, Let V be
n_.-
one such of the form {a} [_J (2n, 2n+l), Then, C1 V in 4=

n= 1\I

A ¥ ("' denoting the closure in E) = A(W ({a}thjé [2n,2n+1])

{a}LJ (_J [2n 2n+1] For any n > 0, (2n- 2n+1+l) is open

—

in E and, therefore, 20 (2n—2, 2n+l+%) is open in 4 1i,e,,
; 5

[en,2n+1] -is open in A, Conseguently {a}LJ kﬂ) [on,2n+1] is

n=N6
open in A, This implies that V. is not a regular open subset

of ﬁ, Then A cannot be semiregular,
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We know that every closed subset of a countably‘compact
space 13 countably compact, Further if every closed subset is
countably compact then so is'the spaee. But in the case of Tl
spaces we can. state a much stronger version as follows (which

1n01dentally§ strengthens theorem 5,6 of Stephenson [Ste 3])

8.8 Theorem : A T space X 1is countably compact if and only if

every ‘proper closed subset of X is pseudocompact,

Proof! Necessity is obvious, Fbr'the’Sufficiency part we take

8 COuntably.infinite_proper subset C of X; C has a cluster

point in X, ¥For, if not no x in X 1is an accumulation point

of Cie, e X=>xc¢ ETTTfFE? i,e., C is a closed discrete
subset of X, Since ¢ ig infinite, C cannot be pseudotompact,

. A contradiction to the hypothesis, If X itself is countably

infinite we have to show that X has aCCUmulatiqn‘pointS‘ Suppose

not, then X is a discrete space.r Let 'x e X, The C = {x}

is a proper countably infihite subset of X which is, in fact,

closed in X, But C 1is mot pseudocompaet, A contradlction.

So X is countably compact, @Q E,D, )

Remark: The proof of theorem 8,8 shows tﬁat we @an’ as well
assume 'every countable closed subset of X is psetudocompact'
instead of 'every proper closed subset of % ts pseudocompact’,
So it-strengthens theofem 5,6 of‘Stephenson,as stated ea#lier.

.
7
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8.9 Theorem . Bvery closed subset of a minimal E, (or equiva-
lently minimal first countable Hausdorff) space X is minimal
El (or equivalently minimal first countable Hausdorff) if and

only if X 1is countably compact,

Proof! Sufficiency follows from Propositions 5,3 and 5,17, For
necessity, we observe that every closed subset of X is minimal
El = egvelry closed subset oqu is Eluclosed = every closed
subset of X is lightly compact = every subset of X is pseudo~

compact, By theorem 8,8 it immediately follows that X is

countably compact, , {(Q,E,D,)

Let X be any El space such that every c¢losed subset of X
is El-closed, Then every closed subset is lightly compact and,
a fortiori, pseudocompact. So X must be countably compact by
means of theorem 8,8, Theorem 5.3 then implies that X is minimal

El' S0 we have come to the conclusion,

8,10 Theorem | in E1 space X in which every proper closed subset
is El—closed 1s countably compact and,ipso facto, minimal Ei.
8,11 Corollaryt A first countable Hausdorff space in which
every proper closed subset is first countable T2~closed is
countably compact and, therefore, minimal first countable Tg'

Remark: Coroilary 8,11 reminds ug cf the following result due

to M, H, Stone [Sto] 4 A Hausdorff space in which every proper
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closed subset is H-closed 1s compact and, a fortiori, minimal

Hausdorff,

The following theorem is an important step in our attempt

o deterime the minimal EP subspaces of a minimal HP~space,

8.12 Thecrem ; A space X is HP-closed if and only if the

closure of every nonvoid open subset of X is HP-closed,

Proofl Suppose X is IP-closed, Let A be any non-void open set,
To show that & (= the closure of 4 in X) is HP-closed, Let F
be an open filter on A such that I 1s closed under countable
Intersections, By theorem 6,5(b) we are required to show that
F has nonvoid adherence in :ZL, Now adherence of F in A = _
ﬁfCI (F) : FeF}=\{F:iFeF}. Let G=fFas: Fe £l

i1
G is opon filter base on X, Further if G, = F,(V 4 ; n 2 1}

forms a countablo collection of sets from G, mG =( mF Y4 =

=]
Pl A where {h) BB gl (by the property of R and, hence,
ey n=1
F(\A ¢ G, So mGn ¢ §» Thus G is the filter base for an open
el :

filter H on X which is closed under countable intersections,

il

As X is HP-closed, adherence of G = adherence of H# #, But

adhere—nce of & =m { FhA: Fe __E} (: ﬂ {F * Fe g} = adherence

of F in A, So F has nonvoild adherence in A, TFor the converse

X is trivially a nonvoid open subset of X and so X is HP-closed

’ (Q.E.D.)
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We immediately arrive at, using ﬁhe above 'theor'em'anc‘t

theorem 6,8 §

8,13 Theorem 3 Let X be a minimal HP~space and let & be an open

" subset of X, 1 is minimal HP if and only if it is semireggular,
It would have been pleasant to prove the following

assertion which resembles Coroilary 8,11, But we have yet

to know whether it is valid or not,

Assertion | If every proper closed subset of an HP-closod space

is HP-closed, the space is Lindelsf,

9. Products

9.1 Theorem ! Let 1% 1. I} be a collection of Hausdorff.

spaces and let X = T]| X.. If 4 stands for any one of
ieI -~ g

realcompact, analytic or borelian, X is minimal # if and only if

each Xi is minimal ,

Proof: By dint of theorems 3.4, 7.7 and 7, 9, X is minimal #
<= X 1is compact T- <=> X, is compact T for each 1 ¢ I <==

Xi is minimal « for egch ie I, (R.E.D.)
In the following thesrem M denotes a subset of N, the
natural numbers,

9.2 Theo_rem‘.’ Let {Xn e n e M} be a collection of topological

spaces and let X = ] Xn. Then X is minimal first countable
ne M
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reaicompact-if and only if each Xh‘is minimgl first countable
realcqmpactc-
Ezggi: In virtue of Theorem 3.9, X'is minimal first countgble
realcompact <= X is compact first countable Hausdo rff <=»>
Xn is compact first countable T2 for each n e M <= Xh is

minimal first countable realcomPaCtlﬁJT each n e M, (G,B.,D,)

9.3 Proposition | Let IX T ne N} be a collection of topologi-

cal spaces and let X = 'TT Xﬁ Adnecessary and sufficient
neg N

- condition for X to be El is that each Xﬁ be E&.

5

Proof? Suppose X is El‘ Fix ne N, Let xh € Xh Choose a
point x e X such that pr, (x) = X, (here’ pT, denotes the
projection map of X onte Xy me N), Since X is El there
exist open sets Gy (1 e N) such that {X} = (\) G (where ﬁi =

=]
closure of G, in X), Without loss of generality we can assume

that Gi's are basic open sets, Put Ui(n) = PTnCGi)- We elainm

{xn} (m} (C1 U;(n) 1in X ). Since G; 's are basic open sets,
i=1

C1 U;(n) in X = prn(ﬁi). So we need only to show that {xh} =

oo

g:l n‘( If possible, let y # X be such that
(ﬁwpr (G ). Consider the point z e X such that prﬁ(z) =
i=1 : :

prm(x) for m#n and pr (z) =y Then z ¢ Ei for each i,

n.
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30 12 & (—\ —i d Con B = Ty A contradiction, Thus we conclude
i=l % ‘ .
that {Xh} = g:g(cl Ui(n)) which ghows that X is By, Hence,

X is E& = Xh is E& for each n, Conversely if each Xh is

[}

E. we would like to show that X is El. Let x

1 (x,) & X,

Since each X 1s E we can suppose that {xn} = K%R(Cl U, (n)
) i::l

==

in Xn) where each 4Ui(n) is open in Xﬁ; Define Ghlnz"'nk"
Unl(l) ><Un2(2) e xUnk(k) x:xk'l‘l < eeee for nl"ng!""l

n,e N, ke ¥, Then G = €1, U_-(1) =C1, U (2) >=<,,
k ’ i NqNge sl 1 "ng _ 2 ng
ooy RE Uhk(k) <X 4 eess vhere C1; U, (i) stands for
€1 U, (1) in X, 1 & N, Now Jx} = M (M L
i k=1 ni=1 n1n2"°nk .
g ' 1k . .
So X is an E -space, ' (Q.E.D. )

9,4 Corolliary % Statement of the previous proposition remains

valid even if N is replaceiby any non-empty subset Mof N,

9,5 Theorem % Let {Xh in e M} be a collection of topological
spaces and X = 17T Xh. Then X is By-closed if each Xh is
E,-closed, and if (eﬁcept perhaps for one value of n) each
non-P point of Xh has a countable base of neighbourhoods in

X .
n

Proof: Let us recall that a point x of a space Y is said to be

L

a P-point in Y if every intersection of countably many nbhds of
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x is again a nbhd of x, WNow theorem 4,4 of Scarborough and
. Stone [8S0,p 141] states 1 If X =[] X, where X, 1is lightly
compact, and if (except perhaps for one value of a) each non-
P-point of Xa.has a countable base of nbhdé in Xé, then X is
1ightly compact. Since each Xh is Ei-closed, Xh is lightly
compact‘by theorem 5,5. According to our hypo thesls ‘X is
1ightly compact by invoking the theorem mentioned above, By
Corollary 2.4, X is also B, So X is a lightly compact E& space

and hence Ej-closed in view of theorem 5.5 again, (Q.E;D.)

9,6 Theorem $ In order that the product X = TT X, of a collect-
ion of topological spaces {Xh *ne M} be E;-closed it is

necessary that each Xh be El-closed.

Proof! Corollary 9,4 implies that each Xﬁ 1s B when X is
E;. Since X is By~closed => X is 1lightly compact ‘(theorem
5.5), by invoking theorem 4,2 in [8So, p 141] we conclude

" that each X is lightly compact so that each Xh is Eﬁ-closed
(Q.E.D,)

9,7 Theorem %  Let {Xﬁ s ne M} be a family of topological
spaces and let X = T Xn. Then X 1is minimal El if and only
if each Xh is minimal El‘

Proof: This theorem is identical with the theorem 4.3 of

Stephenson [Ste 3, P 123] because of our proposition 5,17
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which says that minimal Ei spaceés are nothing but the minimal

; : T
first countable 2,SpaceS, _ (Q.E.D.)‘

We recall that P~spaces are closed under finite products,
Naturally we would want to find out whether finite produebs of
HP-closed spaces ave HP-closed, We do not know whether the
product of even two HP-closed spaces is HP-closed or not, We
shall discuss this point now in detail, It is well~known that
any product of H-closed spaces is H-ciosed. But the proof,
even in the case of product of two such spaces, depends on the
fact that every open filter on a topological space is contalned
in a maximal open filter (obvicusly with the ald of Zorn's
lemma) [CF], Since the characterisations of HP~closed spaces
depend not merely on open filters but open filters which are
closed under coﬁntable intersections, and Zornification is not
‘applicable to open filters closed under countable intersections
in order to obtaln maximal such open filters, we cannot imitate
the proof for the product of H~closed spaces in the case of HP-
closed spaces, Nevertheless we éan establish theorem 9,9, The

following proposition is important for the proof of thesrem 9,9,

9.8 Proposition : Let Xi be a Lindeldf space and Xé a P-spacey
Then the projection map pr2 H Xi ><Xé -~ Xé is a eclosed map,
Proof | Let F (= Xl ><Xé be a closed subset, We are required

to show that pro(F) is a closed set in oo Let y ¢ pr,(F),
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Then for every x e X4, (x,¥) ¢ F® ana F° 1s open in Xy = X,
There exist open sets UX_ and V., such that xe Uy _ X
and -y e V_ (: 1'2 and (x,y) e U, <V (C TF°, Consiger
{Ux- ' xXe Xl}. .;It is an open cover for X.l and has Va couﬁtéb:le

subeover e 3;1 . Consider the sets |, . Each is a
R N,

nbhd of y and X2 is a P-space; soc V= m V. is also a
: : n=1 n

nbhd of y. Easy to see that V{)pr,(F) = #, Naturally, pr, (F)

m'gst be closed in X2 : (Q,E,D,)

9.9 Theorem : 1r KJ_ is a LindelSf Hausdorff P-space and X,

an HP-closed space, the product X; >X, 1s HP-closed,

Froofl Let ' F be an open filter on X, <X, such that every
countable intersection of sets in F is also in F, By theorem
€.5 we are required to show that F has non-empty adherence,
Let pr; (1 = 1,2) stand for the projection of X >X; onto X,
Let E = {prz(F) « Fe I}, Bvery member of E is a non-vold
open subset of X2. Let A be an open subset of X, such that
A:) E = pr2(F) for some F e F. Then easy to see that
X, >4_) F and, hence, % =Ae F so that A= pry(X > 4)
e B, Thus I is an open filter on X5, Let B = przCFn) e E
’ 0 o
n 21, Then O En""') pry ( O F) = pr2(F) where F ¢ F,
n=1 n=1 o :
If E=pro(F) then E¥ % Ee E and [ ) E, ) B, o
' n=1

A E & B as EF is an open filter andE ~ 1is an open set
n=1 : - -

as X, 1s a P-space, Since Ly 1s HP-closed, by theorem 6,5
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E has non-empty adherence, Let x, e adherence (B), Then

X, € closure of . pr, (F) in X, for oach Fe F, Now since

2
X, ig a Lindelsf HP*-space and X2 is a P-space pr2 is a

cIlLosed map (Proposition 9,8), So prz(F) equals the closure

of prz(F) in Xz for each F e F(where F denotes the closure

of Fin X, =X,), Therefore 'Fﬂ«X.L >{x5}) # @ for each
Fe F, Put /e { F r\(xi <Jx}) L Fe F} Let §G, in 21}
(Z 6. Then Ql = MR O oy =P D AF, x> fx]
= G (say) so that Ge 6. S G1is a filter basé on X ><X,,

Consider prlfgr)_ -Obviously it is a filter base on X« More-
over, ir {prl(Gn) tn > 1], is a countable subfamily of prl(__G)
- .
then (iﬁ pry (G ) ) pry ( O Gn) ) prl(G) where Ge G
n=1 A ¢ b © '

(as shown earlier) 1,e,, every countable intersection of sets
in pry(8) contains a set of pry(G). Let D be the filter on
X, generated by pry(G). Then D is closed under countable inter-
sections, Again Xl is Lindelof, so # # ‘
adherence of D = adherence of pry(8), Let x; &€ adherence

of prl(__(_}). Let U be any open set (:X1 and let x; ¢ U,
Then Umprl(G) # @ for each Ge § i.,e,, (U ><X2)mG 4 0
for each Ge & i,e,, for cach Fe F, @ # (Fm(){l X{XZ}))G
8) ><X ¥ =

( ) = F() (x) > .[fx PO =) =T =P, so

(Xl X-z) e F for ecach Fe F 1i,e,, (Xl,xz) > Q{F * Fe F}

]

adherence of ¥, Consequently F has a non-void adherence,(Q E.D, )
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Remark | We have seen earlier that every Lindeldf Hausdorff
P-space 1s HP-closed (in fact, minimal HP), It has been also
observed that if X, and X, are two .lLindelﬁf HP-spaces and if
th‘e"_product Spacé Xl > X2 is Tindelsf then Xl ><X2 is again
‘a Lindeld f Hausdorff P-space and, a fortiori, HP-closed, But
theor-em-Q 9 provides us with the information that even if
Xl ><X2 fails to be Lindeldf, Xl ><X2 retains the property of
being HP—closed

9.10 Theorem ; Let {X Tt 1x21'x n} be Hausdorff P-gpaces

and let X = 'ﬁ' X;. If X is HP-closed then so also is each
1=1 '

X% (121 2n),

Proof: TLet us fix i1, Let us take an open filter F on X

such that F 1s closed under countsble intersections,. Consider

the filter base of open sets prTl(F) on X, Let .{pril(F ) o
l} be a countable subfamily of pry lCF) m pr.l (F ) =

il
38
=
™
t

g

PI' e r} F) = pr Ler) £ pr (F) where F il
n—- =1 n =

assumptions on =_E‘ The open filter Gon X genera;ced’by
pril(g) 1s then closed under couﬁtable intersecti‘on,,' 4s X is
.-HP-c-losed », B # adnerence (G) = adherence Cpr;l (F}), Iet

x ¢ adherence (pr (F)) ‘then x, = pr; (x) & closure of F in
Xi for eac_h F_s i 1€ o Xy is an adherent point of §. So
Xi ls HP-closed, : (Q;E,D.;)‘
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9.11 Theorem . Let X, be a Lindelof HP~space and X, a

2
minimal HP~space, Then the product space Xi > Xg is minimal
HP, 1If {Xi g =il éln} is a finite collection of Hausdorff
P~spaces and thelr product space X = fﬁ Xi is minimal HP

i=1
then each factor Xi is also minimal HP,
Proofi Since b th Xi and X2 are semi-regular (Theorem 6,7),
Xl >:X2 is also semi-regular, A4s X2
is HP-closed by theorem 9,2 and, in virtue of theorem 6.8

is HP—closed, XI%: X2

X, ><X, becomes minimgl HP, Tor the second asgertion, as X
is minimal HP; it ig HP-closed and semi-regular, Then cach
factor Xi becomes s semiregular space and by theorem 9,10
each Xi is HP-closed, Consequently, invoking theorem 6.8

we conclude that each X, is minimal HP, (Q,E,D,)

10, Bmbedding of 7 spaces into 7-closed and minimal 7 spaces

1t 1s well~known that every Tychonoff space X can be
densely embedded into a compact Haugsdorff Space, namely in its
Sech-8tone compactification BX., We have observed that a
minimal realccmpact Space Or a realcompactfclosed space 1s a
compact T2 space and vice versa (Theorem 3,4), Thus cach
realcompact space X can be embedded densely in a realcompact—
closed or a minimal Ffealcompact space, because in each case

BX serves our purpose, So we arrive at the following theorem,
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10.1 Theorem | Any realcompact space admits of a dense embedd~
ing into a minimal realcompact space (or edquivalently, into a

realcompact-closed space),

If we start out with a first countable realcompact space
X, the Stone~Cech compactification 35X is not goint to be first
countable and fails to act as a first countable compactification
of X, In order that X can be densely embedded in a minimal
first countable realcompact space, X should possess a first
countable compactification, As a matter offact the following

theorem is true,

10,2 Theorem ¢ In.order'that a first countable realcompact
space X be densely embeddable in a minimal first countable
realcompact (or first countable realcompact-closed) space it
L is necessary and sufficient that X have a first countable

Hausdorff compactification,

Resultg concerning the existence of first countable
Jcompactificatfans of first countable Tychonoff spaces are,.
in general, absent, We can mention one condition under which
a first couﬁtable Tychonoff space cannot admit anj first
countable Hausdorff compactification, Arhanpgelskil [A] has
shown that no first countable compact Tg space can have

'cardinality greater than c, Thus if we begin with a first
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countable Tychonoff space X ﬁith cardinality exaae&iﬁg c, X%

cannot have any first countable Hausdorff compactification,

Iy view of the facts that a locally H-closed space %
alwaYS admits a one—po int H“Q_Ipsed ext;ension Xt such that X
is embedded densely in X' and an H-closed space is locally

H-closed~complete we can state the following §

10,3 Theorem & Suppose X 1is a locally H-clesed (non H~closed)

space., Then X can be embedded densely in a locally H-closed-

complete space,

Proof: Since X 1is non H-closed, X 1is densely embedded in

its one-point H-closed extension X! (Theorem 4,1), Since X!

is H~closed, X is locally H-closed~complete, Sc the theorem
Banaschewski [Ba2] obtained the following theorem %

10,4 Theorem: A Hausdorff space X can be densely embedded in

a minimal Hausdorff space if and only 1f it is semiregular,

It has been earlier observed that minimal Hausdorf¥ spaces
are precisely the minimal locally H-closed spaces, Now we can
surely conclude the following'(a locally H~closed space being
always T2) )
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10,5 Theorem % A locally H-closed space X can be embedded
densely in a minimal loeally H-closed space if and only if X

is semi-regular,
LS

In the next few theorems we shall study embedding preblems

for El-spaces,

10,6 Theorem : Let X. be an B -space, and let I = {EF:E
is a countable open filter base on X which has no sdherent
points }, and let M be a subset of ¥ which is maximal with
respect to having. the property that wnenever F, G e g,'g # G,
then there exist sets Fe F and Ge § such that F M= 2,
Let Y= X U M, topologised as follows ; a set U (C Y is
open if and ohly if (1) U () X isopen in X, and (11) if
FeU, then U(VX contains a set ‘belonging to F, Then Y

is an El-clos.ed space in which X 1is embedded as a dense open

subspace,
Proof | Let us first show that Y i® an E -space, Let y & ¥,
If y=x for some xe& X, we can get open subsets ﬁn Tz

oo
such that {x} = rq:}“cti(Un)° It is quite easy to see that

(&)
{x} = rQ U, where, for each n, ﬁn = closare of ﬁn in Y

and -ClX'(Un)' = closure of J = in the topology of X, If
y=Fe M, we first note that, if F = {Fn;: n > 1}, then
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=FJJE } is a basic nbhd of F, We claim that tfg} =

By
(Q%\ [,. Firstly, 1M < ml ﬁn) = (Y (X " 'finj ﬂ(xﬁ XMH)
n=1 g n=

n=1 n=1

(gs X 1is dense in Y and H is open in Y foe each n) =

o0 | e S I
m CIX(En)'ﬂ # since Fe M _ N, 5o 1{31 Hn f M, Again

n=1

from the definition of M it follows that Ge M, G# F =>

o0 ' o
G ¢ mﬁ m = {f} . S Y is an B~space, In

n=1 _
order to prove that Y is. El—closed,'let us take any countable

open filter base P = {Pn £S5 1> 1} on Y, To show that adherence
o i o
of P = m P, £ f, Supposé g = m P . Since X 1is dense
* n_41 -

in¥, P(1x=P (1X:n 21} is a countable open filter base

on X, Since ?n = pn(\ X (as P 1s open in Y), P ? ClX(P (]X)
o0 o o0 - '
o ) ClX(an n C M P =8 1i,e, __Em X is a
n=1 n=1
countable open filter base on X with empty adherence 1i,e,,
3 :
BNV Xel. If Gel, G7 g:} P, 1.e., 3 n_ ,such that
G ¢ iin i.e., there exists a nbhd G U{G} of T (where

G, ¢ g) such that (G L“J{_g 2 N P =g, S, & MNxNp, )~

Now X m Pn e P P {) X, Since G 1s arbltrary, by _maximality
Ny ' '
of the subset Mof N, we infer that P n Xe M, A basic
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nbhd of P() ¥ is of the form {gﬂ X}U(Pnﬂ X)

» -
and Pn{f\ X meets every member of P, So gfr)X £ (”\ Pes
4 . n=1
] ©
A contradiction to our assumption (A\ Pn =¥, Thus Y 1is
' . =7} . .
El~closed, | (Q.E.D.)

10,7 Theorem : Let X be an E,-space, and let (Y,I) be the

El—closedrspace given by theorem 10,6, The following are

eguivalent,
(1) X is semiregular,

(2) (Y,I)) is a minimal E -space in which X is

imbedded as a dense subspace,

Proofi (1) = (2) Since (¥, T') is an Ej~closed space,
the corresponding semiregular space (Y, I) is a minimal B
space by theorem 5,10, We want to show that X is imbedded
as a dense subspace of (¥, T.), 8ince X is dense in (Y, I),
it ‘is dense in (Y, Eo)‘ We shall be done a8 snon as we show
that X Inherits the same topclogy from both the topologies
T and I, roﬁ Y, Let U be ény non-empty open subset of X,
So U 1is an open set in I, Let =x ¢ U, Then, as X 1is

semiregular, there exists V, open in X, such that xze& V C: U

and V is regular-open i.€,, V= Inty (Cly(V)) =

T - Int (C1p(V)) = Int(X () ¥) [where ¥

)

I-C1(V) and Int=T-Int]
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= XV Int(V) (as Int(X) = X), Now Int(¥) ¢ 20 so that

x( ) Int(?) belongs to the relativ;—: topology of X .w,.r,lf:. Zoe
"Henc'e U ¢ Xﬂgo = the relative topology of X w.r.t, I..
But U is any arbitrary non-empty open set from X ﬂg. So
x () §o= X ﬂ;‘. So X is, in fact, embedded as a dense

subspace of (Y,T ),

(2) == (1) : Since (¥,I ) is a minimal E space, it is semi~
regular, (Propcsition 5,6}, TNow X 1is a dense subspace of ¥,
We shall show that X is also semiregular, Since (Y, EO) is
semiregular, regular-open sets form a base for Eo' In order
to show that (X, Xﬂ;ﬁo) is a semiregular space it suffices to
show that 1if V 1s a regular open subset of ¥, X NV is

regular-open in the relative topclogy xN ;IO, Now ‘CIX(V ﬂx)

’

= X{) V. X (The closure is with respect to the topology ;‘0)

i

X ﬂ V (as V isopen in Y and X is dense), Obviously,
xN T2 x(1 v, sgain, if or any We I, x(w C x(17

we should necessarily have W (_ ¥ because, if not, W - v

is an open set such that W~V # @ and Xﬂ(w—ﬁ)=xﬂw~
X ﬂ V=¢g, Az X 1is dense this 1s impossible, Since V 1is
regular-open, T )YW=W(V where W is any set belonging
to =To‘ Thus xﬂ V 1is the largest open subset of X contain-~

edin X\ ¥, 80, XNV =1Inty [C1(VN D] d,e, xN7

is regular-open in the topology cf. X, (Q.E.D,)
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10,,'8 Remarks % . Th:eorems 10,6 and 10,7 are motivated hy the
marked resemblance between the results on El-closed and
minimal El~spaces and those of first countable H~closed and
minimal first coﬁntablé T2 spaces (observed in See,5) énd are
the precise analogues of theorems 5,7 and 5,9 of Stephenson
[Ste 3, p 125-126], The rest of this section will be devoted
to the investigations of the problem of imbedding a Hausdorff

P-space In an HP-clcsed or a minimal HP-space,

10,9 Propesition! Let X be any Hausdorff P-space, TLet

M= .tf:_E‘ * F 1is an open filter on X closed under ccuntable

intersecticns and has no adherent points}. Then there exists

a subset D of M which is maximal with respect to-having the
property that whenever F, Ge D, F # G, then there exists
sets FeF and Ge G such that F ()} 6= g, '

Proofi. Let. & =4t 4 M such that F, Ge 4 ,F

#
=> there exist Fe F and Ge G such that Fm(}:_ ﬁ}_g

1s non-empty, . Partially order < by inclusion!’ (: L3 et

(%) be a llnearly ordered subfamily of g, Put 4 =
iel :

ikEJI 4+ Then A(C M, Let F, Ge A > F# G Then

£, Ge A forsome 1 eI, So,d FeF and Ge G
such that F{) ¢= ¢, %o Ae L, By Zorn's lemma, now,

there exists a subset D of M such that 2 1is a maximal

element of €, So the assertion is proved, (Q.E,D,)
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10,10 Definition { Let X and Y be Hausdorff B-spaces

such that

(a) X is dense in Y

by Y ,jgés' HP~closed,
"We call ¥ an HP-closure cf X,
10,11 Thebrem | Let X be any Hausdorff P-‘Spac;e-,- There

exists a HP-closure Y of X,

- Proof! Let us first outline the construction of Y, Let M

_7 be *:;h}e'._se_t defined in _Proposition I__LO,Q. Cl;;oose a se,{: D (: M
which is maximal with respeét to having the property that
whenever ¥, Ge D(F# G), then J Fe F and Ge G such
that P{} G = ¢, EXiS‘E@nQe'Of'/SUCh a subset D 1is
guaranteed by Proposition 10,9, Set Y = X D, We define
B, a base for the topology of Y, as follows ! Be B <=> B =
GU{E} where Fe D and Ge F, or B= G where G is
a:i open subset of X, S X 1is obviously'a déns,e dpe_n' set in

]

b4

o) = 5 . - _

i) dn B2, 5 o Ty space 3 Let y,y,e8 ¥ 3 ¥y # Yoo If
Y1575 € X ¥,V can be separated by open sets as X is
Hausdorff, If ype X and y,=F for Fe D, then as
Ee M, F has empty adherence, So there exist open set

G (: X and F'e F ‘sueh that ¥yq € G and G{)F = g,
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So eonsider the disjoint open sets G and FlJ {E} in ¥,
If y,=F and y, =G where F, Ge D, By the‘property of
D there exist Fe F and Ge G such that FOVg =g so

= ] =

“the required open sets cen be taken to be T {£} eand

“U g | |

2% ¥ is axf;spnpe': Suffices to show that vV e &'ni y ‘is
a, P—point;;.Wb need to consider only’fﬁmrpoints eoming from D.

Let Fe QHV Let {Un} be a countable family of nbhds of F.

Then for each n, there exists a ba31c open set Bn containing
(o
F lsuch that - B (C U. So Ql U5 =) O ne But B =

n - = =
so that -GU{g}

. Naturally, ()U_ 1is a nbhd,

thL) ig} where G e F for n 21, &As E is closed under
countable interesections, G=( } G & F

again a basic open nbhd, of

=

of F in &
3°) Y is HP-closed » Let U be an open filter on Y such
that countable intersections of members of U are again in

g.' We want to claim that ‘U has non-empty adherence, 'Supgose
not, then M { T2 Uce g} =g [ T= closure in Y of Ul
Let Y = {Uﬁx tUelUj}. ¥ is an open fllter on X closed

under countable 1ntersect10n Fasy to see that Y has empty

adherence in X, So ;re_m. If FeD, F¥ m{ﬁ:Usg}
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i.€,, there exist U e U and a basic open nbhd B of [

such that BO(\ U g, But B = GbLJ {£} for some G .¢ F :
so that G =B (VX and B (VU =¢=380 xONU =4
=N &) =0 2 V=% T, & we get that there
exist .V e ¥ and qj e F with the property that V'(w qo ﬁrﬂ.
But Fe D is arbitrary, This forces ¥ & D by the maximality
property of D. Afbasic nbhd of Y is of the form V \J ig}
where Ve Y, So ¥ 'is_én adherent point of U, A contradict-

ion, So U has non-empty aiherence i,e,, Y is HP-closed,

(.Q- E-Dq‘)
10,12 Theorem | Let X be an HP~space and let (Y,I) be the
HP-¢losure given by theorem 10,11, The follewing are then

equivalent,
(1) X 1is semiregular
(2) (Y;EO) is a minimal HP-space in which X dis
imbedded as a densc subspace,

Proof | We first note that (¥, I ) is a minimal HP-space as
(Y, I) is HP-closed, The iine of proof adopted in theorem 10,7
is applicable herg and the assertions are proved, (Q;E;D.)

iIf we fbcué ouf attenfioh on localiy Lindelsf Hausdo rff

P-spaces (1,e,, 11h P-spaces) we know from previous chapter

(Chap, I, See, 11) that every non-Lindelof 11lh P-space X has
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a unique one-point maximal Lindeléf extension (which turns out
toc be a Lindelsf HP-space ani, a fortjpri, a minimal HP-space)
in which X is a dense open subset, According to theorem 6,19
every minimal HP-space, which is simultaneously a 11h P-space,
is a minimal 11h ?—space, Sinece the aforesaid one~point maximal
Lindeldf extension is a Lindelof HP-space it is consequently a
11h P-space as well, So this extension 1s a minimal 11h P-space
a8 1% 1s already minimal HP, So we can come to following

concluslion %

10,13 Theorem { The one-point maximal Lindelof extenslon of a
non~Lindelsf locally Lindelnf Hausdorff P-space X 1s a minimal

11h P~space in which X is a dense {cpen) subspace,

Theorem 10,13 completely solves the problem of embedding
a 11h P-space as a dense subspace of a minimal 11h P-space,
The guestion of embedding an snalytic (or a borellan) space
densely in a minimal snalytic (or borelian) space is rather

trivially answered., It 1s as follows §

10,14 Theorem ¢ Bvery analytic (or borelian) space can be

densely - imbedded in a minimal analytic {(or boerelian) space,

Proof? If X 1s an analytic (or borelian) space, consider the
Stone-Cech compactification 8Z, As a compact T2 space 1s both

a minimal analytic eand a minimal borelian space (Theorems 7,8 and
7.10), the analytic (or borelian) space X gets . densely imbedded

in the minimal snalytic (cr vorelian) space gX,
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