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TINTRODUCTION

g

In Chapter 1, necessary and sufficlent conditions, for

the existence of the distribution of
(1) {(T1(F1Ce )y wue, T, (F O,

are given under very general conditions, where Fl"!':Fs are
polynomials taking positive integer values for positive integers

and fl,.t.,f are real-vglued additive grithmetic functions,

S
The result is an improvement of a result due to Katai (1969),
In Chapter 2, an alternative proof of W, Philipp's
result on wesk convergence to Brownian motion, of functionals
of arithmetlc functions under Lindeberg-Levy type conditions,

is given,

Suppose that the density of fm 3 £(Fm)) e I} exists
and is positive for some boundaed interval I, wvhere f is g
real-valuodladditivo arithmetic function, E is a polynomial
teking positive integer values for positive integers, Then,
does {(F(m)) have a distributiorlzl This question is answered,
in Chapter 34 affirmatively under some restrictions on F  gnd
L,

In Chapter 4, the spectrum of the distribution of

(ola) = E@HL), o qu RGHE-L) = f(nth)} is characterized,
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whenever the a:gurl%n*ﬂﬁn exicts, where f 1s a real-valued

additive arithmetie function, In this chapter, it ig also
shgwn, under very goneral conditions, that for any w2 i S

{f](Flfﬁjjgl.-;’ fS(Fé(m))}

belongs to the speétrum of the distribution of (1), vhenever
it eﬁists.

In Chapter 5, an attempt is made o charactorfye regl-
valuesd additive arithmetic funciions whose dlstrlbutlons are
singular. Tt is shown that i for some ¢ > O’ ;
(2) | o2 )P S o) as T e

p>N
peA

y

where A is a se% of primes such that 2 ~i< o gnd f
A%

is a real-vglued additive arithmetic functio

o«

n
e

n, then the

distribution of flm) = f(m+l) exists snd is singular,

i

Using this it 1s shown that, 1f (2) holds, then the distributiom;

of f is singular, vwhenever 1t exists, ETon this, it follows

that, every bounded real-valted additlive arithmetic function

has a singular distribpbion, Sirilar results are obtained for

[

f(F(.)), Some results concerning the SLOObhﬂ 355 of the

distribution of f(F(.)) in terms of thb sroothneos of the

A5 adeant
T o

;"."
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In Chapter 6, asymptotic formulae for

pocard{l <m<n i flm) > %},

for a wide class of real-valucd additive'arithmetic fUnctions,
when Xy, —> % at a certain rs te, are obtained, “ne of the

esults 1s that

-

log lOP“— ]o{[ ﬂ card{l_m<n wlm)>eg™ log log nx] (0 _1)_ ex+o(1)

as n —>0°  uniformly in x = (0,2-6),‘where 0 <8 <2

and 4(m) denotes the number of distinct prime factom of m,

In Chapter 7, necessary and sufficlent conditions \for a
real-valued multiplicative f£umction to have a distribution are
obtained, If the distribution T ofa multiplicative funétion
g 1is continuous at zero thon, it is showm that, H is absolutely

=

continuous if and only if ths Cistribution of g sultably defined
additive agrithretic function 1= absolutely continuous,
In Chapter 8, &1 atbtemnt “ e made to characterize all the

distributions which are uJ"trIOH?Wons of additive and multiplica~

tlve functiong, If

o

ig a real=-vaglued additive arithmetie
function having a @istribution H and if £(25) = ke(s) for a1l

o>
=

j—t
t
=
o)
5
}_I
ck
E_l
s}

sinown thal, there existe a discrete infinitely

dlvisible distripution & such that the convolution E* G is
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[iv]
infinttely divisible with discrete Levy functions and without
Normal factor, Similar resilis are obtained in terms of

: ‘ . i . L3
characteristic transforms of the distributions of multiplicative

arithnetic functions,

In Chapter 9, meny results of previous chapters are
generalised to additive functions cn %he set of pairs of
positive integers, FNecessary and sufficient conditions are
given for the existence of distribution. (mod 1) of a real-
valued additive Tunction on the set of palrs of positive

integers,

In Chapter 10, some results of L0v1n and Fainleib
(1968) on integral Iimit theorens are zeneralised to

additive functions on the set of pairs of positive integers,
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CHAPTER 1

DISTRIBUTION OF VALUES OF ADDITIVE ARITHMETIC
FUNCTIONS OF INTEGRAL POLYNOMT ALS

1. Introduction ? in additive arithmetic function f is &

complex~valued function on the set of positive integers

satisfying

. &

£{m.n) - f{m) + £(n)

whenaver m and n  are mutually prime An additive arlthmetic

function is called strongly additive 1f for every prime P

f(p ) = f(p)
for a11 Xk > 1.,

Katal (1969) proved the folldwing'result_ Let

£ f, De real-valued adiitive arithmetic functions and let

1ryserss
Fl:"'!Fs be polynomials with integer coefficients Satisfying

the followinw conditions !

i) F;w) >0 for m=1,2,.,,; i= Hpere St

ii) Fi,'Is not divisible by the square of any

irreducible polyvnomial o b= 1,...,5.

111) If 4 # J, then F. and F, are prime to each

other:y* 194 = Yoo o . By
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2]

Further supposc thas

fi(pk) r (pk, F&) — 0 as p -= ¢ for k = 1"f"Di—1

~whenever Dy 227 1=1,,,,,s and for each 1 =1,,,.,s the

following two series are convergent |

&

r - 2 : ey
fi (p) rlp, Fi) ‘ Lfi(p)] r(p,‘F&)
D and X - 2

-

where the sum is thended over all prime numbers in the
increasing order of thelr magnitude, D; denotes the degree
of F,;, for each positive intege d, r(d, Fi) denotes the

number of inccengruent solutions of the congruence relation

Fi(m) = 0(mnd d),

and f{(p)':is fi(p) or 1 3¢~ -lMng as Ifi(p3{'< v or
“[fi(p)[ > 1, Tuaen the s-tuple [ TNy

{f (Fl(m)) oe s fsf?sfm))}

has a distribvution,
Katal proved this result using number-theoretic methods,
Recently Galambos (1971a) gave probabilistic proof of the

above theorem under an extra assumption that faseesy, £ are
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strongly additive, The result of Galambos (1971a) is true fo
any subsequence of integers Satisfying his condition X 3,
.-Here we felax the condition (iii1) above and show that the
convergence of the above tw> series for each i 1s necessary

and sufficient for the S'-tup]_(.;,

to have a distribution, We use probabilistic methods and the

results of Novoselov (1966) t» prove this result.

2, Notations and definitions + Fellowlng are spme of the
notations and definitions used in this thesis *

Let P denote the set »f all pnlynomials F with .

=
-

integer coefficients satisfying the following conditions @

P 1 m) > 0 for m& 3,8 Sool

2

P 2, F is not divisible hy the square of any

irreducible polynomial,

For Fe P, 1let Dy dencie the degree of F and for

each positive integer d -let =(F, 4) denote the number of

incongruent solutlons of the congruence relation

F(n) = 0 (mod ) ¢
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We let CpCy,Cor;y0«s  dembe constants and p,q with er

without suffizes denote'ﬂflmg numters, Let pl,pz,,.. be the

core

sequence of all prime numbers. in the increasing order of their
'magnitude, Let j,k,r,S‘ denoLo nen-negative 1nteaers and

m, n denote positive inte gers,

Let f(n), £1(), ..., (1) demote real-valued additive
arithmetic functions, Let ﬁn {,..} denc te the number of
positive'integersLless than or ccual to n  having the property
indicated in { } Fbr any gubsot A._ of the natural numbers,
let _5(A}.-and Q(A) denoto tho upper and lower natural density

of 4 Tespectively : i, e,,

B¢ - 7 L ;
(A) lifa%iy = Nh {m e A}
and D{a) = 1lim inf l W {m £ A}
n—-}ﬁO

We denote »v D(AJ,-the common value of D(A) and D(A)

whenever thay coincide,

i £(p™) i eS| < 1y
Put S = |
T 7 if [f(nk)l
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We define,
£1(p) r(F,p)
p

i

)

Alv,n, £, F)
. v<p<n

3 5 n1/2
; {f‘(p)} r(T,p)
B{v,n,f,F) = I |

- . vZpsn,

p

Aln, £, F) = A(l,n,f,F)

Btnifjs) " N B(l,n,f,F)

We say that the s—tuple {hl(n),,,,,hs(n)} of real
arithmetic  functions has a distribution, if

% Nn {hlcm) < cl, coo;hs(m) < CS}

fends to an s-dimensional probability Aistribution fuiction
Qleg,eee,0y), 88 n —> 20 af a1l 1ts continuity points,
FOR ANY OTHER UNEXPLAINID U3RNINOLOGY USED IN THE SEQUEL,

REFER TO KUBILIUS (1964) OR NOVOSELOV (1966),

3, Main results proved in this Chapter -

Theorem 1,1 ; Let £, ..., (0) be real-valued additive

arithmetic funetions and Fl,,,.,FS belong toc B ., Suppose
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1,8, 1% fi(pk} T(F‘.yk) —> 0 as p —>© vhenever Dp 2 2
: ' a ]

-

for % = 130.,3DF3- 1. Then the s-tuplafey (Fy &n)),...,f (F Cm))}
has a distribution 1F and oniy il

f{(p)rr(Fi,ip)

G X

z = converges for 1 =1,,,,,s
p . ;
and
f (p)1 r(F D)
(1.3,3) by { - i converges for 1 = 1,...,5
'D .

a

Remark | In Thecrem 1,1, if F; is a product of linear

polynomials we can omit the conlition (1,3.19.

4, Outline of Novoselov's methed I Here we give a brief outline

of  Novoselov's (1966) method, becamse cur proofs depend

hea”ily on the probability 3pace constricted by him,

Let 2 dennte the set oF all integers, If

5 (k’ 4 - %0 @m ik ";'I{ )
m=9e 2m71
where )
;;/ o) if n F O(mea m),
@mfn) = e
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then d Aefines a metric on - Z, The tipelogy induced by d

on- Z 1s same as the topologzy obtained by taking as a nelghbour-
hhod basis abt the point a the set of all residue classes with
respect to non-gzero medull that centain a, In this manner 5
becomes a topnloglcal ring S with the usual additlon and
multiplication, an? with a non-ﬁiscréte wpology, DNote that &
15 totally dis?onhected and totally-bounded, [see Kelley (1955)1,
' Completing S we get a compact ring s whose elements will be
called polyadic numbers, On (& , as a compact additive group,

" there exists a normalized Haar measure u, [see Halmos (1962).
This measure is not complete.’ Its complétion which is denotod

by P is clearly a probabliity measure,

.If' A dis defined hy

' o ¢, (=)
4 (x v) = I = for x,ve (&
m=2 2"

0 if there is a y € (5 such that y.m=x
where @m(x) = : <
| 1 otherwise
Vthen 4 defines a metric on (& and the topology on & 1s the

same as the topology Induced by d. 1t is easy to see that if

a sequence {Xh} in (.tends to zero in the topology of (X
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[8]

then given any positive integer m, there exists an nj such
that m[xh for all n >n,, (Here mix mesns there is a
¥ ¢ & such that m.y = %), If x,¥v e, then by x=y(nod m)
we mean x-y 1s Aivisible by m, If x e Qg,anﬁ m is a
positive integer then we can find an integer k such that
0 <k <m and mix-k , ¥r, there i1s a sequence {Xh} of
integers such that x = tends to % in(z, that is x - x
" terds to zero in Q; _ S0 there is an n, such that if

n > n, then mlx~xn, Now, 1f ¥ is an integer such that

It

k (mod m) then clearly x = k (mod m),

f

O<k<m and X,

2 g 12

O
Define N = (k - s(n) +n +2) n! if sh) =%k <s (ntl),
I ) i R N |

where s(n) =

N
Note that Nk tends to zero in tre topnlogy of (& and Ll

My
tenis to 1as k tenls to infinity, 1his sequence {Nk} is fixed

threughout, Let ABk(X>‘bO the suallest non-negative residue

of x© meodulo Nk'

Let %L be the eclass T 211 corplex-valued functions f on
{5 such that f(Rk(X)} L, f(x) as k -» oo, where E. denote
the conversence in P-measure, We say that an arithmatic
function . f e %; if there 1s an extension f(x) of f(n)

to (¥ such that £(x) &%
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o]
p®llx moans the highest power of p that Alvides x

1s equal o k 1f %k is a positive integer, ahd. ﬁxﬂ X  mMeans
k|

PTix for every k > 0O, .

Some results of Novoselov *

bk 00

Temal.li D a@s) e 4} = lim sup Pyx T A(R(0) e &)

D {h(m) £ A} = 1im inf P{x

k= oc

h(R (x)) e 4}
for any set 4 and any complex-valued function h on the set

of prsitive integers,

Lerua 1.2 ¢ rf hn(x) € 'ﬁl then the validity of any two of
the fllrwing conditiong

‘hh (x = n(x)

n—> o

1im D {{h(m) - n ()| >0 }=0, forall ¢ >0,

o

h(x) ¢ %)

Implies the third,

Lemma 1,3 § If hy(x) e 2 h(x) ¢ %L .5 then

L. ahy(x) +bhy(x) e geo for any complex numbers a and b,

2, h.(x).h (x} « ©

=
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3, If n(m) e ?i then h(m) has a distribution,

Proofs of all these lemmas are easy, See Novoselov (1966),

5, Some preliminary results

Lemma 1,4 : Let F ¢ . Then there exists a P, such that
. Ly B :

P > P = (F, pij =17(F, p) “for any positive integer Xk,

Also

r(F,a,b) = ¢o(F, a).r(F, b} if (a,b) = B
r(F, Py < e

for some constant c depending only on F, and

r(F,p)
2 == = ©log login + 0L}
p=n 3

where T is the number ofirreducible factors of F
L]

For proof see Tanaka (1255),

Lemma 1,5 ¢ Let Fe P witn Dp = 2, Then for each

e >0, there exist v, =v, (e} and k=k(e) such that v.> v,

implies

D

N, {p FlF(m) for some p > v or _qle(m) for some q}

<en + o(n)
as n -
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Eaan i

Proof @ Choose k  and Vb sueh that

D

» K
r(F, p ) 2 - r(F, pM) .
bX — b. < 5 ant 4 E = - B
v o<p . F : 5 D
o= P

25
Let M > 0 be such that M.m % > Flum) for every m

tv
g

it v > v., then

D e e o
N {p "IF(n) for some p >v or quF(m) for some a}

r(F, p 7) - D,
e Y = e iy z r(F, P )
A r(F, 'y ] n
+n I = 13 r(F, p™)
R D p < )
< ne + 0(= ) =mnce + o(n),

('};_ 'r'l

Lemma 1.6 & Let 7 -ang 7 bz tw probapility distributions

nelther of which is concentr~ted zt one point, Ir for a

‘Sequence {Fﬁ} of prebability distributions and constants a, >0

Fpley x+.d) —é;ciiqummhmg;l points of continyity,

G AR | e TN ,
+"$—]AV\ ielrc &

& ..),/v“", i Ult‘ {’ N
r/fiﬁ}q/m-mi..:.u..inna ‘;Q\
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g L5l
LB g - A#0,
an | 3
For proof see Feller (1966, Chapter VIII, Section 2,

Lemma 1),

Lemma 1,7 ¢ Let Fe P, Let f be any additive arithmetic

function such that

B(n,f,F) —"w0 a5 n —>

£(p) r(F,p) = o(B(p,f,F))
and |

-

£(pX) r(F,p") = 0 as p <o for k=l,,,.,7 g1, 1f Dp22,

o
Then fl-N {£(F(n)) < Aln,£,F) + xB(n,f F)} —-‘»-/3-2_;_- Joo Y2 44

as n => o  for all real numbers x,

5
3

For pronf see Halberstar (1956),

Let f be any additive arithmetic function and F e B,
Suppose F(m’) = a ne + eeo ¥ 3. Define F(x)=a, xt+._..+aO,X e 3

-

Cloarly F(x) is uniformly continucus on 3.

R : k
Define f(x, F) = & f(p) wlF, p°, x)
1S H H
=T : ,

5y 'y
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J"l it poll P,

i |
It is easy to see that w(F, pk, .) is measurasble and
L
| N -y I‘(Fjpk) T(F,pk+l) ) . ‘ :
P(x ¢ w(F,p*,x) = 1) = £ . [see Novoselov (1966}
_ ) oK gL A : :
Lemma 1,8 ¢ TLet £ be any additive arithmetic function, 4
Let F e g, Suppose - i

(1,5.1) D 2 2 and f(pk) r(F,pk) ~> 0 as p =

k=1,,,.,

DF-'I 2

Then given any € > 0O, there cxists v_ = vo‘(s) such that

Q
v & v, dimplies

n " b ; N

z (2 £ (n,F)- Alv,n, ;7)) < CnB2(v,n £ F) + en
n i - Bl

Pl (e

“SlON | W Fesy Dy

where

*

i
- ;
£(p¥y = <
i 0 obherwvise,

and € devends only on F, B
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—

Remark If F dg a prﬁiuct of linear.polynomials we may

omit the condition (1,5,1). . 4

el | g

Pronf of this lemma is similar to Turan-Kubilius inequality,i

see Kubllius 61964 Lerma 3 1, b 31).

6, Proofs of the theorems |

Proof of Thecrem 1,1 | We first consider the case s =1 To

simplify the notation we write f for f; and F for F,,
It is easy to show fp(x,F) is continuous almost everywhere,

see Novoselov (1966), Hence for any n,

2z f(.»cF)s 5’(70.

o=n

Let p, be such that p > p, implies r(F,pk) = r(F,p)
for cach k > 1, Observe that
k 1 I’(F’ I‘). ;

Blw(F,p,x)] = === (1 = %) 1t p > p,
0

Elw(F,p',x) w(F.p%,x)] = 0 if k # t.

Since r(F,4) is a multiplicative function by Lemma 1,4,

{fp(x, FB} are all mutually independent random variables,

sea Novagnlav (19R8  n 244),
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Now suppose that (i,3,2) an? (1,3.3) hold, By Kolmogorov's
3-series theorem [sce Halmos (1962) section 46, Theorem E] it

follows that ) fﬂ(x, F) eonverges almost everywhere,

Hence, Z f_(x, F) converges almist everywhere,
p P
Define
| = £ (x, F) whenever it converges,
v
f*(X"F) =«.f o i
i 0 ctherwlise,

Note that £*(m,F) = £(F(m)) for evéry natural number m,

To show that £*(x,F) e ¢, it is enough to show, in view

I1im D {[ 3 £ {m,F)| = G} = @ for evéry g > 0,
v—> 00 n>v 2

This Qowever frllows fronm (1.3.1)'andﬁemmas 1.5 and 1,8,

Hence f(F(m)) has a distributicn,

Conversely, let U  be the distribution of f£(F(m)),

If U  1s degenerate, then choose pf, k > 1. such that
r(F, p5) # 0, | |
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Ky _ .. k
Put f*(go) = f(po) + 1
£ (pPy = £(pP) 11 of #pF

-

Now it is -easy to see that, if f* is tho; new additive
arithmetic function defined above, the distribution of £*(F(m))
exlsts and is nondezenerate, So without loss of generality we

may assume that U is a rondepencrate probability distribu .-,

tilon, Fromlemmas 1,6 and 1,7 it follows that.

1im  B(n,f,F) <oo
n=-t o0

By Kolmogorovts 3-scries theorem, we have

'1

£'(p) »(F, 1}

i {fp(x, F) - } conv?rges Ae €,

D
Define ' .
i 1 (p) r(F, p) .
o -.‘j 2 {fp(X,F) - = = } if 1t eonverges,
D .

g{x) = ' :

' 1 o : otherwise,
Le,

‘Let Qe) = P{x v oelx) < c}.

By Lemma 1.8 and (1.3,1) it is ecasy to seec that

% e {[f(F(m)) = Aln, £,P)] < ¢} = Qo) a5 N w00
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1171
at all continulty polnts ¢ of €,

If @ is degenerate, it follows that A(n,f,F) are
bounded, since % N, {[f(F(m)) - Aln, £,F)] < c} are discrete
" distributions, Hence there exists a subseguence {nr} of
' natural numbers such that A(nr,f,F) == b w8 r =k fon
some b, Thus we conclude that Ulec + b) = q(e) which gives
a contradieticn, since we assumed that U is ponQdegenerate.

Heneg @ is non-degenerate, By Lemma 1,6, it follows that

£ (p) r(¥, p) '
z cnnverges,
D

p

This proves Theorem 1,1, when s = 1,

Now, 1t follows, from (1,3,1), (1.3.2), (1,3.3) and what

we have proved abave that

-
STy

PR @) e Ty e, E(Fm) e 2

By Lemma 1,3, for every s-—tunle (tl""’ts) of real numbers,
FEm) + .. b b, S F () e D
tl fl blm G s e e ’S g Sm —E C)‘e

Hence by Cramer-Weld darice { see Billingsley (1968, P 48ﬂ,

" TS L -,
o Ai\»;rll"\r‘:.‘ N O
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i i , . o i
. (1 (Fy(m)J, ee s 1S(¢S(m))}
eﬁé‘l;s.
' The converse part follows easlly because, 1f the svtuple

has a distribution then for each 1, f,(F;(m)) has a distmthu -
tlon, Thls completes the proof of Theorem 1,1,

A function g on the set of positive integers inko the
complex numbers is said t4 be multiplicative if g(m.n)=g(m) g(n)
: o

whenever (ryn) = 1, and g(1) = 1,

We'pr'ovve

Theorem 1,2 $ Let g  be a mltiplicative function and

[

Fe P, Suppose that Dp 22, ¢ 1s real~valued and ~ =

.
- -

@) - 1) £(F, p) = 0 as p =, for K21y 0oy Dpmly

5

Then g(F(m)) e ¢, 1f the following threc series

-

. Lz(p) ~ 1] o(F, p)
jgtp)-1i< 1
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' lz(p) = 1|2 (¥, p)
D : P
le(p)~1] <1

and

P

D
le(py-1] > 1
g(p)#0

el =

&
are convergent, For a positive g(F(m)) ¢ .  these thaee
“ 5 A
conditions are also necessary, provlded the distribution

function Q of the functiorn g(Flm)) 1is contimiqn" at
zem,

e

n

We omit the proof of this theorem, since the proof 1s
almost same as that of Proposition 51 of Novoseiov (1966,
p 251), We nmenvion only that we have to use Theorem 1,1

" instead of. Erdos—-Wintner therrem in the proof,
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CHAPTER 2

AN INVARI ANCE PRINGIPLE FCR ARITHMETIC FUNCTIONS

1. Introduction % For any new unexplained terminology used

in‘the sequel, refer %o Parthasarathy (1967) or
Billinesley” (1968),
Let {fN} be a secuence of real-valued arithmetic

functions, For any n > 1 we write

B2(N, n) = T £ (p) /

S , N ‘P D .
<n

As #ine

B(N) = B(N, N) =>© as N =00,
We define random functions hg( , , m) e DLo, 1] by

-

. hy (x, m) = [1/B(M] I t3() (6, @) - 3)

)

where the sum is extended over all primes p < N satisfying

BN, p) < x 3%(N)

and Bp.(m) =1 or O according as pim or p fm, We
give an alternative proof of Thc—:orém 2.1 below due to

W. Philivn (1972), Our nproof is nrobabilistic in nature
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and does not involve many number-thecretic calculations.

Definition 1 A seyuence {Xh}. of random elements, taking

values in a metric space M, 1s sald to converge weakly to

a random*element X, taking values in M, if
P {Xn £ A} - P {X £ A}
as n = ® vyhenever 4 1is a Borel set in M .such that
P{Xs 6A}=O
where 0A denotes the boundary of A Weé denote the wesk
eonvergence of {Xn} to X by

: D

Xn — X. " oz =

Thecrem 2,1 4 Let {fN} be a seguence of real-valued
arithmetic functionslwith B(N) -> o, Suppose that for

any g » 0

| o
£5(p)

(21,10 E— [ 3z Ay L5 o §eeo,

| BE(NY  fry(p)l>e B(my P Y :

Then hN 2 3 m) tehés weakly e the standgrd Brownian motion,
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Remark | Condition (2,1,1) is the natural analogue of the
Lindeberg condition,
AS an easy consequence of Theorem 2,1 we have

Cornllary 2,1 & Under the hypotheses of Theorem 2,1. we have

for x >0

57

, 45 >
Ly 4 nax (5 () = A1,101 < x BUN} = /3A § o™ gy
9]

and . é

iy { nax £ (m) =N, k) | < x B(W))

X oo - " (u-.ﬁ«:x)
~ N/er § % (-l’)kexp[* _2—'—] du
-x k=- oo
as N -=» o0 Here
fm(P)
ANK) = Z 'Jbl
psk :

and

Remark § This Corollary was proved first when 'fN = f for all
N > 1, in Jogesh Babu (1972a), directly without any reference

aprdssien, TRCR, Pieh pptimidation wsing Pidsaninarked d@HE]
. - 2is . LRV AR g b : o B N , = EArUcag
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o . - S . . .
Theoremn 8.2 ! 1ct £{r) beg 2 real-valued arithmetic function

and F be any integral polynomial such that F{m) > 0 for

= LBy . o LEL

£(p) r(F,r) o [f(p)]zr(F,p)
A(n, F) = T anda  B°(n,F)= I

p<n P <n .

Suppose B(n,F) = © as n = and f(p) = o(B(p, F))

as p =—> o then for x > 0

? }

e (re)y - a0, B

1im L N max < X
ne o BB Tyl B8(n, F) }
X 2
= _2—- I @qt /2 at
/er o
and

£ (7(m)) - 4G, B

1, 1 ‘
iim N max - 2 X
X oo . (u - o2k X)2
= 7&: J ¥ (-1 expl- 5 1 du.
or -=x k=-0 j - -

The proof of this result is essentially the same as

that of Corollarvy 2,1 and so is omitted,
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8 2, We need the frllowing lemue,

Lemma 2,1 . Let f be an arithmetic functicn such that

D(n) => 0 a5 n — 0 and f2r cach g > 0

e fg
' ‘ — 2 (p) - 0 a8 n - oo
DZ(n) ' P g
: t£(pYi>eD(n)
where
fg(;)\l/z
Dn) = {. 2 = |
P<n I

Then there exists a function r(n) such that

log r{n) , D(r(n)) -
Togn 9> D(n) =g
and for each e =0
R A AL S f(psll D)} 3 O
! m f - . >
Byl { r(n)gfc{jn r{n) <p<k = b = } %}

as n => oo where . .

f{p, m) =
0] otherwise ,


http://www.cvisiontech.com

[o5]

£(p)
~1}> ¢ D(m}

8 =+ N max i B Lf(p,m)-
P br(n) <k <n r(r) <p=xk

Now, by Chebyshev'!s inequality

o o n , - f(p) _2
§ < [1/tnc®D@N] Z [ ) | £(p,m) = ——| ]
N m=1 r(n) <pZn P

l£(p)| 2
SADY

L]

% n
<2/t e®P@NI [ ¢ = |ep,mD%Fen(
m=1 r(n)<p<n r(n)<p<n P

But

n n
2L 0z lreml®=2 [ = lrem|®* = |p,melqml
m=1 r{n)<p<n =1 r{n)<p=<n p ¥ q

r(n)<p,a<n-

. (7]

72 () I 6%
— +n { 2

r(n)<p<n P r(n)<p<n P

. < n 2

Now, by hypothesis, there exists e(n) such that e(n) >0

for all n, ¢ {n) -~ 0 as n =« and

fg(p)

=t =

<g (n),
D (n)
A 1elr) > (nID(N)
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fy i
Put r(n) = nE‘L’. lnen
% | £(p)|
r{n)<p<n p
s 2
ECA . 2]
e it Z S %Y a D
r{n)<p<n P c(n)<p
| £(p)|ze (n)D(n) |27 Y {re (n)D(n)
2'. \- ?’
_<_2D(n;s {n) (~log e(n) +c 1))
2
r2( T b =z SEhe
r(n)<psn P r(n)<pm Ak
£ 1o 0)DCn)
< n) Le n)(~ log e{n) + 007 - 2 ¢(1) log e(n)]
= ocn%n
as n =, gince e(n) ~> 0, Hence 5, % 0 as nwroo .

Similar ar-unent gives us that
(D{r(n)) / D(n)] = 1.

as n ~> ., This completes the preof »” Lomna Zuly
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§ 3.%ow we need some vesults of Chapter IT of Kubilius (1%64),

a brief outline of which is given below in the required foyn,

Let r(n) be the function appearing in the proof of

Lemma 2,1, Let

For p < r(n) and t = 0,1, define
E(p,t,n) = {1 <m<n 8,(m) = t}

Let zﬁ be the smallest algebra of sets containing all E(p,t,n),
The algebra of sets and the function

%Nn{meA}

form a finite probability space, and for each p < r(N),Vthe
function £y (p) 6p(m) is a random variable on this spage,
For each square-free integer 1 <k <n, let

o= E(p, &_(k), n),
? p £ r(n) - B o

——

Clearly, for different square-free integers k the sets

E 1 have no element in common, 4Also every Ae F_ is o8 the
- n, =2

form

-
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keK >

where K 1s a subset of B Let

.
}...b
c—'—

il

0 and p < r(n),

P(E (p,t,n)) = 4 \
1 and p < r(n).

e
h
ct

l

Let

P(A) = % T P(E(p,s_(x),n))
keK  p<r(n} 2o

whenever
A= U B .,
&EK n,x
1t 1s shown in Kubilius (1964, p.27) that uniformly for
all Ae F

*n’

- % N {m £ A} - P(A) = O(expl-a log nflog r(n) 1)

i

as n ~=>x, ywhere a 1is a nositive constant,
s fine - , ari c * = *
On Ey, define the random variables & ENp(m),

(p < r(1N)) by putting

Ty ) = Iyl (6, -1y /B,
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¥ p
of independent randem variables such that for each p < z(N)

It is easy to see that J &% 1 p < P(N)} is a sequence

I

- fy(p) /pB(IN} =1 - L

7 iy :

and

i

Pt = oy® =D sBmy=1,

8 4.We now turn to the proof cf Theorem 2.1,

By using (2,1,1) we can find a sequerce e(N) of

positive real numbers tendiﬁg to zero such that

[fN(p)}2
: Z
o) 1> e (B p

< e (1) B,

If we put r(N) = NECN}, clearly we get as in the proof of

Lgmma 2,1 that
[B(Y, r(M) / B(N]) = 1

as N ~>co, Let for each U, { sz Tt p <N } be a sequence

of independent random variagbles such that:

H

P&y, =~ fy(® /pBM}= 1- %
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and
P{ &y = fy(p) 1 -2) /BUNY = 5 3
Let
X (x) = % L0 5 o e e, 1l

» < v/

BE(1,p) < x BO(N)

Clearly XN er Dler Il Define Yﬁ by

;
W = 2 gy, ir x B = B3(N,q), q <N
NP =50
2hs] '
and for other xe [0, 1], define ¥y (x) by linear interpolaticf
Then ™y e Clo,1], In view of the condition (2,1,1), the
sequence_{YN} setisfies the hypotheses of Prohorov's theorem,

see Farthasarathy (1967, Theorem t,1,p.221), Hence

A SR

it s
where W! is the Wiener measure on Clo,1], Let d denote

the Skhorohiod metric on D[n,l]. Yor any ¢ > O, we have
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- R < Py sup V¥ (x) - L A(x) > e
P{ A (X, Ty eh 3 YO_SSX_EI Vi N }

[d i E
Py osup gl =51+ L lggl >%
'{ p<r(N) R 2 t 7 (N) <p=l s 2 }

=z RflEg ) > 5} ¢ (2% Q@ -[B3(, r(0) /AR ])

pxr(NN)
2 2
3 r £ (p) £5(p)
s (ase® 52(my) % —— I
2] £y { (p=1) >epB(N) S
= o(1) ' )

as N ww> o0 by (2,1,1),

Since the Wiener measure of
(ple,1} - ¢clo,11) is zero,

XN Bes W as § =«

It follows from the results of & 3

3 that, uniformly

for all Borel subsets A of Dlo,1],

(2,4,1) P{Xy e £} = & W, {hyCe, 1y 2D ¢ 81 + 0(1)

e
where ;

hy(x,m,n) = E%ﬁ? 3 E ] foﬁ)(Gp(m)" %),x‘a‘ﬂa,l].

‘;zzfl\r =\ (-.,..‘Dgf Ty
GO W o
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Now if we show, for every e > 0, that

b 3

. £ (-1 “"N”cm\ ACT,n) +A(, »(N)
(2,4.2) 5 Ny Tax k BN | F"‘%VC

?'(N)‘(-l(N

as N ->co, then fiem (2.4.1) 1t follows easily that
hN( ey I, N) *""D> W,

Nete that the left hand side of (2,4.2) is not more than

N b ‘ -
® m=1l  r(N)<p<N
| £ (p)i
= 0((1/e B(W)) ( - M
r(N) <p<H E
But
| £ (P ' | 8,,(p) |
% —— = Tee (M) log e (W) + 57m % - B|
r(N)<p<n . F / piNy<psN

| £C0) [ > (W) BLI)

iA 1
< =B(N) e(N) log e(N) + (c(N))¥ B(N) (- log e(N} + o(1))%"

= #(B(N)) as N —>o0,

Hence (2.4.2) holds, This complztes the proof of Théorem 2,1,
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CHAPTER 3

ON 4 CONJECTURE OT ERDOS

28 Introduction . Let f be a real-valued additive arithmetls
funetion, Let ¥ ¢ E. Suppose that the density of

{m v fH(P()) e I} exists and is positive for some bounded
interval I, Then, does f(F(m)) have a distribution ? This
guestion 1s answered in this chapter affirmatively under some

restrictions on F and I, In the particular case when

Flm) = m,

PR}

Erdos (1947) conjectured that the above questien has
an affirmative snswer, Partial solution to Erdos conjecture
is given by Paul (1967).

In the last sectlon, we also give -some necessary and
sufficient conditions for f %o have a distribution, which
may help in understanding how the behaviour of £ in a small
Interval determines .the existance of the distribution,

- Throughout this chapter we assume that Fe P and
write r(d) instead of r(F,d) and fp(x) instead of

fp(X,F),

We/ define :

{f*(p)}2 r(p;? 1/2

B(v,n) = 2 ' 3
1'7(,\‘-'\?] P )

—_—

3
L.
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f1{p) r(p)
Alv,n) = Z T L
v<p<n

A(n) = A0, n),

i

B(n) = B(O, n), ) :

2, Main results

Theorem 3,1 | Suppose f and F satisfy the conditien

L(3°2-1) f(pt) r(pt) -~ 0 as p = oo for tzly a'r!"DF-lg‘
i D e,

If fsr some real number a

niE BN ) a0,

then f£(F(m}) has a distribution,

Theorem 3.7 * Suprose f and F satisfy the condition (3,2,1]

— .

If f(F(m)) has a distribution in a bounded non~degenerate
interval I and if this distribution is not uniform then f(F(m)w

has a distribution.

Here, by a distritution on & bounded interval we mean a
finite countably additive measure g on I such that whenever
a and b are interior points of I and p(a) = u)= 0,

Ui
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i -]—‘- f I A o
in = N J0(F(mY) e (a, )}

I > GO =
exists and equals u (a, b),

Theorer 3,3 ; Let £ b2 a non-negative additive arishnetie

function, Suppose for some ¢ > O,

D § £(F(m)) < ¢ } >0,

Then

£1{(p) r(p)
<oc,
P

Theorem 3,4 ¢ Suppose f and F satisfy the condition

(3,2,1), If for some bounded interval I, sk L,

, 1 N _
nifim = N { fFF(m)) 3 I} = 1,

then f(F(m)) has a distribution,

1

Remark i  Proof of Theorem 3.4, when F(m) = m, was supplied

by Dr, EM,Paul during one of our ‘Aiséiissions,

3, Preliminary results

T

Definition I, Let P be a probability measure on the real line,

Let F %be the smallest closed subset of the real line_such

that P(F) = 1, Then F is cailed the spectrum of P,
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Lemma 2.1 5 Let. sy 3(n) < &, Suppose I and F satisfy
the condition (3,2,1). Then %there exists a distribution

function Q on the real 1inz 32h that

(3,3,1) 1im % N {I(F(m)) < ¢ + A(n)} = Q{c)

I — 00

for all continuity points ¢ of @,
Let the sequence {A(n)} be bounded, Let $,=1im Inf Afn
Nw> CO

and 8, = lim sup A(n). If 8, <@ < 8,, then
n —>oc e

{f(F(m)) +0 5 m> 1} 1s contained in the spectrum of 9, If
{A(n)} is not a convergent secuenge, then {f(F(m)) *'m > 1}

is a dense subset of the real line,
-

Proof Since {B(n)} is a convergent sequence,

1 (p) r(p)

g converges a,o,on [ [P],

z [P (x) -
D P

by Kolmogorov's three-series theorem., Here and in what follows
P stands for the probability measure constructed, on & , by

Nevoselov (1966),
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if this converges

: ' (p) =(p)
(- L [f (x)y - -
D p P

\ G otherwise,

Jppliying Lemma 1.8 or Turan-Kubilius inequality [Kubilius,

1964, Lemma 3,1, p.31] for cases DF_z 2 and DF'= 1, we have

niﬂ% N fE(F@)) ~ iln) < el = Pyx i g(x) < cf Qle) (say)

for all continuity prints ¢ of @, By Egoroff's theorem we
conclude that [f'(p) - r(p)/p]l == 0 as p — oo, Hence
91 <9 28, impliesthat 6 is a limit point of the sequence

{A(n)}.

e l i — e A I )

| _ |
o ) < o= e + ).

b
Fix € >0 and m > 1, Let F(m) = qll,.. qnn, where qq,...,4,

-

are prime numbers and XlseeegX, are positive integers,i By
Egoroff's theorem, for any & > 0, we can find a HC & and

an T, such that P(H) >1 - & and for a1l r > r,, H is a
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- . =t -~ 1
subset of 4z lg(x} = - & I (x) | <el,
n<n_ . ¥
A I‘ ‘
Let 1’1' = nrl _2 maX(qlg gto,qn, nro).. Let

Ht

il

fxe B x=y,Fm and p<n' implies p f'y}é
Then
Pyx ¢ Jglx) ~ 8 - £(F(m)) | <e}

e P{X e H' ¢ Jp(x) =8 - T £ (x)] < a}

p<n' P ‘
X , x.+1 by X +1
r(g ) Tl ). rle™ (g ? )
E -3 (1-5) n [ X £ Xl+1 ]toto[. }(n = }(nTT—_}
qll o g : An dn
> 0
where .
' r(p)
n= T 1 -—=7%,

p#qi,owo,qn

p <nf

Thus f£(F(m)) + ® 4is In the spectrum of Q, This completes the

proof of the 1emmar.

Lemma 3,2 5 Let {Xn} be a'ééquence of independent purely

iisecrete random variables such that X X~ converges almost
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everywhore, Thom the strimiticn of Z X, is purely discrete,
n B H

urelv continucus singular or purely absoluteiy continuous,
P ¥y I 10,

Moreover if

d = v PIL =
n B P $
d rea..

then the Aistribution of I X, is continuous 1if, and only if,
no - '

TTa = o,
i

For a proof;, see Jessen and Wintner (1935,'Theorem 35),

4 Profs of the main results §

Proofs of Theorems 3,1 and 3,2 § By Lemma 1,7 and the hypothesgs

it follows, in elther case, that

(81 (p) 12 o(p)
. - ,

3
b

Let 7 and 2 be as in the pro>f of Lemma 3,1,

In case of Theorem 3,1 we have for some sequence

{nk} of natural numbers

PRE I nI—

(3,4,1)  1im = Nn_k J£(F@m)) =._a} >0,
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It follows easi¥y fron (7.3 end {3,4.1) that [A(nk)l < M

for every k >1 and for some M, Lot € = 1im sup A(nk)
' T m—— OO

0 < lim == N Jf(F(m) = a} < Pfxr s glx) + 6 = al.

Hence the distribution of g(x) is discrete by Lemma 3.2,

Again by Lemma 3.2 we have

r{p)

Z ‘.

flpdr(p) # O R
Thus {A(n)} is a convergent sequehce, Hence it follows by
Theorem 1,1 that f(F(m)) has a distribution, This proves

Thoorém 3.1,

If 1lim inf = M {f<F(m)) e I}>0 for-ome bounded
n —> oo

interval I, then it follows casily from (2,2.1) that
lan)| < M for all n and for scme 1 > 0,

Let

6 ;= lim inf A(n)" _ ,
n - oo el
and |
o = lim sup An),
e N SPeeg
In case of Theorem 3,2, if 81 = 8, then there is -

nothineg 0 DIoVeimididn Bno Salamafton.the, nrsos ot

i [
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Lemma 3,1 1% f.lirws +hat 9 ¢ [”1, 9?} imnTles @ is a 1fmit |

point of {A(n)} and tha distrivutior functicn of g is

centinucus, If a an? b . re in the latericr of I we get

for all < E-[Ql, 92];

—r

n — CC

Mp 8 T fEEG) e(ah )= bt s 4 2 s (a0

By changing 6 continunisly we et unifornm distribution on Ia

which contraiicts the hypothesis, Hence {A(n)} is'a conver-

gent seguence, So by Theorem 1,1 we econclude that the distribu :

tion of f(F(m)) exists, This completes the proof of Theoren 3,2

-

-

be as in lemma 1.4, Supnose

Proof of Theorem 3,3 ¢ Tot P

£1(p) rip) . i
that . 2 5 ' = +¢2, then by Kelmogoro . 's three-series
Mok i ) :
thecren P fj(xj diverces to + o glmcat uverywhere, Lot
P> '

for xe

hh(X) = 3 fp(x).

D_<D<n
Py 05

Note that the distribution of hh is'discrete for eash n,

Suppose for some o

T f(Fmw) < ¢ IS
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Let b > ¢ be any commeon corblnully point of the distribution

of the functions hpo+1’ hpo+2, sew & Then as Mme—>rc0 y I

D§Ox hn(m)‘j g} = 0,

Let {k‘}' he a subsequencc of '{Nk} ‘such that

i e N, {EF@)) < b} = Bfn ¢ £(Fm) <bjr 2z >0 (say)

Kkt —voo
By using Lemma 145, choose t * DF such that for all n,
N, {ptlF(m) for some p}'< é}a% o(n);
Liet {Nn‘} be an increasing sﬁ?sgquence of '{k’}f

that k > n' 1implies pt[Nk if p j'n.‘ Then

'ﬁl—‘ N}g : .{f(F(m)) < b}
n Tire

< Pixy "2 £ (R ((x)) <Db 1}
T’r P, <pin » }
= Pfx: Z £ (x) < b} +2 +0(1)

p,<psn

as n ~> %, Hence as n —> o the left~hand side converges

to gz and the right-hand sidec .converges to g which 1s a

| RES e e DEUTMIZE LISH NMNAr -
CilllUJ.‘ddi(:U;Uli,dJ.LLuc: ISR @ ¥ -Luc.a.\-_‘ig;“’.;’ »
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£1{py r{p)
F m— e

D L .

This completes the proof of Theorem 3,3,

Proof of Theorem 3,4 . It follows from Lemma 1,7 that

[£1(p)]Z
z ——— <X,
P

P
FTom‘Lemma 3.1 we get that for every m > 1, f(F(mj) belongs
’

to the closure of I} 4i,e, for all m > 1, |f(F(m))l< ¥

for some M,

Now define a new additive arithmetic function g by
ge®) = £

Note that for all m 2> 1, g(F(m)) is positive and g(F(m)) < 2

g (p) rip)
Hence by Theorem 3,3, we zet that Z S 003 So
, 5 T .
£'(p) r(p) "
2 converges sbsolutely, Hence f(F(m)) has a

P
distribution by Thecrem 1,1,

i

85, In what fbiI%WS, we Use the terminology introduced by Paul

(1962 a),
Py
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Let ML(S) and  M;(8) denote the lower and the upper
magnifications of S, where S5 is any sot of positive.integér
Let A(S) denote the logarithmic density of S, whenever it
exists, Let P dendte the measure oﬁ- ngo as introduced
in Paul (1962a), (Here 2Z, denctes the set of non-megative

—

integers,)

Theorem 3,5 | The fbllowing are equlvalent $

1} There i1s a real number a such that for all e > 0
P i,(m 3] £(m) ~ a] <€)} > o0
— OO .
. > 0 n) o
ii) For all e , P éﬁl An;s } > 0  where

= Jix T i T2 £(p. 1)< g,for a1l r, x>
AnE { r<i =<k = y il

i

111) £ has a distribution,

i

Proof { Proof of Theorem 1 of Paul (1963) shows that if

f has a distribution,

Aym i f(m) ee, AV} = ?%Mi(m:f(m) e (e, AN},

-
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[15]

By Theorem 1 ~f Paul (1967) we heve for every e > O

D {m s i) < e} > 0, Hence,
iz N (m"s |£lm)| < e‘)} >0 for all g >0,

This proves the implication (Lii) = (i).

i) = (4i) is elear becausc

My om ! f(m) g (§ "€, a f Dyc U n31 Ah ee*

To prove (1i) = (iii), assume (ii), There exists a N sueh
that - P(AN,E) > 0, Hence,

- . X,
P{xtk>¥=| = f(p.l)l<é}>o,
' N<i <k = =y

lim sup P yx o | = f(px1 v k= el
K - 00 W<t e

Hence there exists a sequence {di} siich that
O

2 P(pxi) t d;} eonvorges a.e, [T 1,

Let & > 0Q, Find an n such that

al

e (%1, 5/2) =1 >0,
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By Eﬂoroff‘"i thevyram chocse a mrasurable seb '{ swch that

-~

P(H) > 1 -—g ang )_‘. Jf(pii) + di} eanverges wnlfermly on H,
021 L -

Hence there exists = » ny sich that

Fyxtforall r2a,| ik{f(Pfi) el ]’L‘?
red<

Hence there exlsts x such that for &11 1‘-, k2 n, we have
I3 sl <d s ] {£(p i) ¥ 40 <
r<i<k 1 2. r<1<k 2 i

l’_'

Herce for a1l », k 2 n, ] Z al <8, .S,.o z 4 converg‘es‘

4 r<1<l(- < i 2N
henge 121 f(pii) eonvarees almust wer:y:(\rher‘c,:u mhorefor.e £
= )

has a distribution (see Pwul, 1963), This -g@mpgetes_i_;he proaf .

&i Ih_m ﬁem 3..5 & '.. = .‘ vy .

LRV


http://www.cvisiontech.com

 CHAPTER 4
SPECTRUM OF THE DISTRIBUTION OF VALUES OF
ARITHMETIC FUNCTIONS |
By the spectrum of a probability moasure

1, Introduction ¢
on the regl line we mean tho smzllest clnsed subset of the

real 11no whose P~meaaure is 1°
Let f be a real-valued additive arithmetic function

In this chapter we characterize the spectrum of the distribution

of Jf(n) - f(n+1),..., f(n+h-1) - f(n+h)} whenever the distribu -~
1s a positive integer, We obtain a theorem

where h
corollary of one of cur theorems

Y

Blon exists,
of Erdos and Schinzel (1961} as s
we shall show that for any m > 1

-

Under wvery general condition
{f (P (), ..., ne: (m))} belonss e the spectrum of the distri-~

Al 1

bution of {fI(Fl(n)),.g,, h(F (n))} if it exists, where

fl"??’fh are real-valued additive arithmetic functions and
-

F']"li’Fh

;Wﬂ

2. Main results 3

r £ and F satisfy the

- Thecrem 4,1 ¢ Let F %
£(F(m)) has a distribution,

cendition (8,2,1) and supprse that
£(F(2)),..,, &l belong to the spectrum of the

Suppose

Then r(F(1)),

distributicn,
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This therron follnws easily frem Lemma 3,1 and Theorem. 1,1,

£ ()12

Theorer 4,2 . Suppose that the series.” 8 ——— 1s convergent,

G

Then for any poasitive intezer h,

I

d.2.1)  Jfln) - £atl), e, £(nth-1) = £(n+h))

has a distribution end fop any o, 2 1, fthe vector

{f(n,) - £(n +1),...gf(n +h-1) = £(n +h)}

2 belﬂngs to thc 5pectrum of tho dlstribution of (4,2, 1)

Mo_reover, if Non R H- are positive integers such

. .that for g11 4 = 0,1,,.,,h,

o

Ny, (ht1)1) = 1 and (N, W,) =& (0 <i.<32n),

.t

then

{r(N,) = £(aNy), r{2m) - £(30 ),,..,f(h _1)*f((h+1)N )}

is in the speetrum of the stributicn of {2 2 1)

Coroiléry' {Erdes and Schinzel, 128], ]\ Let f bc a real-valued -
. additive arithmetlic functi-m aui':fyin‘r the follovﬁng‘ conditions |

=

P £1(p)]% "
(4.2,2) Z : (:p : < o

—

ﬁ
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. {4.2.3)  There is a number ¢, such that, for any integer

.

M > 0, the set of nmurbers (N}, where (N, M) =1

is dense in (eq, o9,

‘Then for any riven h réal numbers al,,;;,ah and for

any € > 0, the set _ e ol S

n =1 |T(n#) - flnii-1)~ aiY< €, _i N 1,;-§;h }

haspositive;natural density,

: N
Theorem 4,3 § Let. fiseessf, be realwvalued addltive awlthmetic
funeticns and let Fl,,,,,FS be in iy Suppose“
5 2 ) - 0 o for k =1.....D
P quh 5Ly D ©o8s pwe for k=l,,.., Fi'l

whenever Dp > g, If the Aistribution of
1 . 3
(4,2,4) {f1(Fi(m))l""'fs(Fs(n))}

exists, then one can find a % such that, the speetrum S of

the distributioh of (4,2,4) is the closure of the set

5 o0 me . | . .
a=4 I tZ £y 4 =1,.,.,8] 4 m>21, k >k},
pl Fym) ;
_V‘_’J:L ! } .;
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Remark : Clearly ADB = {r,(F,(m)) ;4 =1,...,5] 3 m2 1}

o1

. 3. Proofs ? by

v 3 X 3
Proof of Theorem 4,2 ¢ Lot

» -

Lqm) = ffﬁi-‘i-l) - f(n+) ,

4 = 3,,,.,h, First we shall ertend the functions H, to the

polyadic domain (Z and show that ocach H e 2 v

Let for xe

: : (:!a' et <%
-prk, x) = i

¢

el -

For any prime number p define, .

o

¥ 00 LR T 2 ." l'_ _"
Fipl® = 2 26" o0f, w1), 1= 4,1, ne,
- k=1 :

v dd g y 7 -

Since the randonm variables

independent {see Movos clov,

e ol 3, s

.othc-g-rwise.

" i *
L T h - 9
#im “

i f‘ip(x) D prime; are mutually | |

1
10856] and 2. MP——— «co . by

P

Kolrogerov's threc-series thecren, 1t follows that
: crtey - i . g o |
£' (p) ' 4
ZAL R (x) ~"""—'—'] copverges a,e, EP] for .4=0 1,....
B ip e} 4 A

Henee

B e 3 § [ f (.x_).”f(iﬂ) (x)] EORYSTEES a,e {P] for 1=0 l,,.,!
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loreover 1ﬁ“is easy to see thatlthe random variables
{[ Tip(X) S S aAap (X)] + p prime } are mutually independent

for each 1 = 0,1,,.,,h~1.

N

Let

(- S Eip(x) - E(i¥1)p(X)] - if it converges,

o] otherwise,

Clearly gy is an extension of  Hi' By .using fﬁraanubilius
inequality and Lemma 1,2 we get that Hy e i? and the

iistributicn of H, 1s Q{c) =7F {x 3 gi(x) < c}

Note that for any h~tuple (% ""'th 1) of resl numbers, the

hwl ‘ h-1 :
distribution of oty H (n) is given by Pix 1 2 t;g,(x)< c}s
i"‘O : »i=p i

"~ Hence by Cramer-~%ld device, we get that the distribution of
{H, (n), Hy(n)yeee, Ty (8D} is given by,

= Q(Cd’f"’ch~l) = P{x_; gi(X) <y i Q,.,,,hwl}.

v e e

Let C <8 <1, Since

oD In

‘{[ -f‘ (X) - -f. (X), taey }f(h‘l)p(}{) - Ehp(X):l : P pI‘ime}

1

is a semmence of mutuallv indenendnnt rendom vagtony s
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e
[8)]
(]

Lyt
.

a2 .
Put  Q T and Qo © L7 9y . We have

. p Xk ]
p /N

Pyxs Z [F () -7 ()] = 2. (n) for i = G eeg ™1

{ p<k 1p (1+1)p L TQ 300 }

. ¥ - N\ e B e ~ s =T

=D Jn * pgk [ fip(m’ ifi+l)p(n)] Hi(no) for i=0,,,,,h-1;
S b

- Qz >O. 1

i ¢

In fact,. since (Qq, N} = 1, we can find an integer. u . such that

B (mod ¥°)  and
us 3 (med Q) .
It 1s easy to show that for any integer % and any I« in {0,1,,,,,7%
Qb +u+ 1 ! ) '
Nyt 1 1s an Zntegor w0t divisivle Ly any prime p < k,

S8ince k > Ng, we have

Qb +ou i
(™5 %1 % t1)=1,

Hence for any t such that -t + u > Uy we get that -

f=

pék { Lip(Qbrw) = Frpyy (Qtr)y

P .
- oMy AT P\ Y . Pty
T f{Q'P'h"":\'Lﬂ{QJ‘**"' e RO j,i,...,ﬂ.‘ l.
el o 7
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But the density of the positive integers of the form Gt + u

equal to %“ + This proves the first part of Theorem 4,2, P12
2
of the second part is similar to the above proof, So here we

note the following fact, We put

[

= = = ‘ 2
W= N BN, o= T ) and @, = (nt1)} N° Q,

<
{ N

Since (Ni,€h+1)l) = ] for i = O,,.t,h and (Ni¢Nj) =1

ks

3

(0<1x4 < h), it follows from Chinese-Remsinder theorem that

there exists a number u satisfying the congruence relations

u® 1 (mod (h + 1)! ),

u = -i + Ni (mod N?), ¢ <1 <n,

- It is easy to sec that for cevery integer t the numbers
{(Qot + u + 1)/(i+1) 1 (1= 1,,,,,h) are integers which

arc not divisible by any prime p <k, Also the density of.
integers Q2t 41 is = > 8
Qe v
é .
This completes the proof of Theorem 4,2,

Proof of the Corollary * Tet e

te a positive number and let 1

sequence a; (1 = 1,,,,,h) be given, By condition (4,2,3) we can

Tind positive intogers Né,ﬁl,...,Nh such that |

l
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(Ni,(h+1)1) = 1(1 = 0,,..,h), (Hi,Nj) =1 (0<i<j<h),
Ly ) ) i .
T(N.) > ¢y + max {f(i+l) =2 a.},
? Yl B S
& . .
o T - <" £, .
anq __Lf(ﬂi) - {f(NG) £(1+1) +izl aj}! f14‘ (l <i <n).
Hence
(4,2.1) PPOEHING) - 01 1 ) - o) <% @ <izh), o
By Theorem 4,2, we see that the set .
(4,3,2) ﬁlil.llf&ﬂ-fﬁﬁﬂ "f@%)+jﬂﬁﬁ”'<%, s

| £(¥h-1) = f(nth) ~ £(n M)+ SN |5

hag positive density, Hence the corollary follows from (4,3,1)

Proof of Tcorem 4,3 § We ncedthe following lemma,

Lemma 4,1 ¢ If h(n) snd g(w) ave integer-valued polynomials
- having no eovmon factors, faen there exists k, such that p > kqy
implies that there is o n suck that h(m) = 0 (mod p) and -

g(m) = 0 (red p),
il See Katai (ros0),
r,

Let F, (1) =TT%'Fij(m), where JFij(m) s I =1,...me

S .-
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are irreducible and each Fij e P, Such a factorization is

possible and is unique., Let

{Glgocog%} = '{Fij : j = 1,.--,ri, i ﬁl,;..,S}

such that G; and Gj have no common factors if 1 # j,
By Lemma.4.l choose a ki such that p >k, implies that
there is no m with the property that Gi(m) = 0 (mod p) and
:..Gij) » O(mod p) (1 21 <3j=2h), Let Gi(x) bé the

continuous extension of G;{m) to the Novoselov's space S &

It is easy to see that,

' Ay e .
{(milGi(X) ¢ D= 1,...,h), Qllll Gi(X): 1= 1,“-’h)59°"

o
(g, | 0;(x), 1 = Lyveayh)}

arce independent events 1f tii are non=negative integers,

U1, a5 kg, o5 ¥ qy - if ¥ j and m; is not divisible

by any prime p > k; (i = 1,,,,,h), Since cither Fij(m) = Ty

or Fij(m) and F, . (m) arc rutuslly prime, we get that

(g [Py o)y 1= 1,000,8 ), ("M IF (0, 1= 1,000,900,

T S
(qrrll Fi(X), L. = 1,0.0’8)}
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.

are indepandent ovents on Woveselov's space if r 2 1, tij >0,
a4 > kg, a3 ¥ g5 if 1 ¥ and my; is not divisible by any

prime p >~-1\:l--- for any i = ]

Now choose Ik, > I, {by using Lerma 1,4) such that, if

t i
p > k., then, I'(‘Fi,p ) = r(F,p) - for t > 1, £ = 1,40y and

P
T(Fi,p) <—é-'5~’ i‘-':l,..o,so

We now show thab A [ 8, Let

f‘{o(x) = 12 fi(pk) (i = 1’“.,8)0
p <k,

Yor p >p, and "1 =1,,..,8,-weput for x & (5

@)t PG, k21, 0

if either p 1’ F,{x) of plei(X) for all

k > 1,

R _ , :'ff('p) r(F,,p)

By Theorem 1,1 we conclude that I —& - = and
_. he 1 :
1 2 1 H N ) ' )
(£1(p)) I'(E-L_,_p)

converge, Hence by Kolmogorov's three -

2
D b
series theorem I

>l
OPUITY

f;!‘.p(x) converges a,e., LPl,
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Fix & positive real number 6 < (1/4s), By Egoroff's
theorem choose M C (X such.that P(H) >1 -8 and on H,

5 £¥ (x) converges uniformly for 1 = l,000.,5, Now fix
e ‘ |

L B 5 |

e >0, k> kqﬁand m21l, Choose k, >k such that

Pix ¢ | Z o Mp@icei=1,,,5}>1-7

where 7 = §,s, Then

P - l = E = ; l . 3 om
CAHILEE) - 2 ) - @ e 1o,

-— ’ 2

> Pdx ¢ £F (x) = £* (n) O P (x) = 2 ¥
{ 10 10 “k(g(]?_fk “ip ) ‘k.,,"-p‘:k 1p(m)

f*{p(;c) =0 fork <p sky and | Z f];’*_‘p(x)l<e;i=l,..a

P7ko

2 (-MPfxrs, (D=1}, (™), 1=1,..., 5}

=< Tr P{X: f;{:p(x) = f;-p(m), 1 = 1,1..0’5 }

ko <psk
g pe 3 '_ - 5 . . »
> kg;];;;g i {}._ 8 J‘ip(x') = O, 7= J_.’.‘.“s}.‘

Clearly P{ ‘x;;_f’{p(x}:(), (i=1,=.‘..,.s)]?l-?{x:fipt}-c)#dfor some i}

.
L
5 if D sk,
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L5¢ ]
Bln 4
I - TR avd =4 r (‘m) ¢ ]j-"r S > 1 d
Suppoge g W A u B & “ ij n [e] sone U_ij e ars

fo some Iy J.

oy

-n this case by the definition of ko, we have clearly,

i ' T W N
P{x L fgp(x)-= f§p(m), 1= i,._.,s} > P{X | FEj(X)}

S us 41l
I‘(A.H:s, 3 d) I(F, " P 1] )
= - L] » O
Us & M wib ] - *
b, & ey
Let @i(m) = FR) pt, Note that
o Fy ()
Pk,

P{X : in(X) = fio(m), i = l,f’ .,S}
2 D{ @i(m)lpi(n) and @ (m),p F.(n) for any p < k, and

for 1= 1,...,5}

(since n=;m is a'sclution of the above relations,) So A C 8,
Hence B (. A (T8, Clearly 3 is dense in S, This completes

the proof of Theorem 4,3,
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CHAPTER 5

SINGULARITY AND ABSOLUTE CONTINUITY
OF  DISTRISUTIONS OF
ADDITIVE ARTTIIETIC FUNCTTONS

1, introduction { It is knswn that, the distribution of g

real-valued additive erlthmef ¢ function f, if it exists, is
pure j i,e,, 1t 1s either discrete, continuous singular or
~ absclutely continuaus.. It is alsc known that thé distributioﬁ
of a real-valued additive arithmetic function is discrete if
and only if '
Z l<oo.
f(p)#o P

Erdos (1939) has shawn that if f is a real-valued
additive arithmetlic functisn satisfying £(p) = 0(p~ %) for all
prime numbers p and for some pcsitive constant c,, then the
distribution of f exists and is singular, [Here and in what
follows, singular meéns-discrete ¢r centinucus singular,] 1In

this chapteér we show that 1f for some o >0

[£(p)]® el -
- = (_'j(hJ ) as E] - CO ’
p>N P . :
.. A

(5.1.1)

where A 1s a sct of prime numbers such that % =+ < 0, then
pe A '
' the distribution of f(m) = f(m+tl) exists and is singular,
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From this result vo shall deéducs that if £ satisfies (5,1.1)
and 1T £ has a distribution, then the distribution of f is

singuler, In perticular, overy bounded real+valued additive

arithmetic Tunction has a singulsr distribution, We also obtain

similar results for the distribubion of values of f(F(m)), where

F'is an integral polynomial tazing positive values for m=1,2,...

Suppose T has an absolutely continuous distribution,
We give some sufficlent conditicns which ensure that f£{F{m))
has an absolutely ccntinuous distribution, and we shall give

an example to show that, in a sense, thls is the best possible

result,

Some of the proofs depend on the f01lowiﬁg observation,
Lot f be a real-valued alditive arithmetlc function, having
a distribution, Distribution of £ is singular {sbsolutely
continuwous) if and suly if the distributicn cerresponding to
the.infinitely'divisible”éharacteristic function (see Lukacs,
1970) g glven by

l9g.8(t) = e T let £P) = 1 - 1t £(p)]
fip)lgi

is singular (absclutely continuous),
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Lot LX) denote the distribution function corresponding
tc:the random variable X and let w(m) dencte the number of

distinct prime divisers of m,

2, Main results

Theorem 5,1 ¢ If f 1g a real=-valued additive arithmetic

functicn satiszing (5¢l.1), then the distribution of

f(p) - £(mtl) exists and is singular,

Thecren 5,2 ¢+ IFf £ is a resl-valued additive arithmetic

function having absolutely continuvous distribution,. then the

distribution of f£(m) - f(m+l) is absolutely continucus,

Corollary 5,1 | Suppose that f is a real-valued additive
arithmetic function having a distribution, If f satisfies

the conditien.(5.1;1),rthen the distribution of £ 1is singular,

Corollary 5.2 ' The distributi~-n of every bounded real~valued

add¥#tive arithmetic function is singular, In particular no

additive arithretic funection can have uniform distribution,

Theorem 5,3 ¢ Suppose gz 1s any real-valued additive arithmetic
function for which there exists o constant K  such that
(5.2,1) b)) - g(m+1)] <K for a1, 2 e

Then the distrihutien of glm) = ofrd1) oxicts and i3 sincular,
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Theoren 5,4 % Let f be a real=valued additive srithmetic
{ ‘e : & i i -: L

function satisfying

| e o [e(p)1®
(6,2,2) Iifinf [1/(c®|10g ¢|)] 2 — > g,
g == 0 lf(p)l(g - P
Then the dlstribution.of £, if it exists, is absolutely

continuous,

theorewm 5,5 3 Let Fe P, Suppcse f and F satisfy (3,2.1)
and

lim int 14%10g )] 2 L(e(p12 r(F,p) > a.

e = 0 . | fp)l<e P

Then the distribution of £(F(m)), if it exists, 1s absolutely
continuous, |

Theorem 5,68 Let F &P, . Lét f _be a realwvalued additive
arithmetic function satisfying (3,2,1) -and let

(5:2.3) z L 12(1P r(Fp) = 0(87®) a5 N wmoo
p>ii P -

‘,‘ Al pE/A

where ¢ is a positive constant and A is a set of primes

stich that 2. i r(-F, 'p) <oc,
ped P

Then the distributior af  F{FMIY

e . = ..
,,,,, snked dvallifition S ios gVISTON
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Theorer 5,7 & - iU‘nd@r thc “eonditichs of Theorem 5 6
f(F(n)) - £(F(m+1)) has a singular distribution.

Thecrer 5, 8 o ¥ Lot ¥ € Bm: -bet. £ bw.a real-valued adiitive
arithnetic fum.tiovz sk that
£%) (¥, p Ky = p a5 po=» 08 gon k 1,...,3513
if Dy 22, (This condition can bc dmppcel in. casér P ds a
p~rc duct of lihear: *pol‘.?nsnials.} Iet . bo a set ot priﬂes
such that .

L &
-

(5.2.4) 7 zAl <t #Ad 4 :h fiplics clthew r(F,q) # O
pe ‘

ex nF @ =0 ma £(a) =0,

%

If £(m) and £(F(m)) have distrivutions, then the dlstributicn
of . £(¥(m)) is.absolutely e ntinuous jf thc distri‘bution of

£(m) 15 absolutely’ ccntinzous. :

Thae rem 5.., ‘." Let Y& B aond DF > 2. Let f Be a‘recat-

valued adf‘:li tive \\ri thr'ctic function satisfying-~(3,2,1). Suppose

A 15 a set of p 1cs satisfying (5 2 4) ,Ifz the distribution
of t(n) - f(n+l) e‘:ists and 1s rbsolatcly continuous thon
the distribution of £(F(m)) = £(F(n+1))" ‘also oxlsts and &s

absolutely continuous, cloy Ll

oA N
‘*r.#

P—-
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[

3, Prelimingry results ¢

Lemna 5,1 0 Let X end Y e twe independent random variables,

If Y 1is discrete, then the distribution of X + Y is discrete,
continuous singular or absclutely continucus according as X is

discrete, continuous singular or sbsolutely continuous,.

For a proof of this well known lemma, see Lukacs (1970,

Lemmg Be70dy Ba 57) )

Lerma 5;2 :"Supposé {Xh} is a seovence of discrete and
independent random variables and suppose {Yn} is ancther
sequence of discrete and independent_random variables, all of

therm defined on the same probability space, If
RRESSARES

then 2 X converges alrost everywhere and L% X ) is
n & n
absolutely continuous (singular) if and only if, £ Y. converges
. -

almost everywhere and L& Yh) 1s absolutely continuous (singular),
» )

Proof {3 In view of Lemma 5,1, we can assune -without loss

of generality that

B R # ¥ ; 1;
2R %, 71, }
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Iy ig casy 1o see, by Kolpegsroyt's throc-sories thcsrem, that

%, converges if and enly if, Z Y eenvcrgos.' If LﬁZ X)

S ™M

is singular thén h ore cnlsts 3 chesguo nuil sqt M of the
rezl Iine sich that:

< L K EX e pea,

%h‘ Tbb'éll.“ﬁ}

4,

B2, e M 2P{2 % ¥ and X .

= P{i x £ Iu and Jcn=¥jn for a11 n}
= Pf X = n for all. n}

P 2 ~ZPIX AY
S t™n n}
> 0

This shows that L( X Y ) la singylar since, by Denma 3.2,

T(Z Yh? is pure, Thi - corptetos the proof of Lemma 5,2,
b..".. .. $ -3 :

. -

- Lewia §.3 $-.Let £ b-a real-valued additive arithmetic
function satiéfying

2 L [sr(p)l2 <oa,
g P '

Let { } be a seoquence of lnﬂcpendcnt ‘rondont variables with

N
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i - ys -3 3z 5 L h b

r Py N x} P{X‘ % (1 P)i - e e A

{ s kyr_. P

AL RESCDIES
(5,3.1) - =

= ) = _ _ sl b

I ' i = '

b F = 1 - —c .2 - .l -l—

L P{X, = 0} =1 -%&+ 2(1” p)_{ i E

Sy g I e(p™)=0
Then .2 Xp- converges almost everywhere and the distribution
of f£(m) - £(m+l) 1s L( Z Xi)‘
P

This result is contained in the proof of Thesrem 4,2,

Lemma S« § TFor any p051t1ve 1n+ogor k 2z 2, thore exists a

constant c1

1 such “that for X > 3 we have. .

3 kw(r’)

~ ¢, x(log )L = 0(x(log x)k-g).
Ism<x :

For a proof, see Kubilius (1964, Lemma 9,2, p,140),

LOI ma 5,58 For n23 and k 2 2, wec have

"(L‘-(m) . ' ‘ - ‘
km_‘" = by (log n)k + O(C'log_-h)k 1),
m=1 o =" T : a P

where, b, is a:.'constan't “dependi:ig dnjfy._.oill: k.
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Summing by parts givos,l

Proof @
: : n n
gﬁgﬂlﬁl z kel IJE[kacm)]dx
mel - n =1 1 x n<x

= O((lov 11)k l) ooy I l(1og X)k I dx,
by Lemnma 5,4

= 0((1og W ™y + 4 ¢ (log n)k.
is a sSeduenice of regl numbers

Lerma 5.6 ¢ Suppose {a |

satisfying
, we 2
. . ' ap - ; .
(5,3,2) 2 = =N % a5 N ~>c0 fop some ¢,

If g 1s defined by

| it .
e G (EY = 4 ‘ Jji ap - - 3
(6.3,3)  z(%) 2xpq Z p le T ml-it ap].]; ’
then ¢ 1s the characteristic function of an infinitely

1vlisible distribution and bhe distribution corresponding to

13 31ngulmr ﬂu* iy positive integer Xk

|g(t)] 2%
' *:"” il 1t % . ' ]
Proof 3 Since {exp[ 5 Le <l = 1% ap]]} 18 characteristic
function of g éentréd Poisson randorm variable since
a2
¢
oo

D

Y]
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and since

e i L
hn(t) = exp { pzn % [e P-1 - it ap]}

1s a characteristic funcition for esch T, hn converges absolutely
and niformly to g in avery hounded interval and g is the

chairacteristic function of an infinitely divisible distribution,

Flx an integer k > 1, Let {X?,Yq * p,g > gk} be a

set of-independent random vafiables satisfying, for each p > 2k,
{Xﬁ t} P{Yp t} (p) (1 p)
for any integeor t > 0,

Note that for any integer t > 0,

PIX Y = -t} = PR, Y =t}

* & (0™ B

In view of (5,3,2) wund Lomms 5.8, it follows that

i ap(Xf+Yp) converges almost everywhere and L(? ap(X§+Yb))

is singular if and only 1f the distribution corresponding to

OGS is singular
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Without loss of geaerallty, we can assume ¢ <1, in
(5.3.2), Let N be a large integer, Let m < NC/G and

i 1 _
Pgl ase prrsl}rlmll 9 v _>. l_g

Consider the set
3 .- r. . . ey ‘,, - =’ ‘e 4t
{i ai i % s € #1 or -1, 14 ;,...,m‘ }.

Put EN@ U = D, o Since there are 2w(m) sequences
- m<i® e | Tag “ » : '

(81pveesprid of #1 and ~1, and $ince

¢(n) = PJX + Ep.mfi = gg mi, L=k,,,,m" and XtY, =0 if

P <N and (p,lm)?l}

1s same for all such sequences, we have

P{pﬁ1 ap(:r:,6 Y ) eDy}
s s eotm) geay
= < /S

S, B oo (R) k-—f-rﬂ TT (1"]'0(p 2)30343{"%

> - T
n<N® /5 ' <N P

L]

Stnce % i{- = Iog log N + 0(1), by Lom. a §,5, 1t follows that
p<k
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P{ Z ah(X + Y@) g DN} >2a>0

p<iN ¥

for somc constant a and for all large N, Put h ="GE8R] + Iy
where Lx] denotes the largest integer less than or equal to
X, For all sufficiently large N, we have,

| '{.7-3/3
Pﬂﬂ}mg%§%)+ Ty > }

S Py X [ah(x;+y;jl>w‘0/3 and for all p>N,1x5+$br<h+2}+0( 5 p 272
m >N & 1 i : ’ & i
- 2 1‘\ >ﬂ
bl 5y . . '
=00 5 3 1242 k“ " 2 NzC/B +0(% p~% yh
o>l =1 P

p>N
= OCI\T"C/?) < w;A:) IIHC/S "PO‘Y‘* some bh > O

So

I 13 % Y 0 s, b o /3 A

P{ lZ; ap(__f'p + ) € ]»} > g N > 9 >70
for all sufficiently larsc X, where

U [g < yess

4+ N7/
78 Doe ? .
CGE N

By Lemma 5,3, the Lebesgue neasure of the set Gy is not
more than

o .'N"Cfa - 3 2‘”(1‘:’1)
m<N°/6
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and so tends tc zero as N —> o, Hence L(% % -\ Yp))

is singuldr, This cémpletos the proof of the lermag

Lerma 5,7 ¢ Suppose h is a chsracteristiec function of an

infinitely divisible distribution with discrete Levy funciions

M and N, If the total variasbions of M and N arc finite and h

has no Normgl factor, then the distribution corresponding to h
is discrete,

See Lukacs (1970, p,124),
4, Proofs of the main results :

Proof of Theorem 5,1 By (5,1,1) and Lemma 5,3, we can find

a sequence of independent randon variables {Xb} satisfying

(6,3,1) and the distribution of f(m) - fl{m+l) is L( Xb)'
: P

In view of Lerma 9,2, We can assume that f is strongly

additive and fp) = 0 if p e 4,

Let {Yn, Zq s D,d primes } bhe a set ¢f independent
random varigbles, Lok {Eﬂ}' be snother sequence of independent
] J:‘
random variables lefined on the sane pProbability space on which
{YP,ZQ P 0,a primes} are iefined satisfying the following

properties *

Distributicn of & 1is same as that of ‘X5
e

P(Z, =k} =P(Z, =x) = 1 -1) Ly
, X
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Ir f(p) # o then, £or = 0, £(p) and =£(p) NFRA=
PiE,=x and & £ (L 42} ) = 0(p~2y,

It is not. Aifficult te show the existence of such sequences of

randow variables, since for any non-negative integer k-
P.{E’P + zp = -k }—_- P{ip Zp }
P.{Y =t k} D{zp = —t}

e ! w(l-*")z - Z -+ =L e-B/p [140(p 2] > O;
s . pk £=0 p2t pk‘_ | :

, It follows, therefore that

P{E, #1(p) (4, + )} = 0573,

Since L(Z X D= L(E E ) it fo‘nlows that L X) is singular

p
if and onlv il (O L £(p) (Y + Z }) is singular,
p\ ~ -
Now the characteristic Tunction h of L(S £pIT, + 3))

‘ p
is given by

| o e
n(t)=|exp {2 IZlEelt 10 .5t x £(p)]) ._1._k}|2
T k= : ’ ’ )

={ expy 24;1; [otF £(p)

i

~1-1t £(p)11° g(t),
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where

g(t) = 1e}<_p { & 2 "'"!:“"'ESit k i1(1”‘)"'1"Il_t k f(p)]}lg.

O
Since L £~k <o, ¢ isthe characteristic function of 4
p k=2 kr N b

discrete infinitely divisible distribution, by Lemma 5,7,

Gince the distribution corresponding to the characterissl

function [exp{ by % [f® T gy f(p)]}{2 is singular by
- P

Lemma 5,6 and since g is the characteristic function of a
discrete distribution,. it follows, by Lemma 5,1, that the
distribution corresponding to the characteristic functicon h
is singular, Hence the distribution of f(m) ~ £{m+1l) is
singular, This completes the proof‘of Theorem Syl

Proof ¢f Thecrem 5,2 § 1ret {np} be a sequence of independent

randon variables with

Pl =x}= Q-4+ =3
i -) t p
f(pt)=x

++

It is ecasy to see by Erdos-Winitner thesTen [Kubilius, 1964 ]

that, if" £ has a distribution, then 2 7_  converges almost
p T
everywhere and the distribution of f coincides with

L{(Z 7
D

Ky

JL.! ek {5 ¢ D,a primes} be a set of independent
P prr : . i
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random variables defined on the same probability space on which

{WD]; are defined and sabisfy the folloving conditions 3

.‘2‘

P{T(p) Yp # np} = 0(p )

P{Yp = },{} = P.{Zp = —};} = ;le(l = %)"k :30’1,... a

$

Since L(Z 1 ) is absclutely. cintinuous, by Lemma'S;E, 1t follows
P g '

that L f(p)Yp) 1s absolutely continuous, Consequently

= T8 f(P)(Yn+Z,))) is absolutely continuous, Again by Lemma 5,2
’ i ps
5 .

a,nd from the proof of Theﬂrem 5. 1 1t follows that the '
Cdistribution of  f(n) - f(m+l) is absolutely cnntinuuus This

ccmpletes the prooi‘ of Theoreom 5,2,

Corcllary 5 5.1, now ™Mllows eakily from Théorems 5,1 and

5,2,

Proof of Corollary £,2 3 Since T is bounded, I f£(p) converges
. : D
ab sﬂntol and henice |£(p)| <1 for all sufficiently large p.

S0 fo"I- N sufficiently large, wo have

o |
£(p)° 2 R
L = e (S P()NCLL)-occz )2)1\74 )
»>N 3 p>1 >l p >N 1+J-
| _1
=1 O(‘N 4).

Tie result now follows from Corollary 5,1,
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CProct ﬁf‘Theoréﬁ 5.3 ¢ If a recl-valued additive arithmetic

function ¢ satisfies (5,2.1) then by a result of Wirsing(1970)
' there oxists a constant D and a bounded real-valued additive

arithmetic function £ such that
Ceg(m) =D log m + £(m) for ™=1,2,...

Since f is bounded it satisfies the condition €5,1.1). &

the digkribution of f(m) - f(m+tl) is singular, But

g(m) v .g(m'i'l) = f(m) =~ f(m+1) + o(l) as m => co

Hence the distribution of glm) ~ glmt+l) is same as that of
£(m) - f(mtl), Consequently the distribution of g(m)-g(m+1)

is singular,

Prpof of Theorem 5,4 i Define a function g by

- 1 ‘ e
[ log gty = = %mmf(m*lwibﬁ@ﬂ.
3 :

Clearly g is the ch ractor3stlc functlon of an infinitely
divisible distributicn, As in Lho proof of Theorem 5,1 it is
sufficient-to. shfw that Eh“ ﬂlstr1butlon CﬁrrOSUCﬁdlng to g

l

is absolutely contlnuous. Slnce
elsin y| 2z |yl ir 2|yl 22

v have for oany g o> 0
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ft(n))a > == ——l-—[ z ‘l‘if"(p))zl
Be llog 251 lfq

(p)l*@
S0, Yy (6.2,2) we have-

1im inf T—;—"—T- 5z 4 (sin - ) > = .
e-=0 Tog ¢ p P £ <4 4
Ve have

g g(e)|? = 3 L (12X D) izart ()
T ) .

= -g E Lsr‘fuf“(p)]g

"?

"3

u-—voo

1ir: inf {* ; [1es lg(zu)l]/ |10¢ ul} > ﬁ

i.e, 1im inf {"[105 ]n(a)[] / [10% u } > l

U = OO

. . Hence for some -8 > O,w

3 2 o

nay

+ 8
1p(u)l = O([ { ) as ju] e,

"SO"g"isﬁsquare—iﬁtegrablé, COHSQquenfly;fby Plancherelts
_theorém it follows that the distribution corresponding to g
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is absolutely contin 1ous. This completes the proof of

' 'I'heo ren b 4

Prcof of Theorem 5,8 1s similar to the proof of Theorem

5,4 and so is omitted,

Proof of Theorem 5,6 ¢ Define

?"f(p) if »d 4 r(F,p) # 0 and {1(p)]
aj = < :

i

0 stherwise,
L .

Let r(F,p) <k for all oI fIn view of Theorem 1,1 and
Lemma 5.2, it follows that the distribution of £(F(m)), 1
1t exists, 1s singular if and only if the distribution
corresponding to the characteristic function

" r(F Y 3
h(t)“—*exp{z[eLt B - 1 & 1% ap]-——?—p—-}

is singular, Define

it : Appss LB e |
() = e % [e P -leis apd [Ge=r (8,503 /61
r(F,p) <k r | |
Since, X % a,g is finite, ‘s(t)‘f defines a characteristic
P ‘
function and l?(t)l‘k = lb(t) :(1‘){ where g{t) - is defined
by (3,2 ). ‘
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Clearly (5,2.3) implies (5,3.2), So-the distribution corres=~

ponding to | z(t)]% ¥ is singular by Lemma 5,6 -and hence the -
disbribution correspondine tr h 1s singular, This completes

the préof of Theorem 5.6,

Proof of Theorem 5,7 3  Under the hypotheseg, it ig not difficult

to show, from the proof of Theorem 1,1 and from Lemma 5,2, that
the distribution »f £(F(n)) - f{F(n+l)) exists and is singular
if and only if the distribution cerresponding fo the

characteristic function

dtoa -1t a : '
g*(8) = exp{2 2 [e Pt e 7~ 2llr*(Fyp)Apl}
| P

is singular, where a# is as defined in the proof of Theorenm
5.6 and r*(F,p) < rCF,p),[r*(F,p)<‘r(F,p) for some p if there
exist tw factors P(m) and @m) of F(n) such that

Qn) 2 P(m+l) for ail o, )

From Lemma 5,6 and from the procf of Theorem 5,6 it
follows easily that the distributicn correspondinglto g s

singular, This completes the proof of Theorem 5,7,

We need the following lemma to prove Theorem 5,8,

Lemma 5,8 § Suppose 0 < s(p) < ¢ and {ap} is a sequence of

real nurhers, Then one ecan find. a sequence of 1ndependent
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]

random variables {Yﬁ N
J ¥ i

. > 2@}‘ defined on:aigemplete prébabilitﬂ

space suck that, 1f a, # 2

el s(p)
P{Y}Jﬂdj-‘]_p"
vl . S(I}) % S(p)
ML mnals GO G-, nsle.,
and 47T a, =
P{ Yp = Of = 1.

Als0o one can find ancther sequence of independent random

variables {:{p i p > 2] defined on the same probability space
satisfying |
' : s{p)
P{X =.0}= 1 .-
Py SePl oIn= S
o ; s(p)
{Xﬁ Tt B

whenever a ¥ 0,

P{X, =0} =1 ir a = 0
and .

20

bage 1B I

The proof of this lemma is easy and so is omitted,
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Proof of Theorem 5,3 ¢ 3y Lemma 14 there exists a constant

¢ such that r(F, pk) <¢ for gll p and k and

it

r(F, p r(F,p for g1l k if p > c,

Let W{X?} e a sequence of independent random
variables such that '
P{Xb = 0} =1 if f(p) =0
and if f(p) # G,

] r 5 . s
P{X, = nf(p)} ;E (1-92), n=109,1,2,.

By Lemmas 5,2 and 5,8 and the results of Chapter 1, if f has
an absolutely continucus distribution, it follows that Z Xﬁ

converzes-almost everywhere and its distributiod is absolutely

continucus, If h 1s the characteristic function of I X :

= p>2c p
then clearly
‘ | pr 4 e it k £(p)
log n(t) =ic t+ Z 3 —1mggelt k l(p)'l-"'jg-g--]
Cp*2c k=1 kpo 1+ =% (p)
p .

for some‘real number ¢, Since

O
B0 2k, 2 B e g,
ped ¥ pr2e k=2 Xp
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by Lomma 5,7 we zet Thet fhe disirihution corresponding to

the characteristic function

g

ST T c £(p)
¢ty = ¢ s b [AE £ lf-'l
v il ~f4 D 3+(f(p))2 '}

R

[y

is absolutely continuous, i

- Since T(¥(m)) has = distribution, by Lemmas 5,2, 5,7
and 5,8, as above, we conciude that the distribution of f(F(a;
1s absolutely continuous if +ho ek trloutlon correspondlng to

the characteristic function 8 given by

P I i ol
g(t) = exw{ ‘ T [t £p) _ 1 - (p)2 }
P>2c F : 1+(f(p))

pd A

1s absolutely continucus, Sirce b3 l[e”t £(p).. -1~ —le—igl—]

p>2¢ P 1+(£(p))°
e A
end- ¥ 5£§k£l T f(p) -1 ~ 1 f?ﬁl_g 1 converge
n>2¢ ¥ 1+(r(p)) "
A

absQluteiy and uniformly in cvery compact interval of the

real line,

-

(r(F,3)-1) it o) |, 1T
= P  1#(£(p))?
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converges absolutely =nd uniformly in every compact %nterval

of the resl line, Since =(F,p) 2 1or f(p) =0 if p ¢ 4
it follows that A defined by '

(r(F,p)-1) - &. it flp)
A (t) = expy 2 - ;"' [t T(P)_g. =ty
‘ F;QC LS 1+(f(p))
o od A oy : :

is a characteristic funetion, We note that g(t) = §(£).A (%),

Since § 1is the characteristic function of an absolutely

continuots distribusion, g 1s also the characteristic funection
of an ab

sbsolutely contlnuous—drstridbution, This completes the

nreor of Thooron 5,8,

Prcof of Theorem 5,9 1s similar to that of Theorem 5,8
and so is omitted, (. ‘ '

Example b.l_:'wLet.'f -6ﬁ;the strongly additive function
defined hy

J,(log log p)—3/2 if p > ¢° and p = B(modlé)

£lp)= _ o
Z\ 0 ctherwise,

Let F(n) be the polynomial - m“+l,  The following lemma shows

that f(F(m)) = 0 for all m and hence f(F(m)) has a
degenerate distribution,
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Lerma 5,9 § - Ifr p's 1(mod 4), the congruence

o

(5;4,1) "x": -ﬂ| ~1 {(md )

has exactly %we incongraent soluticns, The congruence (5.4,1)

has no soliztion when » = 3(md 4),

For a proof see lageil (1951, p,99, Theorem 5,8),

Nowwé shall show that the distribution of f exlsts
ani 13 absclutely coubinuw,us, The characteristic function of
the distribution of f ig given.hy i

chfay =71 {1 2 (7 =

: ERELO)

A
i

Now as in Erdos (1232) for u # O,

N e t = ‘ ’ i -
(5,4,2) |n(w)| = i_T 2~ =1 - exx(iullog log p) 3/2),—1[

-

5 !
where the produect 11 for each Tixed u¥ 0, is taken over

those primes p which satisfy the fcllowing conditions A

(5,4,3) p > % p =3 (med 4) znd or <.4lu(log 1og.p)*-3/21<-51r4.

Then euch factor of the product on the right side of (5,4,2) is

not more than 1 —‘.%:,so that

nw] <TT -3 .


http://www.cvisiontech.com

[851]

IR
Hence |h(u)| = 0 (exp(=2' ), where, for each fixed u# 0,
2! denotes the sun over those primes which satlsfy (5.4,3).

By Lemmas 5,92 and 1,4 we got that

B z =z 108 log x ¥+ 0(1)0
Ty = 3(pod 4y ‘ s
P X
Hence
In(ay| = 0(lexp (=c|u}?/%D),
where
2/3 ;
= by . |
c=2 (&) (2 22737 > O

8&-—-

5 h 1is integrabls and hence it is the characteristic

e,

functicn of =n absolutely continucus distribution,

" This shows that £ has an absolutely continuous
distributizn, rut the distrihution of £(F(m)) is degénerate

oL )
vhen P(m) = % +.1,

Remarlks § (5,2,4) is sgtisfied 17 T has a linear factor,

The eonditicn (5,2,%) cannnt Ye cmitted in Thé@rems 5.8 an@_S.Q’

since if (5,2,4) is violated then Example 5,1 shows that the

distribubioas of both £ and £{m) =~ £(m+l) are absolutely

continuous, hut - £{F(m)) = £(F(a)) =~ £(F(m+l)) = 0 for all

n 21, O the other hand there exlist additive arithmetic

functions such that beth ¢ and f£(F(m)) have absolutely
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continuouv'ﬂLs+r1bu+*"ns oven if the condltlon (5.2, ) is
viclated, In fact, if f is the strongly additive arithmetic

function defined: by

f(p) = }\

) ~3/2

(log log 1 b > e,

Let F(m} bYe anv non-constsnt polynonial taking positive
integral values for m > 1, ¥From Theorem 1,1, we conclude
that T(F(m)} has a distribution, By using an argument
similar to the argument used in Example 5,1, it is not
11Tficult to conclude that the distribution of £(F(m)) is

absolutely continuois,
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CHEPTER 6 _
PROBABILITIES OF DEVIATIONS OF ADDITIVE
SRITEMETIC ~ FUNCTIONS

1. Introdvetion * In this chapter we first obtain an asymptotic

Torrmila foFT

6.1,1) SN, qf > x},

r

for a wide class of additive arithmetic functions, when xn“NDO

et a nertain rate,

Wext, we consider a sequence {Xh} of random variables

with finite means and variances, Let
bt
I L) = PJX <

Suppose that the moment generaling functions of all F, exist e
in a non-degenersts interval, We obtain, under some conditidns,
an asyrptetic formila for ?n(xn), when x, > 5t & certain
rate, Ifrom thiz we deduce that, for any & with 0 < § < 2; -

'gé"fgg-g logi{(1/n) T 4elm) > e log log n}]ﬂ(exﬁl)—xexﬁy(l)

as 2 ->o0, uniformly in ze (O, 2-6), This gives g fairly

good estimate of (6,1,1) when f(m) = ®(m), Kubilius (1964)

e

obtained o similar result v this case when x, = (1+0(1))loglog n,

Ve note that our sequence“'{xh} increases at a rate much

n
ml

actar than thet ooncldered hy Knhilding,
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2. Jotations and Definitions ; Throughout this c_ha_pter f

denotes a real-valued additive arithmetic function and F e

The following notations are used only in this chapter,

£(p)
An_ psn P s
b, =L 2 1 %182
p<n P
Dn,F)=[ & L= [£(:%)12 r(F,p%)12
. psmp

_[logr] ( ' . ‘ - & lcgfw
sp log v~ 1s€e5 1ntegr_z_a1 part of ,m )

((l-’p-l)p“t C4f .0 <t<s
i

. p
'z'(p-.t)* ; 5 3
: i if tom
| P i SP
. {" - k
_ ;.k it 02k < Sy and pllm
’c{p,m) = 3
a\ C ¢ctheridse
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18 any positive nurber less than one,

3, Main results ;

/4

Theor-m 6,1 ¢ If max 1f(pt)1 = 0(D, ) and D, ~>%. as

n =, then we have as n =»®

(1/) T, {20 = 4y = e D, /Iog D}

= (1+o(1)) D ° 2, (¢ /or log D)),

where the estimate o(l) is uniform in ¢ e(o, W),

Theorem 6,2 &' Let Dp'2 2, If D(n,F) =>o0 and

nax eS| rE,p® = oD@, 7)%4)
t F ‘
p.aEn

as n ~> 0, then we have un n ~> @

/) ¥y {£(F@)} ~ An, 2,7 >c D(n,F) fiog Dln, M)}

. | - | ,
= (140(1))/ (D, P "20 /3 Tog Do, F)),
where the estimate of(1) is uniform in o ¢ (0,m,

For each n, let X, be a randop variable with mean

" : 2
Koy and variance o'n. Let
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D 1 'é y!

—I\I."':G‘) P{ Xn b{} ¢
Suppose for each n,

o R(z) = fe®*aF(x) |

is anglytic ond does not vanish in the region [z{ < C1s for
some ¢ & 0, Mow X (z) = log R (2} is englytic in
l.z[ < Cq < Cre Let K (53. denote the s~th derivative of :‘;
Theorem 6, 3 Sﬁppﬁsa g, =% 45 A -> 00 and

]F(”C )| = 0(0' ) for all z such that }z| < cg, Then o,
there oxists ¢ constant cy & (0 cz) such that 0 < x < cy

t4plles

R O K@ = x %, ()
: v B ¥,:2 (0)
qn n

¥ o(1)

8% m o~ alCornly in ok,

Lgnarle -2 -é‘nermff' 5 Theorem (see Bghaditr and Banga Rao,1960)
foliows 1n;:.nediateiy from Theoten €,8, Results similar to this
are elso ~-3bta:i.1;:ed by Teller - £1iS59), /

Soroid '3:_v__§___1_ Let oln) denote the nurbor af distinct prime
Tactyrs 67 m, "Let Q<8 R 2, Thenu for £ < % < 2~4&,

T5iTe T loel £ N, folm) > oF log log nle(c™1)ex & * o(1)

as it => 0o, uaiformly 4h x,
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o1l
he corollary follows from the estimates (9,19),(9,20)

and (9,21) of Kunilius (1951).

Rémar1§ s Kibiling (1964) obtained asymptotic formula for
(1/n) Nn .{w(m) <log logn * x /1o_g.1og n } vhen an; 0

for all n gid X, = ol /log log -.n). Our Corollary 6,1 gives
‘& good estimate for the above, even when X, ~* % at a much

faster rate

pitc! Kub::ilius r‘emarke& in his book, prcof of Theorem 9,2
of Kubilius (1964) can be ‘adapted for many additive arithmetic
functions other than w(m), for vhich the proof is given in his
book,  Here we renark rthat Kubilius' Aproof can be a’iaptod to a

seduence of randonm vurlabLos to give the f‘ollo-vnng result,

Theorem 6,4 ¢ Suppose that 4 ->_00 as n —> o znd that

(2} .
Klgz'(u) = 0(0‘5) fo;' all z in -{z; lz] < 62}.. If: xn——o(o‘n),then

| e
IR Y S 9 ¢l

for x, <0 and

l+[x_n[-
0y

- o1L
x ) (1 + 0(— -

Q%)

P{X, > &, +>}gﬂ Ry = e E( |2, 1) +O( I}qu

i
4% 3 o
for XTl s O, whaore QD(X) o + al_,l'l X™ + D0 i1s a power
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f !

07
b= o -
serics ir x sguch that Qn(xn) 7,5 >0 as n=>0%,

Remark ¢ T is difficult to compare Theorems 6,3 snd 6,4

as the sequence considered in Theorem 6,3 goes to infinity
at a rate faster than that in Thecrem 6,4, But on the other
hand the estimates given in Theorem 6,4 are much sharper

than the estimate given in Theoren 6,3,

4, Preliminary results : For simplicity in writing we let

r = r(n),
Lemma 5,1 3 Let, for each 8 ¥p‘r TP < r} be a'séquence
ol o Nt : g = 1 ‘ LS _

¢f independent random variables with probability distributions

defined by

T xle I wGh
f(p")=x

Then therc exists a positive ccnstant a such that

1 | T ey oy '
= N {fr(m) e A} - Pf pér ¥ r € A} = Olexp(~a log n/log 1)

uniformly for all Borel subsets 4 of the real line,

For a proocf, sce § 3 of Chapter 20r Chapter II of

Kubilius (1964),
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Lemms 6,23 Let {Yp,r}  be as in Lemmg 6,1, .Theﬁ

L4

: _ _2
{ DRI =4 >c¢D, /flogD.} = Drc 2
oo o, r /10g Dol = [1 + o(1)]

D= - R c /2r log D

Unifornly in ce (o, m),
Proof ¢+ The proof of this lérma is similar to the proof of
Theorem 1 of Rubin and Sethuramen (1965). Define
(x) = p
T ) p,r =X }

ap = /log D, / D,

b, .(e) =,j -IXIB exp (e . Ix|) de,r(X);

=5
o~y
Q
s
n
—
el
r\

(c) /g &, 7

psr - ’. L

RN/ (3 s2 (e))3/2

. p<r 4

-
&
S
I
==
*

?(o )] (X)
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6 (o @

Gine) = Lok 6 o

T

i

G.(2 M {e) + (x & s:é; I,‘(o))l/g,c)

p<r ’._ y< r 2

$,.(x, ¢)
_ Here * denntes the convolution, ihus

P{Z Y, -4 oD, /g b} = 1-G,(c D, /log T2

p<r Pt
. : oC
=17 2 (o) /] _ CXp("‘C ar ¥) dGI,(y,c)
psr ot c D, /1o D_+A,
= Ar(c-)B-(JC exp(~C,(c) x) dd'}r(?c’C)

vhere _
A(e) = TT o (o) exp(-~c o m r(C))]"
| ' 1/2

s

Le) = [4 ~e D, /log D, = £ m  (e)I/[ 2 2 (o)]

= ‘ pgr PoT T Tpar TPT

. {e) = ¢ P G S ,' (c_,.})ﬂl/_a{ ‘
g <

Now, since max }f(n | = 0(:5‘:2/4)",
+<n ..
205 v () 5 ((Gog D, Y342 ¢ 3 ~l-lpr NheYee)

psr P | p<r P

= 0{(1og DT>3/2/D}/4 ),
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1957 ‘ .

g | .
TS . 3
o, 1 =)l 1fo o, mp’rl(O) tY Ay Sp’r(O)-i-O(bp,r(c) a)

=1+ O(l) uniformly in p < r,

T

' ] 2
- . 2 2
rte) gp’r(c) = mp,r(o) t ¢ e Sp,rgo? + £-0(a bp,r(C))’
L . e = |

(D) =
(s I‘(c)'1 ng

D, "r(C)) gp;r(C) = p (O)+ O(ec an. b (c))

’

By simple cgleulations, we get
&
log Ar(c) = g log D, + o(1)

B (S = - ~1/2
B.(c) = o({log D) e

C.le) =c¢ /_'!_Ogmﬁr (1 + 0(15)
w3 S :
Ba(¢) = o((log D) "3'2),

By Berry-Esscen approximation theorem

i @r(x?c)-" G{x)] <X hr(c).

Now integrating by parts and uslng the above Berry-Esseen
theorem, we set

oC
exp(~x €,(e)) @b (x c)
Br(C) ) d

= @rLBr(clrc).exp("Cr(c) B.(e))

¥ n;(:) CT(C) Qr(Xﬁc) @Xp(—C%(c) x) dx

iia
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**C‘(c)x

‘”Cr(C) B“(C} oo T h
= e T aBLlede) + f € (e)e dG, (x,c)
B.{e) T 77
T
+ 0((log D,)"3/2)
il . - ‘
= i ll) + 0((1og D)"2/2)
¢ /o loz D,
This:
el

Py Y o > ¢ D, /log D = {140.(1)) D !
{ P, T Ar‘ e I‘} Cmr r

This completes the proof of the 1erma,

&, Proofs of the maln results ®

Proof of Theorem 6,1 &  Since

2o ng L. feratiag 342
Py =Dp= 2 (r")2 = 00842 104 1),
r<p <n P

we have by Lemus 612y

| | ‘ D-02/2
3 T =3 3 T - bl i : g
Pq pér Loy A, > ¢ D /log Jn} (1+0(1))
= e ¢ /dr log D

uniformly in c e (0, 1), 3ince D, = log n /flog », by

Lemma Gsl, we have

' . 4 D |
©.5.1) T {r.(=) =&, > Dy fTog D }= — 2: 1- Dn(l«ho (1)
“ _ e /. og
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wiformly in ‘e e(2, 9}, Lok

2(n,c) = N {£@)=4 > > D /7D, and |£(m)=4 ~F (¥4 |« e Dl;t

vy Turan-Kubilius inequality, we have

1wn{f(m) 4 >ed /log ﬁ;} -~ Z(n,c)}

L { f(m) & i (m)-ﬁh+ATl > (D /10g D )}
(6.5,2) = Otn(10g D )5'( ﬁ - Dr)/bi)

i

) “1/2° = 3
L(n _Dn (lo& D) _)
uniformly in ¢ ¢ (o,7), Clearly

Nn {fr(m) i AT > 5 Dn /log Dn + (Dn/iog Dnl}ru

(6,5,2) < Zn, =)

ia

Tpffp(m) = &, > 2 D, Jlog D, .=, /og 2}

By (6.,5,1) we have

Hn{fr(,m), = 4 > ¢ D, /log D, - (D /log -Dn.)}

= - l - r* L/2 2 P 1
_ & exp ( 2[.0 (1‘0, D) ] log n)_ S
(¢ = log Dn)3/2 /er log Dn
" "CD/P ' v
b L Vi (140 (1))
= i, 0 i
OwehBhtimhBation

11

-
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(03]
Similarly one can show that {6,.5,3) 1s equal to

2]
n D"'C /2
Ton

'[1,+ o(1)l

c /or Toz D,
Tenee
, 23 v
( y ( y n D;O /2 [ ! .
8,04 Zn,c) = ; e 1+ o0(1)].
) ’ ¢ /a2 log Dn '

How the thenren follows from (6.5.2) and (68.5.4) .

Proof of Theorem 6,2 is simlilar to that of Taeoren 6,1

aind so is omitted,

Proof of Theorem I Since K;g)(z) = O(O’g)ln lZL < Co,

by Cauchy's integral formula, (scc Mackey, 1957) we have

i7 e, < Cery

'(t?z):

= (t) ; s e i t‘“l 2
(605.0) [,KI. (d)l kﬁ‘ 05 n.t_,l 2 O.n

for |z| < (¢,/2) ond t = 3,4,,,., where g - 1s a constant,

If c¢g 1s sufficiently small, then from (6,5,5) it follows that
2og ) g
T =%t | K, 7 ()

fcr all [X[ < Cn, Waere c. 1s a constant.
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For xe (4, e3), define

1 o
G (n) = slos 7 N 4T (y
0 Rn(x) ;‘oo & Fn('f) .
Pug '
B (u) = g( /&igj(x) u + Kél)(x))
Pp =P (X > I{él)(x)} ¢
Then

R (x) exp(~x Kél)(x))zio

=
i}
I

o X2 H.( %hz )

plos
R (x) exp(~x -Krgl)(x)) yio e 'nyHn(dY) '

it

where op= /én:gf (x)

= R (}I’) (l) ) N -
) e (mx Ko7 () o yio e I%Hh(;sr)-"-l“ln(o) )ay

by integration by parts, Clearly
Py 2 R (X)) expl~x Krgl)(:c))‘,

By (6,5.5) and the fact that Klgg) (C) = oc 35 15 ~> o0 "
it follows that HD_(:,*) —> G(y) in distribution as n —~> 00

Hence for any e > O
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pe iy )
I, =x% § e T [E(y) - E (®)] ay
n Ll "[ n 19

G VXY ¥
2 -2 (]xq [ ¢ May
. €

v

‘ ' "mz!a
® [ e) =Bl 57 T,

lim inf {%‘ log I }j ~X€ ,
n - oo het n Y

Sinee I <1 for every n, and since ¢ 1is arbitrary, it

fallows that %'log In = o(l)" unifermly in x(0 < x < 03).

Honee
1im 4 15- T 1 =0,
N, = 00 { dn 11} )
Thus
E () = x k{1 ()

uniformly.-in =x, This cﬁnﬁpletcs the proof of Theorew 6,3,
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HAPTER 7

CK THD DISTRIBUTION OF VALUES OF
3 ]
MULTIPLICATIVE. FURCTIONS

1., Introduction § Bakstys -(1969) has given necessary and

sufficient conditions for N roal=valued rultiplicative function
¢ to have non-symmebric distribution, Galambos (1971b) has
gliven necessary and suffisclent conditions for a real~valued
strongly mulitiplicative function g ﬁo‘have_nonedegenerate
symmetric distribution under the extra assumption that

5(2) # -1, We shail first modify Galambos' p}oof‘tdtfihd‘“'
‘Yeeessary and sufficient conditions for a multiplicativé
function to hove a non-degenerate symmetric distributibn'wifhout
using his exbva assumption, Using the above results we giﬁé

a partisl answer to the following interesting question, Suppose
that the density of {m ¢ o) I} axtsts and-i§:positive*
where I 1is a beunded interval not centalning zero, then is |
it true that g has a disbribution” Also we obtaln necessary
and sufficient conditions for % ﬁn fa, glm) < c} to tend to

a distribvution fﬁnction; where {ah} 1s a secuence of real

mmbers and g 1s a multiplicetive function,

2, "otabions and Delfinitions 3

For any Teal nurber x  we write
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& g fx] S

;a cthervi se,

N—)(-
it
('_“'-—\,J\-—»---.

Definition ¢ M arithmefic Tunctibn g 1s célied multiplicativ@
if for all myn |

(m,n) = g(m), gln)d
whenever Cm,n) =14 1B 'is céiled strongly miltiplicative if
for all p and’lk’z 1,

£

g(p) = z{p).

3. Main results ¢

Thoorem

7.1 "s = Let g be a real~valued multlpllcatlvo function,

In order that g hJS a non~degeonerate symrnt“lc dis tribution,

1t is necessary and sufficient that therc exists 4 real number

¢ > 1 sueh that esach of the serles

lgmYi<i/e 7 jg(dilze P°
(7,3.1) | |
L ioglats) l . :
Vedrlee BRSO 1 5 F e et

converges and that either gCZK) = -1 for all %k or

b, iz
e

& (‘[\ YN i
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Theorer 7,2 ¢ If = is a real-valued multiplicative function

snch that either for some  a # O

Ly =
e o 0, o] = o o,

cr Jeg(m)] 21 for all m =1 and

e

1im sup % V {1 < {g(m)] < c} >0
n = oo

for some ¢ > 1, then g has z distribution,

Theoren 7,3 ¢ Let g be a real=valued strongly multiplicative

function having a distributien H, Let P be the prebability
neasure corresponding to E  and let P{O} # 1, Define a
countebly additive measure on the real line by

( P(B) if 0¥ B,

)
By = 3§ .

L P(B)"P{O} if 0O ¢ B,

for all Borel scts B '; Then the measure { is pure (i,e,,
either discrete, contlnunu 31ngulaL or absolutely continuous
with respect %o the LebGSgue measure) and Q@ 1is absolutely
continﬁous if and only if the distribution ?f the additive

function f defined by
Tog !gm[ ir glp) # 0,

() =

G oifhertice,
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is absolutely continucus,

Theorem 7,4 5 Let gz bte a real=velued multiplicative function,

f

For the existence of a sequencb :{a?}';cf real numbers and a
n-degenerats dis tribution funetion F such fhat for each -
continuity point ¢ of H the lirit of (1/h)Nn{an g{m) <'c}
is H(e¢) ag n >0, 4t is necessary1and sufficient that
there exist a real number b ‘and a multiplicative function h

su.:h that

(7.3.2) g(m)‘Q'mb hw)

oy -1;

(7.3.3) T2 ((umi - 12 <
, P

Remark { Theorem 2 of Bakstys (1969) follows from Theorem 7,4

as a ccrollary,

4\ Preliwinary results § The tool developed by Zhlotarov(1962)

o8y thu Anvestigation of the nr luects of independent random
varisbles can_effectlvoly be aprnlied tc the distribution problem
of mltiplicative functions (sce Dakstys, 1969 and Galambos,
1971b), In what follows we put 0% = 0, Let G be 5 distribu-

ticn funetion, Dafinag
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H

-wb(t) J lxlit aG(x),

it

wy (1) £ st ae,
where
-1 ir x <0,
sen(x) = | 0 if x= 0,
(_l .. 1if x >0,

The diagonal matrix

wo(t) 0

W(t) = ,
C wl(tl

1s called the characteristic transform (c,t,) of G,

Lemma 7,1 (Zlctarev, 1962) § 1If X and Y are independent

random variasbles with c,t, W' and  W'' respectively then the

cet., W of the random variable X, ¥ is W W,

Lemma 7,2 & ~Lét X and .Y be independent random verisbles
such that P{LY = 0} 91, Let X be purely discrete, Then
the measure Q, defined by oLy

f?ﬁﬂ@s}”? ©ir 0B
Q(B) = \ )
( P{X.Y ¢ B =PfX V=01 32 0': P

1
A
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for a1l Lebesgue measurable sets B ¢f the real line, is
continuous singular, absolutely ccntinucus cr discrete
according as the measure Q' is continuoug singular, absolutely

continuous or diécrete, where

. PfY e B} © o ir od B,
QI(B) =ﬁ i | l“'
P{fe B} ~P{Y=0} ~ 4if Os B,

-

Tor ail Lebesgue measurable sets B éf the rea] 1iﬁe."

Proof ¢ Letb {xh} be the set of discontinuity peints of X,

First note that P{X# 0} >0, If x# 0, we have
P{X, Y= x} = 2 PfY = L1 p (X .
{ ) 2, Xn;ou { xn} “i~.z %}

by .
t follows that € is continuous if and only if Q' 1s

conbinuwous, . .7 T Bl BN

Let 2 be any Lebesgus aull, set, If 0°¢ B, then

0= GB) = P{LY e B) =L Pfrc o DY R{X mx}.

»

Hence for &1l X, ¥ O, P{\If}iz-'? B} = 0, Thus

2'(8) = PJ¥ ¢ Bl = 0,

I
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because P{X #’O} >0 and if A is-g.Lebesgue null set
then Ial A = {lal.b % bE Q} is algb a‘Lebesgué‘null gset
for any real number a, 'if 0 ¢ s tﬁeﬁ-on‘writipgh; 1%
B= (3~ {oP UJ {0} it follows QI(B) = 0; Hence Q' i
absolutely conﬁinupus.' The fTact that if .Q' is absolutely
continuous then Q is also absolutely continucus can be

provad sirmilarly,

»

Lemma 7,3 ; Let Hﬁ be a sequence of distribution functions

with corresponding ec,%t, given by

0 Win(tzl i

For the convergeﬁce of Hh Lo a distribution fuﬁétion H, at
all continuity points of the labtter, and for Hh(o) - H(0)

and HnCOf);f*_H<Of)’ it 1s necessary and sufficient that,

for all real &, 1w (£) and wy, (£) tond to limits, w, (t)

and wi(t}, contimrms at ¢ = 0, The limitsr-wb(t) and wlft)

uniouely determine i and

o

Wé(t) 0

8 Lo ('l"\

i —
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is the ¢, b, ~f H, The 1limit law 1s non~degenerate and symm:j
if and'only 1f w(t) = v and - (£) is nct 1dentically ze

B glqmnoo (1971b)

Lemma 7,4 (gah tys 1969) A real*valuéd multiplicative
fUﬂCulon g ha _non-s yﬂmotrlh dlstrlJu+1op 1f and only if

11 the series in (7 3,1) converge, g(g ) # ~1 for some -

' Z21 and

n
2 i < o,
= % 1 < 0O
g(p)#1 P

when the distribution of g 1s discrete, Moreover, if ¢

has non-symmetric distribution then, the two infinite products

3 Wo(t} & TT (1 - l) (1 + % ...g._pu_k_l x
R T ¢ % e =L - p
and ' ; ‘
| ) o eI e (e ())
'Wi(xj = TT (1= 1) (1 P_j é E - ),

converse uniformly and absclutely in every compact interval of
the real lins and the ¢, t, of g 1s
=
| w. (t) o -\
po &
]

. N ., f+—\ |
I - i
i
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Lemma 7.5 ¢ Let h be a multiplicative function such that

ifr N
Um % £ h(n) = M(n)
oo o n=1 ’

exists and is not zerc, then

1 = hip)
P

2
P
converges and for some k > 1, h(zk) ¥ -1, Conversely if
{7,2,1) converges then MN(h) exists snd equals

L

_ ’ 1 lo's)
(7.4,2) T 1 -2 1+ 3
D B k=1 p

For a procf see Dolanze (1861),
Lemma 7,6 ¢ Let h be a mittiplicative function such that
e e ———————sy Yy

ln(n)] <1, Then

SR
lim ﬁ Z hin) =0
N0 h=]1

1f and only i1f, either for all real o

2 % [1 =R (h(p) p IH] = oo
[8]

or there is a real s such that-

1
j¢] ]
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(?,4,#5" 5 4 [1 - Retn(») p739)] <
b P

end |, 2 b n(z") S-=l -for ull integers "~ r = 1,

Lemma 7,7 ¢ Let f be a resl~valued additive arithmetic -
funetion, Suppose there exists a. & > O such that for each
t e [~§, &1 there exists a u(t) such that

2.;%-[l‘f Re(ot £(P) p"iu(t))j < oo,
D

Then there exist o real number a and an additive function fi
such that Y

' f(m) = g log n + fl(m)
for 11 m > 1 and

(fifp))z

- P

< GO
.

Froof of this lemma 1s contained in the proof of the

theorem of Ryavee (1970),

Lemme 7.8 ¢ If h is a real=valucd multiplicative function
) pa e

sucsh that

[

z %— ((hm)| = 1)%)2 < oo
P

o<

then thaere exists » sontinueue fimation Faflh Y syah thot
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n R ’!
= I (T s G, et & 2(np) ] ~1)") 40 (1)
n=7 5 P

uniformly in t e [-K,K]j K > 0,

This lemma folioﬁs)easily “rorm Theorems 1 and 2 of

Delange (1963},

8, Proofs of the main resvlts ¢

Proof of Theoren 7,1 ¢. It is well=~known that the don51ty of

{n 2 *(n) # U} exists § 1t is non~zero if and only if

Suppose each of the series in (7.3.1) converges and
2 L= men as in “alanbos (1971 b), 1t is not hard to
show that g has » non=deganerate sywwﬁtric distribution,

Suppose each of the series in : 3, is convergent,

, ‘ ' ' T o
and for each k 2 1, g(2%) = -1,

For each real number %, we define

‘ho(n,t) = Lg(n)rit:
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i SR ' f |
' by (o, t) = 1z | senleln)).

Dy applying Lemma 7.5 to fho%mnlfipiiCéﬁive functions h_(n,t)
and h,{n,t) - we get that M(h, (n,t)) is non=zero. for all real
numbers t and M(hl(n,t))= 0 for all real numbers &, because
h (2,t) = 1 for all real numbers % . and hlézk;t).='-1 for
all real numbers t and k 21, Hence py Lemma 7,3 it follows,
as?in Galambos (1§7lb), that g ,haa:a.non-degenenate symmetric

distribution,

Conversely, if g has a non-degenerate symmetrie
distribution, then M(n, (n,%)) exists and is non=zero for
t 1n an arbitrarily small, but fired, interval, Hence for

all sufficiently small real numbers ¢

(Fsei) e mody v A5G ) 15D
p P

is convergent, It is easy to show that the convergence of
(7.5.,1) is equivelent to the convergence of cach of the series

in (7,3,1).

i ’
Moreover, if g(ék) # =1 for some k 5.1, then by
modifying the proof of the thebrem in Galambos (1971b) in

an obvicusg manner it is not hard“fo éhoW'fhat
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i oI
5. L =o,
g(p)<0 ¥ *

This completes’ the proof of Theorem 7,1, .

—

Proof of Theorem 7,2 i Supposc for some- a > 0,

(7.592) lim sup 'lN {lé‘(m)l = a} > O.,

n-«?m

If we define a real-valued additive arithmetic function f by

- (log 1g@™] 1 g™ # o,
(7.6,3)  £(p")= 1

0 otherwise,
then we have

lin sup l V { f(m) = log a} > O

n - 0o

Hence by Theoreﬁ 3.1, f_'has-a distribution, .Thus by Erdos~Wintner
theorem, 1t follows that all the series in (7,3,1) eonverge, If
Z i -
g(p)<o B - . %
then by Theorem 7,1 the distribution of g exists and is
symmetric, M;f

2 f ; <00
glp)<0 ® 7
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then hy Lemma 7.4 g has non=symmetric distribution, provided

g(ék) # -1 for sorc integer ¥ > 1 and g Thas symmetric

i
o)
c
o
o
o0

distribution, provi 2°) = =1 for all %k > 1, The sccond

part of the theoram follows similerly from Theorem 3,3, This

¢

completes the proof of Theorem 7,2,

Proof of Theorem 7,3 % If the distribution of g g non~symmet'

then by Lemms 7.5 we have g(2) # -1  and

2 A TS
glpizo P

Define new strongly multiplicative functions &1 and o by

| g(p) 1r glp) 2.0,
2,(p) = 4
f L othervise,
g_(n)' if glp) > 0,
golp) =
1 otherwise,

Clearly g = 87e %00 From Lemma 7,4 wve have “hat the distribution

of g1 is disecrete and thab the ¢

S tr

. O the distribution of g

is the product of c.t, of tho distributions of g1 and go.

Hentce, in view of Lemmas 7.1 end 7+2, W& can assume without loss
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of gemeéality, that g} » 0 for all p. The‘distribution
fimetion H of g is sbsolutely continuous if and only if

the distribution function G defined by

H(c®) = H(0)
1~ H(0)

Glx) =

is ebsclutely continuous, Notc that the distribution function

G 1is pure, Thus Theorem 7.3 is proved when

2 i < co
g(p)<o P
Tosr let
-l = 00

g(p)<0 P

Since the Jdistribution of ' g 1s non-degenerate,

[ 3

Z 1 <o
glp)=0 P
By Theorem 7,1, the dlstribution of g is symmetric, - Hence
again in view of Lemmas ?.1,*?;2 end 744, we can assume without
loss of generality, that g(p) # 0 for all p, Since the'
distribution of ¢ 1is symmetric, the result follows from the
proof of firét'half éf‘the the@feﬁ, if Wé féplace g by lgl,

This completes the proof of TheoTem 7 ¢34
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Proof of Thoeren 7,475 Suppose that. there exist a sequence

{ar} and a ron-~Zegenerate distribution function H _such that
L
at each of its continuity point ¢ the limit of

- i, (£) 0
(1/n) Nn{an glm) < c} is H(g) as,, n—> o0, Tet l :

be the c,t, of H, 8ince H g non~degenerate A (0) # 0 and

(7.5,4) 2 1w,
Since w (t) . is continuous at zero, there exists a

& > 0, such that for each ¢t & [—6,6]

) .
= 1o ¥ 2 |g@|itaes o
m=
asl misree o Lhew dig

m=1
as n —> oo, chce by Lemrma 7,6, for each t ‘there ex:Lsts
a(t) Uch*hat B o .
(7.845)- {1 - Re(lg(p) |1 prtalt) )} <o,

p By

Define an additive function f by
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LRy

a7 1

Clog lg@™] . ir gy Ao,
RPN S ‘ » el O '
£(p-) =, 10 otherwise,

- .

By (7,5.4) and (7,5.5) we obtain for all % a.[—ﬁ, 8] that

2
r

(o N

- Re(clt T(P) p-ia(t))} ‘o

Hence by Lemna 7,7 there exidt a real number b and an additive

funetion fl sudh that -

and

& (rr (1))% <o
o et P

How we define .a multinlicative function h by
h(pk) = eXp(flfpk})nSgnﬁg(pk)).

Clearly for magh 2 1, 4

E

o 9

I n(p) # 0 and |f,(p)} <% , then we have

(u)| = 12 = (@ = oxpte; IN2 = 2l £y )12,
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Since
25 L o+ > 1 - oo |
hip)=0 P N s
|, 3> g
we get that g

S (Un)| - 1392 <o

s

AN

To prove the converse,- first we show that if h is a

real=valued multiplicative funetion such that

Y

@L55) 5 % ((n) | - "2 <o
[V}

oy

thon there exists a hon-=degenerate distribution function H
such that at cach of its continuity point ¢ the limit of

{(1/n) Nﬁ{an hi{m) < c} is H(e} as n - yhere

= exp{ = % (n(p)| - 1)*3

= D<o )
2 S it
By Lemna 7,8 the limit orf nlan! mil [hcm)] exists, say wb(t%

n ~ o unifornly in every finite interval, It is clear that
wb(O) Z 0  and wb(t) 1s continuous at zmero, Similarly oné can
show that the limit of

it

BT 5 T 1t .
> lan] Zl | n(m) | sgn(h(m))
1 e

exists a8 n—> @ uniformiy in every finite interval, Hance then
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exists a distribution fU; ction B guch ©hab tl/hﬁ“n{an him) < c}
tends o If(e),

at each of its. contan:Lty point e,

as ri== OO.
Now for any fixed e, O <eg <1

md n such that
en <n <n, we have

2 Mami-nofsC 2 b oz HUnmi-0n?)
m<psn b m<p=<n v m<pn p

<z L o3z IUumi-nnD
en<m<np P '

gri<ps<n-

il

(~log e + o (1))( %
En<p=n

H(Cnp)) 1))

.0 (10

as n == by (7,5,6), So for any & > 0,

b

Hence

uniformly in m  such that &n <mn < n,

Z, inw %]m = (g, L2 BT Gom) + ow)
andad
S n(m) a )it (i
. | him aml sen{hin))
| = fg 1B 2G| sgatatn)) (o)) + o)
msn
unifo'rmly in * . 1 %

-t e [k, K], for every X-> 0, So the-distyibution
of &y hlw) ,93‘13*55 and equals H, -

t
pr
¥
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Ir "glm) = n° hin) and if h sabisfies (7,5,6), then

i

summing by parts gives

iit (%5itb |

- = e ot = = |nm
ntth m<n o m<n a%
. = n . .
=% ln(m a (PP - ;§%g- J C% b3 \h(m)amilt)x?tb dx
msn = g 1 % m<x :
il , 1T 1tb
= nw_(t) + o(n) = =% Flw (v) +)) x dx
SO o T oo =th o &
. n 1
. n w {t)
= nwb(t)(l o Ti%%b) +of(n) = i*:gz%g + o(nY
w, (£) 0
unifornly in everv bhounded interval, where ‘
0 wl(t)

i3 the 2.5, of ths distributicn of 2y h(m), Similarly we

‘zan show tha't

S B e s 10T senlele)) = g o)
. L"__;, ; ‘ 1

uniformly in every finite inteivel, From this it follows, as

above, that if G ig the distribution of amg(m), then

(1/n) Nnk"n z{m) < c} tends tor

k

Gle) at each of 1ts ‘continuity

roint ¢ L B "
€ i ustiaroeofly offCVIBIOdRIFCompr

b4
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CHAPTER ©
CLARACTERISTIC FUNCTIONS . AND - TRANSFORMS
OF ARTTHMETIC FUNCTIONS

1. Introduction 3 In this chopter, sore results towards the

éharacterization'of Glstributions of real-valued additive and
miltiplicative arithnetic fu;ctions are obtalned, It is shown
that, if 2 is distribution of a foal*valued adﬂitiVE function
f, such that ifC2:“)- = k'f(2) for al1 k > 1, then there eé:ists
& discrete infinitely divisible law G =s_uch that. HL* G has an
infinitely‘diﬁisible charactefisticlfunction with discrete Levy
funections and without Normal factor,; A class of stable laws are
given which cennot be disfribnticons of réal*vaiued rmultiplicative
functions g satisfying, for all k > i g(Zk) = (g(E))k. One
such 1s the Gamma distribution, TFinally it is shown that no
real-valued rultiplicative function g satisfying

() = (g(2}2k for all I > 1, cen have uniform distribution,

Most of these results sre suggested by the following
well-known fact, If a éompletely additi#e arithmetic function
1
£ (i,.g,,_ flp) = k£(p) for a1l k 2 L and for all p) has

a‘distribution, then 1t is infinitely divisible with discrete

Levy functions and without Normal factor,
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| et

2, BNotationg and definifions [ Let A denote the set of alll
real-valued aéditive ithmetic functions f satisfying

£(2%) =k £(2) for a1l k > 1, Lot M denote the set of el
weal-valued rul tiplicetive arithietic functions g ,s.atisfyingf

g = (22 for a1 x >1,

Definition | A4 distribution function H is szid to be an

F-1i,d4 law if thers exist O < nq < Ny < 4ese Such that

for gach i, the ,uuqutC“lSLlC transform* (e, t,) of H ‘can
| (ng) n, (n.)

he writtam as (W (t)) for some c,t, W (t),

J. Prolininery results ! If h o dis sn infinitely divisible
characceristic function (i.d,c,®,) then it can be written
migualy in the forh (gsee Lukacs, 1970, p,118)

-0

log h(t) = 1t a = £+ [ (A7 - 1 - 80y gm0
: ‘ i 1+t

wvitere M N and o satisfy the following conditions °

(-3

i) ¥ and N gare non-decreasing in the intervals:

g ,
(-0, 0)  and (o, +0} respectively,
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& o 17 E g
11) The inbegrals J u” aM(n) and § u® dN(u) are
-€ o)
finite for each & = o,

B -

144) M(- %) = N(+ o3 = 0 ,

iv) ¢ 1is real apd non-megabtive and a 1is real,

The functiocong M and N  are called Levy funcitions

and o is sald to be the Normszl cowponent, I1f o = 0, we

say that h has ne Normgl Tactor,

The distrivution corresponding to h 1is purely discrete

AY
-G o0 : :
if and only if, ¢ = 0, [ dM(u) <eco, [ aN(u) <o and both
M and N gre discrete (Lukacs, 1970, p,124),

Lerms ©,1 (Zolotarev, 1962), The distribution function H is

¥-i,2, 4if and only if, its c,%,

! ;
i, (6) o i
W(t) = | ; ‘.]
i 0 S ()
; 1 )
hag the form
B T I = } :
(3,3,1) mo(t) & nl(t) h2(t)

(8 05 )

4

£

: o
N
ct
"t

i

%, B, (6) /o (t)
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where 7
(a) hq is an 1,d,¢,t,, hy  is an 1.d.c.f, of
the form

log ho(t) = J (I = 1) aH(uy

® 05551, Il < amice fan,

Hemark I the distribution H corresponding to W is an
M-i,d,, if the.Levy functions of hy end h, 1in (8,3,1) and
(8,3.8) are disecrete and if 'hl has no Nermal factor, then

H is purely discrete, This statement can be established

in the same way as Lemma 5,7,

ze  Mpin esults ¢

1

Theorem 2,1 ; Suppose g

o
e

end g has a distribution with

c,t, W, Jlhen there exists a discrete M-i,d, law with

. s (l} o -3 150, o o) _'-l - (2) o k .
25 e W such that the funetion W given by
w5y = sy, w8 g

is the ec,%, of en M-i,d, Llaw, If we write ¢
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o

i

wég)(t) 0 i

S ¢-) INROIE 1 | |

W (£)= i
- O -\N@‘z} Y “‘.“ X

then the ceryvesponding characteristic functions _hfz)_angf

hég) in the representation (3,3.1) and (8,2,2) are without
Hormal factors and with discrete Levy functions, In particular,
log~normal distrivution cannot be thea distribution of a |

ge M,

As is well-known (Lukacs, 1970), the logarithms of
the characteristic functions of the stable distributions

can bo written . dn the form
1ty = % 4|7 expd~ 15 K() 8 sgn (£)} if «#1,

itY = x f6] {1 +2 5 log |t} sen (8)} 1f «=1
where ¥(«) = 1 = |1=<| and 0 <& < 2‘-"; ~1 <8 <1,

E]

-0o0< Y<oo gnd x>0, : 2 g AN

Let J dencte the seb of &Il stable laws with
*<L, Y=03«x=1,8=0,0r «>1, =0, Y=0, It
is known that (Zolotarev, 1967), all the distributions in

U are M-i,d, laws and the Levy functions of the characteristic
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funetions hq, h, in the representations (8,3,1) and (8,3,2)
of the corresponding characteristic transforms are continuousi
From this shd Theorem 8,1, we obtain the following

Corollary 3,1 ; Mo distribtntion in U can be the distributicn

of a mltiplicative function 2 in N,

L

Theorem 8,2 3 If { e A has s distribution H, then there is

a discrete infinitely divisible (i,d,) law G such that H *G
is i,d., with discretg Levy functions and without Normél facto:
Hemee no f e A can héve Gamma distribution or any stable
digtribution, In particular no f e A4 can have exponential
distribution, (Here * denotes the convolution of the distribu-

tion functions,)

Thecrem-8,3 { gz e M camot have uniform distribution,

~

5, Proofs or the main results ®

N

Proof of Thecrem £,1 § Suppose ge ¥ has a non-degenerate

distribution,  Then the.c,%,

EXS o
W(t) = | |
0 wy (£)
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of the digtridution H of g is ziven by (see Bakstys, 1969,

and Theorem 7,1)

()= TTa -2+ PRI

"o Al k=1 p&
and X
wy(t) = O or
- ~ 1 S A k
wy () = 1“1—-9(1&5L§Qg® M senle(@N

gccording as H is symmetric or non-symmetrie,

Fer P > 2 we have {(see Del‘ange, 1963)

kyiit v '
e lg(p )l 0. Clk.p.t) =T
(1 ~ %“) (1 + 2 r -y = exp[ 3 2Py -
.7_1{:1 Y Sl kp

where

c(1,p,t) = |g(p) |1t

Olr,p,®) = xlg@NITY - 2 ct,p, 0l s(THIN
J:-"

D.fine for p > 2 and for all rezl numhers t

D(l,p,.'b) 0

]

i

D(E’-p,t) (C(lsp: t))zi


http://www.cvisiontech.com

[128]
s gnd W EB O 2
D{r,p,t) =r§1 (DCk,p,t) + c(k,p,t))lg(pr‘k)lit.
k=1 gL & E g
It is not difficult to show, by induction on T 2 2, That

C(r,p,t) + D(r,p,t) = Z
k

D(r,p,t) % i dk r"ck T

-where the surmabtions are takaen over a finlte number of values

Al

of k depending on r 3 e 1y dk r are positive integers,
3 vy
indepencent of g, such that
| = =il -« -1
o ®e © md T o4 =25 "=l
= K, T 7 Ky T
[l g’ SR 4‘(‘1 5 - S n
and bk,r’ Ck,r are some prodiacte of {(g(p D) 5 b G s P
and o = |1 }. We put
| / 2 - —— o -
| ‘). 0 if %%r—-O for all k,
d(r,p) = i
i 2ta. ., otherwlse,
e e

where the suim 2'' is takem over gll k for which

Cy. - p # 0, Since
et
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o el

5 2 == e
P2 r=2 Ip _

1t follows, by Lemma 5,7, that

00

5 ! it logle, .|
s1(t) = emp( 2 Z Z#Q wgrﬁ (o, rllt_l_ W y
p>2 =2 ¢ F0 rp ’ 5
‘ 1+(log 1)
’ glog o
oo b, _'
= exp( 2 Z ((D(zr,p,t) - d(r,p) ~ it c(r,p))/ro"))
' FoIE] IHE- T
is a disecrete i.d.c'f.’ where for T 2 )
g : 0 if cr,k=0 for all k,
e(r,p) = < _
| logle, b
Lz G, A 5 otherwise,
Pox T 14(logle, L1)°
| r#O 3

- R’ F ¥ :7- . / ‘ ] . .
So the distributicns corresponding to the characteristic transforms,

-

gl(t) o

and

i O oju

are diserets, Let
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\ 0 15l > =0
| | = k,r g
alr,p) =<
’? by otherwise,
[ P
e\bk’lf/O 4 |
\] 0 ) y  Lisf bk, 0 for all Kk,
blr,p) =
! ogloy, . -
/ 5 1 T Ml RS otherwi
[ x T 1+iogly, |08 y
\Dk’r;/O
and
o Jg()| %
“g(t) = Z i e
k=1 k 2

/

Fote that 1f g(2) = 0, then s,(t) is constent for all t

and 1f 2(2) # 0 thei ewp(s.(t)) is an i,d,c.f, Now

log w,(t) + log s(£)= sfe) + 2 | -

tz, ((Clryp, 8+ Dlryp, )-1-a(r,p)- it e(r,))/p7) ],
]
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Since
s{t)=5 = L(C(”,p,t‘+D(f p, ¥)=alr,p)-itb(r,p))/rp” ]
< p>2 r=2 - . |
oG ' be's rrA . it 1°gibk rl \\
=2 2z |y I -1- et |
p>2 r=2 b, F0 rp> \ 1+ (loglp, D%/
. b ]
and
/ - it loglg(p)| 3
5,(5) = % %;‘|g(p)l1u -1 - !
pig \ 1+(1oglg(p)l?}
z(p)#0

converge absolutely and uniformly in every finilte interval,

s exp(sy() + 5,(t)) is an 1i,d,c.f, Hence

log wo(t) + log Sl(t) = Sg(t) & 53(‘5)‘”'1‘ Sfl(t) - b + ity

whelra
&St (s I ‘ g —
Ls 5 -1 ,lOL) aa(P)} 43 %O b(r,P) lC(I‘,p)
p>2 P i+(logle(p))® p>2 re2 Tp¥ "
g(r}J’ '
and _
> J(r,p) - alr,p) + 1
b= B3 e — + = L,
D2 =2 D ' . p>2 P

g(p)=0
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Hence

= =
v i
a. (1 U il 0
[a1(0) \ E |
} = N i
Wb<t) | - anq‘wb(v)sl(tﬁ
T ) S R 1
are -M-i d, -

characteristic trunsforms,
when thHe distributi

(BN TN

This proves the theoren
on of g is symrmetric as well as when
g{m) 20 for a1l m > 1, '

Now let ¢ e Y, Supposc the distribution of

g 1is
non=symmetric, Define the rmltiplicative  functions gq ¢ Y
and g, e M by

. e
(™) it g(%) > o,
' j
51(?* ) = "\ S
L1 if g(pt) < 0
L , ,
) {g(pk) ir glp®) < 0,
. / _
. ggkp } = \ _ " Ba
T - ! “\. l it g(p ) 30.
Note that ¢ = g1.80. Since g

has non-=syrmetric distribution,
% 1l <o, e
go(p)#1. P . ik
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1
[V
0
[

bty

Since the &% atritmition o ig dlscrete by Lemma 7,2, 1t

can be:'shown, as above, thet the theoren holds for go also,
Py Lerma 7,4, the c,t, of g 1is given by the product of the

chgracteristic transforms of and

-~

1 goe Hence the theorem

follows, as we have slready shown the validity of Theorenm

for g,

Theoren 3,2 follows from the proof of Theorem 8,1, on

Proof of Theorem 3,3 If ga M has uniform distribution

then g(m) # O for all mn > 1, ULet the interval (a,b) be

the spectrum of the distribution of g, ' ;

Let us congider first the case when either a= 0 or
b=0 or a= -b, Then the dstrikvution of lg(m)! is uniform
wd sc the additive arithrietic function loglg(m| has, - by
Theorenm 7,1, a d.istribution, with characteristic function

L3

for some C> 0, This'is an i,d4,c.f, with continuous Levy
functions, ‘Thedrem £,2 gives a contradiction and we conclude
that g ecannot have wniform distribution in thils case,

L
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Now we suppose that both: 2 # 0 and b # 0, If eitheﬁ
0<a<b or a<b<0 theu loglg(m)| is bounced and hence
its -distrivation is singular, by Corollary 5,2, So this case
does not arise. '

.

T

“ow we examine the case when a < 0 <b gnd b # ~a.
First 1et 0 < la| < b, Mote that the characteristic funection

of loglg(m)! is

s5(8) = v1P + 1By 1y 18I0 4 gL,

]

Ir &= [3], then the

D haracteristic function

o) Tl
Sg(t) = O:m(‘l‘; z dgk(g'?'ltl* log d e l))

k=7

is 1,4, ond the corresponding distribution is discrete, Using

=
®
ol
H
4
23
-

o)
)
o
o
*

o
Q,

e Ll Cge F o 57‘with discrete Levy
functions such that SS.ST is @n i,d,e,f;' withldiscrete Levy
functions, Also note that S eSg is an i,d,e,f, S0 on the

one hand we have that the Loavy functions of 85556'57 are

digerete and on the other, the Levy functions of S50 5ge57
are not discrete since, (1/(1+it)) is a factor of S5+ 55050

and the Levy functions of (l/(1+itj) are continuous, This
contradiction shows that in -this czse gz cannot have uniform
distribution, Similarly we can show that if ~0<bélal, then
again g cannot have uniform distribution, This'completes the

*

POMDE ‘ BN, VL. WeD. 0F g
PIocy oL wnedlen o, o, i
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CILAPT 2R 9

DISTRIBUTION OF VALUZS OF ADDITIVS FUNCTIONS
ON THE SET OF -PALRS OF POSITIVE INTEGERS

1, Introduction ¢ Delsnge (166¢) dofined a density for sebs

of palrs Em,nJ of positive integers and determined it for some
sets defined by arithmetical O“OOOTtlos. In this chapter we

give nocosoa;y and sufficient condi ‘tions (similar to HErdos s~Wintner
theorem for additive arithmetic functions) for a real=valued
additive function £ on the set of pairs of positive 1ntogers

to havz a distribution and zeneralize some of the results

obtained in the previous chapters, We also give necessary and
sufficlent conditions for a reel-velued additive function on the
set of pairs of positive integers to have distribution (mod 1),
Finally we give necessary and sufficlent conditions for

.
Xy

card {[m,nj s m2x nsy, fon) - ay o % c}
) H

to tend to a distribution function as x and y tend to infilnity

set of real numbers,

o]

independentiy, where y} is

Instead ¢f palrs one could conslder systems of k
positive integers, k Deing sny fixed integer > 2, There _
ig no essential dlfiorcnco bebween the case k = 2 and k > 2,
We restrict our exposition to the former case for the sake

of simplicity in writing,


http://www.cvisiontech.com

2, HNotations and definitions i Throughout this thesig, we letb

Zg to dencte the set of all pairg of poasitive integers, FYor a
subset 3 of. Zg, W(B) dencites its cardinality. |
[ . £
Definition : A subset B .of Z, 1s sald vo have density
8(m) 1f (1/x) N{&;n]e Bt m<x n<y} tends to 6(E) as

x and 'y tend to iafinity independently,

Definition | A real-valued function f on Z, is sald to be

o)
e G ———— -

arifiitive 4f
‘f(ml Mg, nq Dg) = £(my,nq) + £(my,n.)

wheaever (my ng, mg ng) = 1,

Jote thet if £ is additive then £(1,1) = 0, It is

eclear from the definiticon that i

g = -
S el Y (z > 1)

and

| fb(m,n) - f(pq(ﬁ,m)"pq(p,n))’

then for all [mnle Z,
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#{n,n) = 2 £ (myn),
plrm?P

We define for any positive integer r.

T = X £ @&
£(m,n)., 2 p(m,n).

For any x2 1 and vy >1, define

oy 100, Dy D)

(x v, T} = &
Yy psk » B gy 5P
" R R
(£(p,1))° (£(1,p))?
Bolz,y,f) = Z ————t I ————— .
px ) Py N

With each f we associate an additiveé function T

defined by
f({p,1) + £(1,p) if t >0 and k > O,

b ) = < £lp,1) ift >0 and k= 0,

—

© £(1,p) . 1ft=0 and k >0,

Definition ¢ A real-valued functicn 2z on 22 is sgid to

have a digtritotion, i{ there ig 2 digt»ibution fanetion 0
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F13s}

on the real. 1ine such that. the ﬂcu Jty of the set
{[m n] g(m,n) < c} exis us‘hwc ia:équal o Q(e) fdr each

continuity point ¢ of @, F

Definition : A resl-valued adéitive function f on %, is
sald to have distribution (mdd-lj if there;isfa‘non~decreasing,
rizht continuows function X on the real line such that
H(c) = 0 if ¢ <0, H(e) = 1 if'cgi and for all continuity
points a,b €(U,1) of H mjth a < b, the density of

{ln,ni 2 a < égﬁgﬁg&% %b} axiste and equals H(b) = H(a),

where {x} denctes the fractional part of =x.
Let, for any, Teal number ,? x| = min({x}, 1 - {x}).
We put e(f) eXp(Bwit).

For resl numbeTs .., b, integer k and real-valued

additive function f we write

3
L ety N / oCicr(3”,3))
h(f k,c’b) .' bk I ' Z
gjgu 20(1+273q)+f(1+2n3b) } 1320 giLtaria)+r(lteriv)
‘\\r‘iO ‘ . / \1’>O /

Definition { A complex-valued function h defined on . Zo -1s

said to be multiplicative if h(1,1) = 1 and .
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him, my, ng ng) = himy,n;) h(mg,nz)

whenever (m, n,, megg) =%

Definition ; A complex-valued “unction 22 15 sald to have

& mean value if the limit of (L/xy) 3 h{m,n) exists as
m<x
nsy
x and v tend to infinity independently $ and the limit,
1f it exists, 1s called the mesn velue of h,

R B e
3, Main results

Theorem 9,1 ¢ Let f bhe a real~valued additive functicn on Zé-

f has a distribution if and only if the three series

#* (p.1)

(S, 3.,1) 0

o M

£%(1,p)

i 2 Sl

P
(9.3,2) -

k3

(9,3,.3)

oo

%([f*cp,l)Jz + [0F(1,p)1%)

converge, where

i flp,1) ar e, )] <1,

G (p, 1= X

S otherwise,
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and

\ £(1,p) ir {f(l,pji < 1?

T(1,p) =

{ 1 otherwise,

Mbroovér, if £ has a distribution then it is continuous if

and only if either

z + =2 op 5 + - o
£(1,p)#0 P £(p,1)#0 P

Theorem 9,1 was also obtained by Delange independentiy,

[Personal comrmmnication, ]

Theorem 9,2 ¢ ILet

f be a real=-vaglued additive funetion on Zeye
Let A be a set of primes such that

)y '1-<oo.
pech P

Let f be such that for all p & 4 both f{p,1) and £(1,p)

arc non=megavive., If there exists pesitive constants e, 6

and two seocuences {xi} and {yi} of po
such that

2

sitive real numbers

N{[m,n] yom< Xy h = Vi, flum,n) < c} > 8 Xy V3
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for all 1 and x T, Yy, X g8 i >, then f has

a distribution,

Theorem 9,3 ¢ Let £ be a resl-valued additive function on

4ov . £ has distridution (wod 1) if and only if, for each-

integer 'k one of the following comésssdass satisfied }

1) TFor all real % and wu,

22001 £(,1) = t 10g pIf + Ik £(2,p)u Log plB)= oo ,

1i) Bach of the followihg three series is convergent,

J;cn k£, P + || % f(l,p)” 2
p

22 0% £, sam(d - f £(p,1)})

=
i

2+ e £, sml - e £(1,p)}).

3
vl

In particular f has uniform distribution (mod 1) if

and only if for cach non~zero integer %k, i) holds,

Remark 3 This result was also obtained by Delange (personal

conrmnication) independently under an extra assumption that
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£(z), 25 = £(23,1) + £(1, &)
and _ )
£(37, 37 = £(39,1) + £(1, 3N

for a1 j 20 and -r > Q,

Theorem 9,24 : Let £ be a resli-valued additive Function
. on Z

-

having a distribution (mod 1), Let, for each integer Ik,

gy = (h(f,k,0,

The distritution (mod 1) of f 1is

a) conbinuous if and only if
M
a1l 3

a erp (=22 =( sin“kr(n, 1) +sin® 7kt (1,p)))—> 0, as N—> o
k=~ D p :

B) ebsolotbely conbinuous with a dOIJVaulVC bulonglng to the

Lebesgue cless L, [‘ Ll 1f and only 1f,, the  series

Z & oam(-2Z %(51n 7L el ) i swnaphf(l P)))
=" =

i1s convergent,

(Tn the statement of this theorem 1t is to be understood
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(sin® rkf(p,l) + sin® mh{(1,p)) =

exp(-2 Z l (sin wkf(p,l) + sin® 7xf(1,p)))
is defined to be zero,)

Theoren 9,5 ¢ Let f be a real-velucd additive function on 22.

Sunpose there is a sequence dn} of real numbers and a
digtribution function H on the real,line such that for each

of its continuity point ¢ the 1inmit of

B F
Pl
o
Gy
|

mrfl i min, nt sn oand flmm') - < c}

is H(e) as n .~ o, Then there exigt two real numbers a and
*

b and an additive function g on 2% such that for all m 2 1,n 21

(9,3,4) f£(mn) = a log m +'b log n + g(m,n)

and

e ,m 1 g, 1007
(9,3.5) 51 ;p - - i’ . :

'3
R
A
8
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. _ 1 5 i
In this case, we can set < = «! .~ + constant +o(1),

’
where o $PaE v gl & 00 o
<, a2 By "t : i
:C,.V pix p p-sy- p \\ ;
N
and ! =o Y alogx+ b log v. ‘
X,y Xy ¥ =

If £ satisfy (9,3,4) with g satisfying (9,3,5) then
There exists a distribution function G such that.at each of
its continuity point ¢, we have thatb

e N{{m,n] sm2x, nsy, flmn) -« < c} .

Xy
tends to G(c) as x and y tend to infinity independently,

Remark § This result is a generaligzation bt additive functions

on  Zy, of a result due to Iiiott and Ryavec (1971),.

Let £ be a realivaiuéd additive function on Zé. We
define two complete}y a@ditive arithmetic functiong fl and f2
by £:(p) = £(p,1) and 'fg(p) = £(1,p), It 1g clear from
Theorem 9,1 and the IErdos-Wintner theorem that f has a

distribution if and only both fl and fg have distributlons,

Theorem 8,6 ¢ Thé distribution of f is absolutely continuous
1f and only 1f the convolution of the distributions of fl and

Tw 18 asbsolutely econtinuous.
£
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Many resulbs of the previous chapters can be generalized
without much difficulty tec additive, and mulbtiplicative functions,
on Z,, ¥or exemple, 1t can be shown that conditions similar S
(1,8,1), €1,3,2) and (1,3,3) are necessary and sufficient. for

the existence of the distribution of
I W
{ £, F ), 6, ..., £,(F (m), G (m))}

where f1,..;,fé are additive functions on 2z, and Fy, G e E,

2
In this connection we state the following results,

Théeorem 9,7 ¢ Let f be a real-valued additive function on Z,,

If ; i

1im sup(L/x7) 3{[m,n] *h<x nxx -flnmn)s= a} > 0
¥ = 0O -

for some real numbeér a, then f has a distribution,

Sty

Proof of this theorem is similsr to that of Theorem 3,1,

Theorem 9,83 Let . f be a real-valued additive function on

Zg having a distribution, Suppose A is a set of primes

such that e
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| (146]
If for some ¢ > O,

SR L1, 002 + (£6p,1))%] = o0
pdA

as N ~*co  then the distribution of f is singular,

In particular if f is bounded then the distribution of |

f exists and is singular,

Proof of this theorem is similar to that of Corollary 5,1, i

4. Prelimingry results

Lermar 9,1 & We have, for any f

. I -
B ‘*',; n) - (x .f‘21<.C* 32 F
i | #F(ayn) A lx,y, 1) xy Bolx,y, £),

nzy

where € is a constent independent of £,
: :

Proof of this lemma is similar to Turan-fubiliuvs ,inequali»ty"

¥

and so 1s omitted,

Lemma 9,2 § If Bo(x,y,f) 00 a3 x =00, y = o0 independently

and  sup max(|f(p,1)|, [£(1,p)|) < gy for some positive constant
P

c then

1
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(147]
1im (l/xz).N{[m,nj s mSx ngxflnn)-A(xx )< aBg(x,X,f)}
: Z
s=l_ ¢ v2
et

for-all real numbers s,

L Proof ¢ 1In what'foilows, we write As(s) and By(s) for

A (s,s,f) and 3By(s,s,f) respectively,

. 1/8,5(s) ' '
Let ‘wls)= s . « By hypothesis it follows that
[Bg(r(s))/Bg(s)] — 1 as s ~> o, First we shall show that

£03 each real nunber -

¢
(9,4,1) s-EJV{[m,n] +om < s,n < s,f+(m,nir(5)“ﬁefr(s))< aBg(T(S))}

a 2
=) L - o
=l I T /2 du as 5 —>0o0
/or  ~co

b |

Let E(p,t,s) be as defined in § 3 of Chapter 2, Define

for any square-free integers %k and k! such that 1 Sk, ¥' 2 s

2

E > E

= =
1 e {
Byl k 5,k Sek* ¢

Clearly for different pailrs (k,k'), the sets By ' have no
LA |

element in common, Let gg be the smallGSt dlgébra containing

S oag

~ e . v T 7 g BN 1g)Y &
8drpression, QCR, wélilaptiniization us Tvateniy i SV atRN-CORY P
;:,h B 4
3
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_Jl ES k',k'_’
(k',k)ekK * .

where K 15 5 subset of Ef5 XES_ Define, for t',t = Ol
and p < r(s),

P*(E(, b, 5) < E(p,t',5)) = P(&(p;t,5)) P(E(p,t',s))

where P 1is gs defined in 8 3 of Chapter 2, TLet

P*(E) = Z P*(E(p, 8 (k),s) > K 6 (k') s )
(k,k")eK pg(s) AR P2 2 .

whenever K i3 a subset of Eq ><ES and

N

]
f
Al k

. B t
Oc,k') ¢ X Skl

Following the arguments in Kubilius (1964, p,27), we get,

uniformly for &11 Ee Hyy that
(9.4,2) 7@ N{[m,n] e B} = P* (B)= O(exp(~c log s/log r(s)))

as s =~ %, where c¢ 1is a positive constant,

Let, for cach p % r(s), ??p be ‘the rasndom variable on

Es XES defined by

1, (myn) = f; (m, n),
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e ari},-' .if‘f?p * _-_<_; r(s')} " are indevendent Zr'andom vari ables with

rospect to the measure P*, It follows from (9,4.2) that

-5 - -
(9,4,3) 8 N{[m,nj S s s < B if (m’n)r(s)? £ E}

=P* & % e E} + Qlexp(~c log s/log r(s)))
. p<r(s) P '

uniformly for all Borel subsets E of the real line,

Sy Lindeberg-Levy central 1imit theorem (see Billingsléy,.
1968) it follows, as in the proof of Theorem 4,2 of Kubilius

(1064), that for cach real number a,

A4 e i ~(a)y. & — e ‘1-12/2
(9,4,4) P {pﬁi(s) 'ﬁ‘_p A(r(s)) < aBz(r(o))}-¢ o= _{me dlfl

as s — oo, Since [2.(r(s))/B,(s)] ~>1 as s =>00, from

H
(9.4,3) and (9,4.4) we gobt that

(9.4,5) s N{lmni s 'n < e S, TT0m,m) ()~ Aa(r(s))< aBy(s)}
SV Ia ehuz/z du,
/ar -0

as s => o, By Lamas 9,1 and Chcbyshev's inequalityy we have

for any € > 0
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(9,4,6) N{lmnl : mn < s ,lf+'(m,n)-A2(_'x)~f+(m,n)r(s)+A2(r(s))l>sB.|

&0 32(32(5) - B2(r(s))X &8 Bg(s))

where € 15 as In the statement of Lenna 9,1

(85(3)/3,(r(5))) = 1

(9,1.6) that for all real numbers

Since
as s ~> & i% follows from (9,4,5) and
a, |

(2,4,7) ‘(l/sz)N{[m,n] T m2xn< X,7f+(m,n)~A2(S) < aBz(s)}

a = . '
Tb';%: ;72 db, as x = o0,
5r -0 |

Now for any e >0 choose an ¥ such that

p>M p?
Put /
max{p p‘c ];_’\ ? A : ’

Let A= {[m nl ¢ qglmn for some

N{[m,n]a.A o @) < pdy o g‘y} =< ; L"‘J 7 + XL“—J + [“] [ “]}

a>3' Q

< EXY,
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We note that if [m,nl] ¢ 4, then

| £{m,n) - f*(ﬁ,n)l < Le),

Hence for every e > O there exists an L(e) such- that:

-

(9,4,8) N{Em?h]”f m<x, N j'y,[f(m,n5~f+(m,n)i>ﬂ(e)} < exy,
How (9,5.7) and (9,4,.8) give the recuired result,

Lerma 2,3 ¢ Let bl"'°!br be real numbers, For each ¢ such
bk :

that © <e < (1/2), there exists a non-zero integer n such
that

{n bi} e 0L Nlors exe 108

Procf & If-.bli.ﬁ.,br are rational numbers, -then the lemma
follows trivially, Suppose by 1s irrational, The lemms
follows fromKronecker's theooren (sce Chandrasaicharsn, 1968),

1f 1,by5ee.,b, are linearly indepen@ent (i,g,, there is no

I‘ .
linear relabion of the form Y2 n. b, = n, vwhere n, n,
4= 1 Ui s 14

are integers, and (nl,p,,,nr,n) ¥ (O,O,...,Q)). Suppose

l{bl,..,,bj are linearly independent‘agd‘ bj+1!!??!br are

linearly dependent on 1,bi,...,bj, i.e.,, there exist integers

s (i = dtl, .eyr; s=0

200y j) SU-Ch that
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5 % (1~ Reln(,p) p ™) =c
5

for all real u, thenr h ©possesses zefo meah value,

If there exizt real numbers s and b such that

H

2 A1 - Re(h(p;l)'pnia)) < co
B, P '

and

£ (1 - Re(n(1,p) p7)) <o

b

el

then h possesses zeroc mean value 11

. ," V - \ V - - .

A o i ) ; TR L W s )

\ 3,20 SJ(1+ia)tr(1+ib) JoT20  oJ(1+La)br(1+ib) )
’ . 7

A

(9,0 '1: 9)

is zero, If (9,4,9) 1s not zero, then as x and y tend

to infinity independently, we have

(1/xy) Z nlmn) = C x-& y+P L](log x) Lz(log v) + o(1)

m<x
nIy
where € 1is a non-zero complex number and L, and L, are

functions on the peositive real line defined by
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L,(5) = exp( 4 T % . In (n(p,1)p71®)
S ;
p<e

L8 = em(1 T = In (n(1,p)p®))
p<e ' '

ag for W = Loy

1im (L, (A£)/1.(8)) = 1
b0 J J

for all A > 031 ‘the convergence is uniform in every finite

Interval,

Larma 9,5 %+ A real-valued additive function f on Z? has

distribution (mod 1) if and only if, for each iﬁteger_ k, there

exists a real number by such such that the limit of

(1/xy) 2 o0 £(m,n))
m<x |
n<y

1s 'b as x and y tend infinity independently, Moreover,
the limiting distribution, 1f it exists, is continuous if and

o -1 4 .
only if N~ 32 . Lbkl tends o zero as N => 0 and absolutely
1| L .
|| <m

continuous with 2 derivavive belonging to the elass L.lo.1]
= S 2 ’ 3

ca
if and only if the series Z lbklz converges,

aia-uEs
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Proof of this lorma is similer to the proof of Lemma 2

of Elliott (1971) and so is cmitted,

5 Proofs of the main results
. S g - s

Pﬂoo{mgf Theoren 2,1 § Define a seduence X?} of independent

random variables satisfying, for cach real number a

PJX = = - dye ¥ =tk
% = a} (1 _ p) " p
et o

e
s P )=a

It is casy to see that the convergehce of the series (9;8,1),
(2.3,2) and (9,3,3) imply that = Xﬁ_ converges almost everywhere,

by Kolmogorovts three-series theoren,

Let a be a continuilty point of the distribution Ffunction

Qla) = Pf2 X, < a} and let B = {3 max(| £(1,p){, | £(p, 1)) 1}

Let e > 0, Choose . sguch that

Let

z(x,y,2) = {{mynl 2 m < x, 1 5y, flmyn) < a},
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Let

D ={[m,:1] ¢ either qz-[mn for some g > M or plm

~

for some e B and p > M}.""
for any - & > 0. such that a, a~ and  atb  are continuity
points of Q, r‘> M, am@ Xy 24, we 'h_a_ve
E\I{z(‘x,y, a)} b _N{[m,n] P mXxnx Y,' f(m,n)r < at %}

(9.5.1)  + H{[m,nj ¢ D

.o
=
A
4

, M2V, 1f.(m,n)-—i‘(m,n)r] > g

e
72

Sy 31{[?5,‘1] e b

=

2% 0 yhe

w ks ‘ :
As 4 =8 convergent a,e,, we can choose ryy such that

5

N

for r‘>r we get P 2 X >£‘ <
1 - {!P?I‘-h l é}_

g

In view of the converzence of (9,3,1) and (9,',"‘3. 2), we

can find Ty 7 Iy,  such bthab -

(9.,5.2) [A‘Z(:;,y,.f;‘) p %(I"r,f*)] -<%

whenever X,y,r > r,, By Leama 9,1 and Chebyshév's inequality

we nave for . x,y,r > Ty
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(9,5.3) N{[m;n]fb:mix, n<*,If(m;n)—Az(X;y,f*)"f(m,n)?+A2(r,r,ff)l>%}
< 48"% xy ?(3ggx?y,f*) N Bé(r,r,f*))

where C 1is as id Lemma 9,1, Since the series. (9,3,3) is

convergent, there exists r, > r,  such that the left-hand

side of (9,5,3) is less than %,!for all X,y,f > ry. Hence

it follows from (9,5,2) and (2,5,3) that there exists = g
such that if r = L

N{[m,n] 4 D:m;x? ngy,if(m,n);f(m,n)rl> %} < i_sxy

for all sufficiently large x and v,

Note that for any r » 3, the limit of

(1/xy) N{[m?n] cmnsx n2y, flmn), <a+ %}

..

is P{ zZ X < g+ ﬁ} aé x Jand'y. tend to infinity independently.
psr P 2

Hence for all sufficiently large x and y, the:left~hand side

of (9,5.1) is not greater than xyP{ LX< &+ 6} + exy,
i &
Similarly one can show that for &11 sufficiently large x and ¥y

the left-hand side of (8,5.1) is not less than
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xyP{ Z X < a - b} TR, Let‘ Qa be any 1imit point of |

{(1/yy J{z(x’f,a)} »,y > l} Sluco a i.s a continuity

point of Q, it foTlhvS that Q(a) = 8 Henco the limit of

(1/xy) L‘{z(&’,y, a)} exists and is eoual to Q(a) as x and ¥y

tend to infinity independently, ‘I‘his proves the sufficiency

part of fthe thecren,

To prove the necessity part, ve first prove that there
is 2 ¢ > C guch that
«(0,3,4) AR S L e,
mex(|£(1,0)], [ £(p,1)|)2c

I7 £ has a dlstritution, ve can find M > 0, x, 21

——

and S > 1 such that x> X, and y > ¥ inply that

. SW
Himal s ms o0 sy, o] <> o

v

Suppose (9,5,4) does not hold for any c¢ > O, Then there

Ll 7

exists a secuence | {'qi}_g of »rimes such that

e I S 5o < &
XO’ i qi "i q?4:

1
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and max(lf(l,qi)[, lf(qi,l)i) —> 0 g3 i —» o0, Without

loss of generality we can assume that

If we put
G(x,y) = {lyynl P w<x, n<y, [fn)] <M ana

Gy Y'n for any i}

MGz, y)} > (xy/2) for all x2x and y2 Voo

If for every ‘80 S X

' ¥
card{b E o (ao,b_) £ G(Xo’y)} <3,

then,
Xy
ENTe O
carl{q(xo,y)} < o
Hence for cach vy 2 Vs there exists &y = :;éo such that

' y
card {[a_y,b] J -(ay,b) £ G(xo,y)} >% . Bo for each a < X9

there exists a subsequence of positive integers {yan}

that
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{ya,n v ax X, 33101'.:_‘_1 > ]} s {y > y }
Pan 223130 fPaptnz1)=0 1f a# at
and
y : .
Card{[a,b_] e Gz, Yan)} Zr ..gn. for all n > 1,

Hance card {B } >3 for all y = Yo where

P Evian e g} i yoy, [ asx, 021,

(9,5,5) o lim sup 1"0-:};-* ? pN %j’> 5 .
: y —='eo & 7 (a,t)eG(xo,v) /

for some a.,,,xo

I~

;_.4

i
On the other hand, since A =00 gng
£(1,05)>2M %4

If(a,b') - £{g,b'1)| < 2V for overy b e By,

R ¢ . -
bf ¢ By' (v Yen
for some n 2 1) ana a, <‘-3% rit'-fo’llows from Yemna 3 of
Erdos (1938) that for any e > 0, there is a ¥y ¥, such

that ¥ >yl implies
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be B
be -
Fi
So
(9,5,6) Tim qup Sl E % %1 = 0,

¥ —> 00 log VA (a,t)sG(xb,y)
' ) |

. for some a 2%,
. =

which contradicts (9,5.5),  Hence there is a "¢ > 0 satlsfying
(9,5.4).
Let H be the distribution function of £, If H 1is

degenerate define a new additive finction g on Ze DY

g{a?, 1) = £(2%, 1) + 1

= T |
g%, p= 68 P i %) # [28,1].

Cleasrly g has a non—degeneraté distribution, So without loss
of genora{i&y’ﬁe car assume that H is non;dégenerate, e
follows from (9,5,+) and Lemmas 9,2 and 1,6 that (9,3,3) is
satisfied, Hence :

-~

(9,5.7) | L X - (e*(p,1) + £*(1,p))}
D B = ’

c:onvercg;es almost everywhere, Let Q be the distribution

funetion of (2,5,7). As in the nren® of +the oyfei-iont
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part it can be shoyn that (1/3y) ﬂ{z(x;y,a'+ Aé(X,Y,f*))}
tends to Q(a) at each continuity peint a of @Q,as xand ¥y
tend to infinity independently, This and the fact f has a
distribution imply that ghe sot {A?(K,féf*)} is hounded,
Hence éhere exist two ééqﬂences {xn} and {Yn} ~ tending to
infinity as n — ©© such that

lin  A(x, vy, £ =0

p— 0O

for some b, . Hence we conclude that H(atb) = Q(a)l for all
continuity peints a of Q@ such that atb 1is a continuity

point of H

Tr
ann

«Q

e b is the only limit point of (A (x,y,")].
Thus the two seriés (9,3,1) and (9,3,2) are convergent, This

completes the proof of Theorom 9,1,

Proof of Theorem 9,2 % Choose N and k > 2 sujh that

o>

Let

B = {[m,n}‘: either o|mm for some q > M and

Q
™M
=

P P ep gy 1
2%
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Clearly we neve for all x and ¥
\ .

E{Lm,n} e B

n2% syl <'31:5XY.

Henece for all i,-

Nilnnl @3 4 ns x, n<yy, fn) <o} > @R .

- Let 1

-

k ke |
el pF N+ 2 (eq)] + bo(z, ) ).
=0 Qe A

g<M

If we define an additive functicn h by

| £0%,0Y)  if i+i=1 and p 7 A
h(PJ,Pl) = 4\ ' .
: G = [

' 0, othervise,

Vthen,clearly nim,m) = nim,d) ¥ nG,m) = é ~§o$_al§ myn
and .
kS r l
ﬂ{Ln,n] ' m2 Xy, RSy, n(m,n) <ec + L} > 3% ¥
for all 1{.
So we have

1inm supr % %ﬁ {h(m,l) < ¢ + L} > 0
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and :

\111“ sup + N Jn(z,m) <c + 13} >0

ln sup § H,{ne 3> o
Since Z % <oo, it follows from Theorem 3,3, that

ped - ,
52 G T 5 €2 . S
A4 p =g + 2 - — < G . ’
Ny e 0 |

Theorer 9,1 now shows that f haé a distribution, This

completes the proof of Theoren 9,2,

Proof of Theorem 9,3 ¢ Since

sl 6l 2 < stn®r 0 < or? || 6 |2

1A

and

1~Rel (el £(p,1)) p71%y =

4

sin® (r (k f(p,l)-(t/a%) log 1)),

Ve clearly have

no A1 - Rel((e(uf(p, 1)) p )] <00,
'p o

if and only if

)3 % Hxf(p,1) = (t/2r) log sz<°0 i
p F _

Sc if for each non~zero integer "k elther 1) or ii1) is
satisfied, then from Lemmas 9.4 and 9,5 it follows that f

U > P AT AP T AP .‘—wq L
aden, 5 L ST T W SV SO W A R PR § Lol L, g
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fow we prove the convarse, Suppose f has a disteibution

(rod 1) then {or’ each inteser %  the linit of

(€,5,8) ,, '§§ méx e(k £ (m,n))
nsy

exists as x and y tend to infinity independently, If the
lirit of (9,5.8) 1s zero for some non-zero integer k then

elther for all real t agnd u

H

2 %(Hl{f(p,l)-"tzlog pll%+ |lxf (1,p) =~ u log pll?) =0
P

Or there exist real numbers a and b such that
[»} l | 2 [ 2
(9,5,8) = p(][k:E(p,l)-a,log pli“+ ll k£ (1,0)~b log p|l ©) <
p

and h(f,k,a,b) is zero,
Suppose (9,5,2) helds, Observe that the set of all

Integers k for which thercds a t° such that

1K

T - Ilk:f(p,l) -t log ¢ < o0
D D

is a group, (This can be seen by using the inequality
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lx +yll 2 < 2l 12+ 2lly || &) By this and by Lemms 9,3

there exlsts a non-zero infeger r such that h(f, 7k, ra,rb)# 0

and

z % ({] xr£(p,1) ~ ra 1oz p,llt2 + ket (1,p)-rb log pll &) <o
D : |
From tHis and the fact that

(17zy) 2 elcrt(mn))
m<x

nsy

tends to a limit as x ang Yy tend to infinity ind.ependently,
1t followvs, os in Delange (1970), that g = O and b =0, B8
(1i) holds by Lemma 2,4, If the limit of (2,5,8) is non-zero,
then (2,5,2) holds for some a and b, Again, as in Delange

(1970), it follows that a = b= 0 and the two series

s L Im[e(}:f(p,l))]
D P

and

Imle(k £ (1,p))]

o] 5(__1

X
p
converge, which gives the convergence of all the series in (i)

and (i1}, This completes the proof of Theorem 9,3,
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Theorem 2,4 follows easily from Lemma 9,5 as in

Elliott (1971),

Proof of Theorem 2,5 ; Lot be the characteristic

function of H, We haﬁe Tfor @ill reml %

o1ty i o 3
n“  m<n

m'<n

explitf(m,mt)]] = O(%)

a3 n =, 3ince $(0)

H

1 and § is continuous at

wdlmﬁsmraH ltY<5

<

zoro, there exists ¢ 6 >

L3 explitf(m,nt)] 4> ©
n” m<n
m'<n

as n =0, By Lomma 9,4, for ail |t| < 3, %here exist

real numberg a(t), b(t) -such that

oM
=g

[1 ~ Re(omp(it(p,1)) p718(1)] < oo
and

Z % (1 = Relexp(1t£(1,p)) p™ P8 ] <o,
gt = |

Hence by Lemma 7,7, there exist real numbers a,b and

additive arithmetic functions g; and g such that
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lg! (17 .
s -

for 1=1,2 and for all mmn z 1,

i

f{m,1) = a log m + gl(m) : g

il

f(1,n) = b log n + gg(n).

Now we define an additive function. glm,n) by

g(myn) = g (m) + gs(n) + {£(e,n) - £(m,1) - £(1,n)],
Clearly,

f(my,n) = a logm + b logn + glmn,n)

and

B iyt SN2 N (gl(p))2
(g (p,l)) | (g C‘,pu)iﬂ‘z z p‘l‘dbz‘g D))

+ Z s
0] LJ
P s X

.p P P
Ihis establishes the first half of the theorem,

Cenversely, suppose f(myn) = a logm + b logn + g(m,n)
with g(m,n) satisfying (9,3,5), TFrom the proof of Theorem
9,1 1t follows that there is a distribution function § such

that for each of its continuity point ¢,
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(1/xy) N{(m,n) m<x nsys glyn) - qm,n < e}
tends to Q(e) as =z and ¥  Ttend +o 1nf1ﬂ1ty 1ndependently.
Let 0 be thﬁ,churac OPlatlc function of Q, Let

PGy, 8) = /) 2 emp(it dmyn) = o)) = () )
2 8 &

m(;:r iR

nsy
'ofe that o (x;7,t) —> O, uniformly in every finite interval,
as X and y tend to infinity independently, Summing by

barts, we obtain

2 exp(itlf(m,n) ~ a log x - b log vy ~ <, n])

m=<x . B
nsy
= Z exp(it(g(m,n) - ® o))
mex "
n=y
~ - ‘ﬁ witalp explit(glm,n) =~ )11 1y
ta g mea . . 0 mmiiT
n<y
A dta-l
T N v > PXp[¢t(g(m,n)~ )}] dv
¥y 1 m<x ‘
n<y

()% oaebm1p ¥ sgperg
ita itp J f z
% ¥ 1 m<u

n<ir

exp(it(g(m,n)-dm,n))]du]dv
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|

= xy(e(x,y, 1) + P(b)) - f@g ]{“ v (olu,y,t) + P(t)) au
2P+ (x,v,t))dv

2 Voo ol
- _J_:j__ab_“,._, 5 vt oy ulb(@(t) + plu,v,t))du) dv
X].ua y_ltb 1 1 ] y o ?

LY ; 2
e A, L iXb .. __t7ab
w0 - - T (T+sa) ((HEe)) Holw) . -

xyP(t)
THta Geitpy T olw)

as x and y tend to infinity independently, where the

estimate o(xy) is uniform for + in every finite interval,

Note that, in view of (9,3,5) we have, for any fixed

e,O<e < 1

o (p,1) ° - :
( = 2oy 2 3 Ly (5 Lertpand

m<p<x . P £ X<pXx EX<pIX P

l

(~ loge +o0(1)), o(1)

i

o(1}
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.88 % —> % uniformly in m such that ex <m 2 x. So

for any fixed e > 0, 0 <¢ <1, we have

(9,5,10) 5ok 2% (p,1)
- & o p=n P Y

I
In DM

L g*(p,1) +0Q1) .

uniformly in m such that ex<m < x, as x => 0, Similarly

for any fixed e > 0, 0 <e¢ <1, we have

Lo
w0
@3]
[ ]
td
et
p -
Bt
!
0
*
N
e
Lol
p
{
|
fursd
*
=
et
o
L
+
Q
Fam
]_..l
~

unlfornly in m  such that ey <m <y, as y ~> o0,

ty (£,5,10) and (9,5,11), for any fixed e, 0 <g <1 and

for t dn any finlte interval

| = Lexp (1t (r(m,n) - g ‘,)_) - “v*p(ﬂ‘(f(m n)-a log x-b log y—o(
. mEx '
nsy
it - )
<2fry + D |e MM XY L4y
il e . )
ey <Ny

< xy(282 +0(1) (1 ~¢)?) < 3%y e

)11
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. |

for all sufficiently large x. eand ¥y, miformly in t in any

finite interval, From this fact, we have

i

A Ry
m<x S en(d:n =24 (1+ita) (1+1itb)

n<y

+ o(xg)

as x and ¥ ‘tend to infinity independ@nt1y, where the

estimate o(xy) is uniform for % in any finite interval,

If G is the distribution function corresponding to
the characteristic function @Q(6)/((1+iat) Q@+ivt)) then at

each continuity point ¢ of G, we have the 1limit of

(1/xy) B{imyn] § m=x, » 2y, f(m,n)." d%’y <c}

ig G(e) as x and y tend to infinity independently,

Suppose {ax y} and {bv y} are two sets of real numbers,
" \

ey )

Suppose G and H are tw distribution funetions such that

R . X . -
5 N{[m,n] sm<x, ngy and flmn) oy y <cq}

tends to G(cl) and

g | o 4B ) .
- Wlmel i m<x nsy ad £m,n) by g < Co}
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tends to H(ey) as = and y tend %o infinity independently,
at all continulty points ¢; and ¢y, of G and H
respectively, As in the proof of Lemma 1,6 it follows thab

a - b tends to a limit as x and y tend to infinity
Xy ¥ %5y s

independently, This completes the proof of Theorem 945,

Proof of Theorem 9,5 § We zive only -the outline of the proof,

28 the detailed proof leads to repetition of

argument in Chapter 5, As in Chapter 5 it is possible to
t 1 -

construct the random variables {Xé, Yip’ Yép} defined on

the same probability space such that

1) {Ylpf qu * p,o primes} 1is a set of mutually

independent random variables,

2) ZPJX #F#Y, + Y
P Y ‘_I_J_J

3) the characteristic function of Xﬁ is

Iy = %)2[3 i . ("9 exp(it f(pj,pk)))]
>
Rl

and s 2
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-ie Tunetion of X, is
) . HBan a4

8 B Z %o oem(it k £,(p)] 5 3 = 1,2,

It follows from Theorem 9,1 that the distribution of f is

"Same as the distribution of Z XD and the distribution of
w = ]
f. 15 game as that of Z ¥,
. L

3 ip ? J= 1,8, HNow the theorem

follows from Lemma 5,2 ,
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CHAPYER 19

INTEGRAL LIMIT THEORZEMS FOR ADDITIVE
FURCTIONS O THE 33T OF PAIRS
OF POSITIVE IUTEGERS

1, Introduction § OUne of the main problems of the probabilistic

g gt 5

numnber theory ls to find conditions an additive arithmetic
furction  must satisfy if there is tec exist a distribution

function E such that at each of its continuity peints

.{f(m) <x G, *+ Kn} - H(x)

a8 n —> 0 where Kn and Cn are suitably chosen seguences

connected with the function I,

This problem has been solved, for several classes of

functions, by several anthers, (See Mubilius, 1964 and Levin

and Fainlelb, 1968,) In this chapier we generalise some of the

results of Levin and Fainlei»{(1058) to additive functions on Zo
2, Notstions and definitions % Thro“ghout this chapter we Let

f denote a real-valued additive function satisfying
2 1 [(f*(p,l))b + (£%(1,0))%] =
p

A subset E of Z, is sald to have density 8*(E) in

the woﬁ’ sense i1f the 1limit of

——
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N

(1/%7) L-"'J-{’[nz,nj s Bt mgx, nx v}

is 8*(E) as =x and y tend to infinity with any fized
ratio,
A regl-valued arithmetic function ¢ is said to be

measurable (see Levin and Fainlelb, 1968) if there exlsts a

distribution function G such that at each of its continuity

points
I;E‘logn Z 1 = &(x) as n —> oo,
i bsn
P (p)=<x

A real~valued function @(m,n) ocn 22 is sald Yo be weakly

measurable if there is a distribution functicn G such that

at each of its continuity peints

log n

2 1 —> G(x) as n - o
psn

0(p, 1)+P(1,p)<x

n

A real-valued function $(m,n) on 2, is sald to be

measurable 1f beth P(m,1) and. - ${1,n) are measurable,
Let P(m,n) be a weakly measurable function such that

i i
Gpd,p™) = £, p5) 1f J+% > 1, We call a normalization
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of C } weakly P-admissible for f if there exists

r = r(n) — cc guch that

log r(n)
TTogn 0
and ' _ A
c % B S((0p,1) = 90, 10)%€¢2(1,0) - P12 ]e o,

r(n)<p<n P

88y o1 -+ 08l g

Let §(m,n) be a measursble function such that
@(pJ,pk) = f(p3,pk) if J +k >1, We csll a normalization
of {Gx,y'}\ b-admissivle for f if there exist ry = rl(x) - 0

and . = rz(y) —> ¢ guch that

el e B e
log x ’ log vy
and
62 | 5 Rre,1-0(p,10% T L(r(1,p)=b¢1,p))2]~0
P D b, Py e s P #P
" rl(x)*ipjx : rg(y)<piy

as ® and Yy ‘tend To iInfinity incdependently,
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3, Main results ¢

Theorem 10,1 ¢ Let @(m,n) be a measurable function such that

j 1{ + k]
O, p") = f(pd p") if j + % > 1., Then there exist
constants and 'a distrivuticn function H su t
‘{KX,Y:F [ X C ch hat

at each of 1ts continuity points the limit

10,3,1) & Eflmnl * m < » . >
(10, ) X7 {[ﬁ,n]l, m<x,nsy, flmn)< KX,Y + a,q& y}

s H(a) as x and y tend to infinity independently with an

arbitrary O-admissible normalization {C 1f and only irf

X,y}
there exists a non-decreasing function K, 0=FK(~-x) =

1im w(u) < Lim K{u)=K(eo)< oo, such that when B, , >0

P> 00 > OC 9 Y
is defined by the ecuation

i £%(p, 1) £2(1,p)
(10,352) | £ %3 = == Tt B 3, e = K(9),

P Bx,y S (p,l, Py BX,Y + f (l,p)

we have for all u # 0, the limit of

k =(p,1) £2(1,p)
(10,73, 2) b3 i; i =i z 'g; i ."2

<x BT _+£7(
pix %,y E (p,1) Py BL = (1,p)

f(p,l)<uBX hta

: X%

£(1,p)<uB, -
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jd

is K(u) as x and y tend %o infinity independently and

, rmallzatior = 3 i ! saible
the normallization Cx,y rl(x),rziy) 3 @ dmi ible,

on these ditions hold we ce : =B
When these conditions hold we can take CX,Y TICX),TZ(Y) .

The logarithm of the characteristic function of the 1imit law

is equal to

L e g , |
(10,3,4)  § (™ -1 - -3y M gxqy),
= 9 1+ u u

Theorem 10,2 ¢ Let D(m,n) be a weakly measurable function

o E5= i . .
stuch that $(p3,p§) = f(pg,pk) if jtk > 1, Then there
exist constante {KX} and a distribution function H such
that each of its continulty points the Timit
1 T - 5
oo Fyleyn] { m< % nxy, £flm,n)< K *a C}

1s H(a) as x and y tend %o infinity in a fixed ratio,

with an arbitrary weakly P-acdmissible normalization {Cx}

if and only 1f there exists a non*décreasing function K,

= K(=09) = 1inm K{u) < 1im K(u)mK(aﬂ<co such that
uy— > -~ oc 11 e OO0

when Bn >0 1is defined by the formula


http://www.cvisiontech.com

[180]

2 : 2
<n Pl BS 4 £2 (5 ) I BZ 4+ p2(1 = oK
| b= R Wi B b, 1 I iR, p)
we have féf all u Z 0
2
T ilpel
K{u)= lim 5 % “§““§L—l“ + 3 L f2(3:n)
T L P B#f7(0,1)  psn P OB 4 £2(1,p)

f(p,l)<uBn !

and the normalization C. = Br(yy 1s weskly {-admissible,

When these conditions hold, we can take C, = Br(x)’ ~and

12 1 | |
- . (p, 1) X . £(1,p)
©opzr(x) P p<r(x) ~ P
\f(p,j)\<cx Ve j\<cx
B 2 T (£(p,1) + £(L,p) - $(1,p) = P(p,1)
LX) SpP<X

o ( % () ~ [ udk(u)),
lul>1 lal<1

The logarithn of the.characteristic funetion of the limit law

is equal ko (10,3,4),
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4, Preliminary results

positive integers, Then the following two conditlons are

equivalent |

(19.4._1) Limit of "lé .‘tT{'[m nie E®*m
pid

Ia

¢ i z - 00
:&,115}:}156 as X >

(10,4,2) Limit of =W lunle Etms<x n<y} is & as

— 2

x and vy tend to infinity with a fixed ratio,

e i

Lana 10,2 (Levin and Fainleib, 1968) § Let g(p) be a real-
valuad additive _‘arj.thmotiﬂ i“ﬁnction. Let § (m) be fa measurable
function such that @(pk} = ’(;) for k >1 and let _.{Cn}
be 5 cecuonce of »ogitivae resl rumbers tending to infinlty as

n —> o, Then

n -
L T exp (1% ..E. ) X )
£ _\_}:} 1 o Il
n : G
m=1 i,

ite(p)/Cy
= TT (]_ + Qj——'-‘“"“"’—-“-*;.—_jl )
pr p

> exp ( %52 (g:(g) = BEC2) - BECD) + £CD) - K))

/2
_ (2(p)-D(p))° |
+o(-cl-( 3 p) PG Y Y + o(1)
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, g(p)
uniformly in t ‘in every finite interval, vhere A4 (g)=Z ===,
psn ¢

Lemma 10,3 7 Let E be a set of pairs of prime powers such

that

(10,4,3) z e .

i

= 12 o -
Lpﬁ,p le &

Let f(m,n) and glm,n) be two additive functions on Zy  such
that 2G5, 0%) = 2%, p%) or an1 [0%,p"] # B, Then for
each & > U there exists X = K(e) such that for all x and

37
;{[m,n] s m2x, 02y, [fnn)-glmn)] > K} < exy,

Proof & In view of (10,4,3), there exists an M = M{(e)
such that

< —~X~f3

by g % g
p*,p%1e B
poﬂ.ﬁ > M
Put
K = 3 | (p%,p") - g(pd,pﬁ)]..
poc+-8_§ M ! ;
Let

& {lm,n] ¢ plln and p°ln for some [p%,pP1e & and pd+3>M},
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Clesrly,

v(A) < xy 2 n
p™ By
* To complete the procf of the lemma, we need to show that

for all [w,nl & A
| £(m, n) - glm, n)| <X,
Note thst
f(myn) - glmyn) = = (r(%,p%) - g(pq,pg));

o
o |lm

2|l n
If [m,nl] & A, then

| £(m,n) ~ glm,n)| =1 R (£(p™,9") ~ g%, 0" )]
| R T '
ipq,?gje E

LR

= Ky
This proves the lenma,

5, Proofs of the main results %

Proof of Theoren 10,1 ¢ We give only an outline of the proof,

as the proofl is similar to the procf of Theorem 3 of Levin and

f
Faoinileib (1088

]

~

*
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1184]

In view of Lemma 10,3 1% is enough to consider functions
of the type flmyn) = £(u,1) + £(1,n), By Lemma 10,2 we have
fim,n)-K
_< 1L Xy

- % esplit 3 1
o omgx X, ¥

= etk /c ) T+ %‘(exp(itf(p,l)/cx’y) - 1))

XV XY
pjrl(x
_ 1 _
> i (1 + p(exp(ltf(l,p)/cx,y) - 1))
p<r. (y)

POl C 2 Leeo,Dbo,10% = Lerer.o)mbl1 0332)
“x,y r(x)<psx P ’ T rfy)psy P R

uniformly in t when t variss over any finite'interval, where

K! =Ry ot 3 e, 1)-00,100+ 3 Re(1.0)-b1.p))
v Iy - il g - i p L}

o ry(psx P 7 B R ’

The rest of the proof i1s similsr to the proof of Theorem 2

of Levin and Fainleib (1988), Ue only have to note the

following fact and use Lemma 7 of Levin, and Fainleld (1968),
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[185]
Fact 3§ If =0 is a binary relation on D = {(m,n) T oml, ngl}
defined by .o a e

(m,n) < (n',n') 4f m 2n' and n = n!

then clearly (D, -Z 18 a directed set, Let X be s

topological space, Let fx, 1 & ¢ D} be & net in X (sce
Lo :

Kelley, 1955) and =z e X, Then { X, ¢ B & D} converges

to x 1if and only if every subnet of {XBI: B e D} which isg
a4 seduence converges to x,

Proof of Theorem 10,2 is sinitlar to the proof of
Theorem 10,1, Here we nohe only that one has to use

Lemma 10,1,
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A LIST OF SY¥BOL3 A'D THEIR MEANING

e, cl,'cg evv denots constants,
Dy @ with or withouj suiflxes, denobe prime numbers, -

|
m,-n denote positive integers,

(myn) is the greatost cormon factor 6% m ang’ i

Jyk, 1,8 dendte Hon-riégative integers,

Lo

P is the set of all polynomialq F w1th lntegcr

coefficients satlsfylng the foTlcwﬂnp condﬂtlons 4 -

P1, F(r) >0 for m = 1,2;

AE NN ]

Pé, F is not lel“lblO by the squdre of ény_irreducible‘

polynomlal.
DF is the dogroo of,uho po?ypomlal F

r(d) = r(F, d) is tho number of incongruent solutions of

the congruonco rolatlon F(n) = 0 (mod da),
= %
®(m) is the number of distinet prime aivisers,
. Hh{‘.,:~} is the nugber of positive Integers n <n

having the property indicated in { e } .
For anrsot A of‘ncturalpunwors

B(A) = 1insy LN fme a
'n—>ocpnﬂ{ }’

D(4)

Il

lipiar 2 N, fme A}

n---;:-OO
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Lh]

snd D(4) is the compon value Of D(4) and D(4), whenever

they coincide

(! £(n™) EE: \f(pk)\ <1,

1
f"(p*\) Sl _ : .
: I I i e o X e i

nlm means n divides. m and n Y m means n does

not divige mn, pkllm mesns  polm - but oLy,

%1 if plk,

(k) =
P QO otherwvise

..=" is the space constructed by Novoselov (1956).
M= & - s() +n+ 2 nl If s(n) £ k < s(atl),

2 =
where s(n) = 1+2°+ ,,, * a”.

R (x) is the smellest non-negative regidue of x(mod Nk)'
P AR L%

L is the class of all complex-valued functions [ on

positive integers, which admit an ertension to {Ei and satisfy

P L
f(Rk(z) —> £(x) as k —> @, vhere NS denotes the

convergence in P-measure,

-

1 if pll Flx,
]
1,0'(1‘?,}')“{’}{) =
r G othervise,

- s
T i
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oo
f (x)=7¢ Fy = %
p( ) p(x, ) A
Alv,n) = &lv,n, 1, F) = g
v<p<n
Bly,n) = Blv,n, £,F) = [~ 2
vips<n
Aln) = Aln, £,F) = A(1,n,7, 7)),
B(n) = Bln,f,F) = B(1,n,f,F),

nEn
B(N) = B(N,N),
) = T ),
Pk
pim
2(5)
27{p
D(n) = ¥ ————
psn
{£{pJ If plm,

{p)
A, o= 2 ==
' psn P
52 fe(pg)
n g *

1

ey

|4

L
b

£ w(B,p",x).

' (p) r(F,p),

(£7(p))? r(F,p)1172
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Ldl
L(X) 1is the distridusion of a random variable X,

For any real number I, {X} is the fractional part of

%, i = I =nﬁ11({x}; T~ {x}),

| % 1l =1,
’ K
o { 1 othervise
and |

[-1 ir x <0,

|
sgnix) = ) N S

3
( if x > O,

A = Set of all real-valued additive arithmetic functions

¢ with () = kr(2) for a1l k 2 1,

M = Setof gl resl-valued multiplicative arithmetle

functions g with g(@) = ((2)Y for a1l ¥ > 1,
Z, 1is the set of pairs [m,n] of positive integers,

For asny subset B of Z,, [(B) denotes the cardinality

[

of the set 3B,

o(t) = explarit).

£ (m,n) = f(nq(p’m) d(n n))
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Lel |

where :
‘ g C{Cp,ll) ___ ’j ‘ . N . | ' ,
- g T et R e if. @rH n, T 21,
f(m:n)r = Z fp(m:‘n)-
| A (x,y,1) = ZJ_ZEX_ .p f(p,l) + péy - £(1,p).
K = e
Bolov, 0 = L 2 2e2p,0) 4 3 l 201 p>11/2 )
o X_* psy P
4, (x) =_A2(x¢qfh : - : ‘
B = B, o,
N = ' ,

For ey additive fu relion fy £ is the addAiti'lve funetion
1y defined by R I & '
' L f,1) 20 Af €50 and ko= 0

f+(pﬁ,.p“) 5 / i(l,p) 1f t=0 and x >0
| Lf( DI+ (g Af >0 and k> o

(f(p,l) it elp,1)] < 1,

EX el = - . . o T = 1
i L Y otherwise, °
i/
\f(l,p) if‘ If(l,p)[ il
ook e ..‘
. Cl’,p) | 1 othervise, s‘ﬂCAl— INST=>

' 725 T i
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