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�� INTRODUCTION

The multiple classi	cation problem is well studied in statistics� Typically� there is a qualitative
random variable Y that takes on a 	nite numberK of values which we refer to as classes� We want to
predict Y based on a random vectorX � RI M � Many methods have been proposed for this problem�
See Mardia� Kent and Bibby ������ for a discussion of �classical� discriminant analysis methods�
One of the popular modern multiple classi	cation techniques is CART �Breiman� Friedman� Olshen
and Stone ���
�� which approaches the multiple classi	cation problem using recursive partitioning
techniques that have strong links to nonparametric regression� Hastie� Tibshirani and Buja ����
�
introduce �exible discriminant analysis� which combines nonparametric regression techniques with
discriminant analysis� Bose ������ proposes classi	cation using splines� which employs least squares
regression and additive cubic splines� In computer science and engineering� neural networks seem
to be the method of choice �see Ripley ���
 and Cheng and Titterington ���
 for overviews��

As is well known� the optimal classi	cation rule predicts Y to be argmaxk P �Y � kjX�� Most of
the popular classi	cation methods try to 	nd argmaxk P �Y � kjX� without precise estimation of
the conditional class probabilities� However� there are many problems in which direct classi	cation
does not su�ce� For example� in Section 
�� we discuss the approach by Bourlard and Morgan
����
� to the phoneme recognition problem� which requires accurate estimation of the probability
of a phoneme being in any particular class� Clearly� pure multiple classi	cation methods are no
longer useful in such applications�

On the other hand� multiple logistic regression �polychotomous regression� techniques have been
used for a long time �see Hosmer and Lemeshow ������ In a polychotomous regression model we
do obtain an estimate of all the conditional class probabilities� �Bose ������ attempts to estimate
conditional class probabilities using a logistic model with additive cubic splines�� In this paper
we combine nonparametric regression techniques similar to those used in Friedman ������ and
Kooperberg� Stone and Truong ������ with polychotomous regression to obtain a POLYCLASS
classi	cation methodology that provides reliable estimates for conditional class probabilities�

This paper is organized as follows� In Section � we set up the polychotomous regression model�
describe its relation to multiple classi	cation� and discuss the estimation procedure� In Section � we
discuss the model selection procedure� which employs piecewise linear splines and selected tensor
products as well as stepwise addition and stepwise deletion of basis functions� In particular� in
Section ��� we discuss a least squares approximation� POLYMARS� to the model selection procedure
that can dramatically speed up the computations� POLYMARS is a customized multiresponse
version of MARS �Friedman ����� designed to be able to deal with huge datasets� In Section 
 we
apply POLYCLASS to a small example involving simulated data and to an example from the area
of speech recognition involving a data set of ���� utterances �short sentences� that yielded almost
������� cases� �Each case represents ����ms of speech�� The classes are the 
� possible phonemes
that may be spoken at any moment� The main goal in this example is to estimate the conditional
probabilities of each possible phoneme �not to classify the current phoneme� based on �� predictors�
which are obtained from the audible spectrum of the sound� In Section � we give a few concluding
remarks� A number of technical details about the methodology are deferred to the appendices�

Versions of the POLYCLASS and POLYMARS programs� written in C and interfaced to S�S

PLUS� will be made available via statlib in the near future�

�� POLYCHOTOMOUS REGRESSION MODELS
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��� Polychotomous Regression and ANOVA Decompositions

Consider a qualitative random variable Y that takes on a 	nite number K of values� We can
think of Y as ranging over K � f�� � � � � Kg� Suppose the distribution of Y depends on predictors
x�� � � � � xM � where x � �x�� � � � � xM� ranges over the subset X of RI M � Now let x be distributed as
a random vector� that is� consider the random pair �X� Y �� where X is an X 
valued random vector
and Y is a K
valued random variable� Suppose P �Y � kjX � x� � � for x � X and k � K and set

��kjx� � log
P �Y � kjX � x�

P �Y � KjX � x�
� x � X and k � K�

Then ��Kjx� � � for x � X and

P �Y � kjX � x� �
exp ��kjx�

exp ���jx� � � � �� exp ��Kjx�
� x � X and k � K� ���

We refer to ��� as the polychotomous regression model� when K � � it is referred to as the logistic
regression model�

The usual parametric approach to the polychotomous regression problem is to use the linear�
additive model ��kjx� � �k� � �k�x� � � � � � �kMxM � � � k � K� In practice� however� it may
be desirable to model the predictor e�ects by using smooth� nonlinear functions� A generalized
additive model �Hastie and Tibshirani ����� for the polychotomous regression problem is given by

��kjx� � ��k�x�� � ��k�x�� � � � �� �Mk�xM�� � � k � K� ���

In order to allow for interactions between predictors� the generalized additive model can be further
re	ned�

To illustrate our approach� suppose x � �x�� x�� x�� and consider the form

��kjx� � ��k���k�x�����k�x�����k�x������k�x�� x������k�x�� x������k�x�� x��� � � k � K�
���

where ��k���� � � � � ���k��� are smooth functions� Here ��k is the constant term� ��k���� ��k��� and
��k��� are referred to as main e�ects� and ���k���� ���k���� and ���k��� are referred to as two
factor
interactions� Given a random sample� consider an estimate

b��kjx� � b��k� b��k�x��� b��k�x��� b��k�x��� b���k�x�� x��� b���k�x�� x��� b���k�x�� x��� � � k � K�

�
�
We can think of b��kjx� as an estimate of ��kjx�� Alternatively� if ��kjx� does not necessarily have
the form speci	ed in ���� we can think of b��kjx� as an estimate of the best theoretical approximation

���kjx� � ���k����k�x������k�x������k�x�������k�x�� x�������k�x�� x�������k�x�� x��� � � k � K�
���

to ��kjx�� where best means having the maximum expected log
likelihood subject to the speci	ed
form�

More generally� consider the approximation �� to � having the form of a speci	ed sum of
functions of at most d of the variables x�� � � � � xM and� subject to this form� chosen to maximize
the expected log
likelihood� Given a random sample of size n from the distribution of �X� Y ��
if maximum likelihood and suitable �nonadaptive� sums of polynomial splines and their tensor
products are used to construct an estimate b� of ��� where b� has the same form as ��� then this
estimate can achieve the L� rate of convergence n

�p���p�d�� Here p is a suitably de	ned smoothness
parameter corresponding to ��� in particular� p � � when linear splines and their tensor products
are used and the components of �� are twice continuously di�erentiable� Thus� by choosing d � �
as in ��� or d � � as in ������� instead of d � M � we can ameliorate the curse of dimensionality�
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�Taking d � � is similar to the common practice of ignoring interactions involving three or more
factors in a factorial design�� For more detailed discussions of theoretical rates of convergence in
this and related contexts� see Stone ����
�� Hansen ����
�� and Stone� Hansen� Kooperberg and
Truong �������

In this paper we restrict attention to d � � and use linear splines and their tensor products� but
we will be choosing these splines in an adaptive way� In practical applications the restriction to
d � � rarely worsens the accuracy of the 	tted model� but it improves its interpretability and speeds
up and simpli	es the corresponding computer code� Although our present code is limited to d � ��
the methodology described in this paper could easily be extended to include interactions involving
three or more factors or� equivalently� tensor products of three or more polynomial splines�

��� Linear Models

Let p be a positive integer and let G be a p
dimensional linear space of functions on X with basis
B�� � � � � Bp� Consider the model

��kjx� � ��kjx��� �
pX

j��

�jkBj�x�� x � X and k � K� ���

here �k � ��k�� � � � � �kp�
T for � � k � K � �� �K � �� and � is the p�K � ��
dimensional column

vector consisting of the entries of ��� � � � ��K��� which ranges over B � RI p�K���� Correspondingly�
we set

P �Y � kjX � x��� �
exp ��kjx���

exp ���jx��� � � � �� exp ��Kjx���

� exp���kjx���� c�x����� � � B� x � X and k � K� ���

where
c�x��� � log�exp ���jx��� � � � �� exp ��Kjx����� � � B and x � X �

Now
logP �Y � kjX � x��� � ��kjx���� c�x���� � � B� x � X and k � K�

The 	rst
order and second
order partial derivatives of log P �Y � kjX � x� �� are easily obtained�
in particular� the Hessian matrix is negative semi
de	nite on B for x � X and k � K�

When using ��� to model the conditional class probabilities� we need to resolve two issues� how
to choose the linear space G� and� given G� how to estimate �� The latter issue is dealt with below�
while a discussion of the 	rst issue is postponed to Section ���� Here it su�ces to note that the
basis functions Bj will all be piecewise linear functions in one variable or tensor products of two
piecewise linear functions in di�erent variables�

Let �X�� Y��� � � � � �Xn� Yn� be independent random pairs� with each pair having the same joint
distribution as �X� Y �� The log
likelihood function corresponding to the 	nite
parameter model ���
is given by

���� �
X
i

���YijXi���� c�Xi����� � � B�

which is a concave function on B� �For numerical reasons� we add a small penalty term to the
log
likelihood function� See Appendix C for details��

The maximum likelihood estimate b� is given by �� b�� � max� ����� and the log
likelihood of

the 	tted model is given by �� � �� b��� The corresponding maximum likelihood estimates of ��kjx��
x � X and k � K� are given by ���kjx� � ��kjx� b��� x � X and k � K�

The maximum likelihood estimate b� can conveniently be computed by a Newton�Raphson
algorithm �with step
halving� or by using a quasi
Newton approximation of the Hessian� such as the






Broyden�Fletcher�Goldfarb�Shanno �BFGS� inverse updating technique �Fletcher ������ Quasi�
Newton are usually faster than Newton�Raphson methods� since they do not require computation
of the full Hessian� However� the Rao statistics �see Appendix A� based on this approximation of
the Hessian turn out to be too inaccurate� In practice we therefore alternate between quasi
Newton
and Newton�Raphson steps during the computations� especially when �K � ��p is large�

The Bayes multiple classi	cation rule with unit costs is to assign a case with X � x to a
class k having the maximum conditional probability P �Y � kjX � x� or� equivalently� having the
maximum value of ��kjx�� The corresponding POLYCLASS rule is to assign the case to a class
having the maximum value of ���kjx��

�� MODEL SELECTION

��� Allowable Spaces

When modeling ��kjx� with a linear model the remaining issue to be resolved is the choice of G�
In this section we describe an algorithm for determining G in an adaptive fashion� given a family
G of allowable spaces G that is assumed to have the following properties�

� for each G � G� the space G has dimension p � Pmin�

� there is only one G � G with dimension Pmin�

� if G � G has dimension p � Pmin� there is at least one subspace G� � G of G with dimension
p� ��

� if G� � G has dimension p� there is at least one space G � G with dimension p� � containing
G� as a subspace�

We refer to G � G with minimal dimension Pmin as the minimal allowable space�
Initially� we use the minimal allowable space to model ��kjx�� Then we proceed with stepwise

addition� Here we successively replace the �p���
dimensional allowable space G� by a p
dimensional
allowable space G containing G� as a subspace� choosing among the various candidates for a new
basis function by a heuristic search that is designed approximately to maximize the corresponding
Rao �score� statistic� See Appendix A for details�

Upon stopping the stepwise addition stage with p � Pmax basis functions according to a rule
described in Appendix C� we proceed to stepwise deletion� Here we successively replace the p

dimensional allowable space G by a �p� ��
dimensional allowable subspace G� until we arrive at
the minimal allowable space� at each step choosing the candidate space G� so that the Wald statistic
�see Appendix A� for a basis function that is in G but not in G� is smallest in magnitude�

The speci	c models that are considered in this paper involve splines and their tensor products�
We con	ne our attention to linear �rather than quadratic or cubic� splines� since they are easily
interpretable in the context of classi	cation� as will be clear from the examples in Section 
� In the
present context� it is convenient to de	ne an allowable space by listing its basis functions�

For � � m �M � let Km be an integer with Km � ��� if Km � ��� there are no basis functions
depending on xm� if Km � �� consider the basis function Bm��xm� � xm� if Km � �� consider the
basis function Bm��xm� � xm� let xmk for � � k � Km be distinct real numbers� and consider the
additional basis functions Bmk�xm� � �xm � xmk�� for � � k � Km�

Let G be the linear space having basis functions �� Bmk�xm� for � � m �M and � � k � Km�
and perhaps certain tensor products Blj�xl�Bmk�xm� �with l �� m� of two such basis functions� It
is required that if the indicated tensor product be among the basis functions for some j � �� then
Bl��xl�Bmk�xm� � xlBmk�xm� and hence xlxm �if k � �� be among the basis functions�

One reason for adding linear terms before knots and main e�ects before interactions is to yield
models that are simpler and easier to interpret� In particular� if a covariate appears only linearly in
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the 	nal model� then the model is a traditional parametric model with respect to that covariate �see
the examples in Section 
�� A second reason is to reduce the variance associated with the overall
modeling procedure� and a third is to reduce the likelihood of ending up with spurious terms in
the 	nal model� The requirement of adding main e�ects before interactions is also motivated by
theoretical considerations regarding convergence rates �see Section ���

It is easy to check that the collection G of such spaces satis	es the properties listed above� In
particular� the minimal allowable space Gmin for the POLYCLASS model is the space of constant
functions� Thus the minimal model for ��� has p � �� B� � � and ��kjx� � �k� for � � k � K � ��
so P �kjx� does not depend on the vector x of predictors�

Given the basis of an allowable space G as de	ned above� it is easy to check whether any given
basis function can be deleted in one step�

Example� Let M � 
� B� � �� B� � x�� B� � �x� � ���� B	 � x�� B
 � x�� and B� � x�x��
Then B�� � � � � B� span an allowable space G� In this example� B�� B
 or B� could be removed and
the remaining space would still be allowable� If one of the basis functions B� or B	 were removed�
however� the remaining space would not be allowable since it would still contain B� � B�B	 �as
well as B� in the case of removing B��� The constant basis function B� can never be removed�

Let G� be the allowable space having basis functions �� Bmk�xm� for � � m � M and � �
k � Km� and perhaps certain tensor products of two such basis functions� To decide which basis
function to add to this model� we compute the Rao statistic�

�i� for all spaces that can be obtained from G� by adding a basis function Bl��xl� � xl to G��

�ii� for all allowable spaces that can be obtained from G� by adding a basis function to G� that
is a tensor product of two basis functions Blj�xl� and Bmk�xm�� l �� m� that are in G��

�iii� for an allowable space that can be obtained from G� by adding a basis function based upon
a potential new knot in predictor m for � � m �M � located using a heuristic algorithm �see
Appendix C��

As the new space G we choose the one corresponding to the largest absolute value of the Rao
statistic among those candidates listed above that are nonvacuous�

Example �continued�� Corresponding to �i�� we can add the basis function x	 to the space in
the above example� Corresponding to �ii�� we can add B�B
 � x�x�� B�B	 � �x� � ���x� or
B	B
 � x�x� to the space� The basis function B�B
 � �x� � ���x� cannot be added� since the
resulting space would not contain B�B
 � x�x� so it would not be allowable� Corresponding to
�iii�� a basis function �x� � x�k�� with x�k �� �� �x� � x�k�� or �x� � x�k�� could be added� No
basis function of the form �x	 � x	k�� could be added before x	 is added�

��� Selecting the �Best� Model

During the combination of stepwise addition and stepwise deletion� we get a sequence of models
indexed by 	� with the 	th model having �K � ��p� parameters� For POLYCLASS the methods of
selecting one model from this sequence that we consider are the �generalized� Akaike information
criterion �AIC�� an independent test set� and cross
validation�

AIC� Let �l� denote the 	tted log
likelihood for the 	th model� and let AIC��� � ���l� �
�K �
��p� be the Akaike information criterion with penalty parameter 
 for this model� We select the
model corresponding to the value �	 of 	 that minimizes AIC��� � In light of Kooperberg and Stone
������ and our experience in the present investigation� we recommend choosing 
 � logn as in the
Bayesian information criterion �BIC� due to Schwarz ������� �Choosing 
 � � as in classical AIC
tends to yield a model that is unnecessarily complex� has spurious features� and does not predict
well on test data�� Our software allows the user to specify the penalty parameter�

�



Test set� Consider an independent test set �XTS
i � Y TS

i �� � � i � nTS� Given estimates b��Y �
kjx� we can estimate the risk �probability of misclassi	cation� by �RTS

� �
P

i ind�
bY TS
i �� Y TS

i ��nTS�
Given a 	nite number of estimates of the optimal classi	er� we choose the model having the smallest
estimated risk� The minimum value of �RTS

� is an estimate of the risk for classifying a new object
using the 	nal POLYCLASS model� This estimate is slightly biased downwards� since the test set
is used to minimize the risk�

Cross�validation� Alternatively� cross
validation can be used to estimate the risk� Here we 	rst
randomly divide the cases into c � � approximately equally
sized subsets� Then the following
procedure is carried out for j � �� � � � � c �see Breiman et al� ���
��

� Fit a sequence of POLYCLASS models� as described in Section ���� to all cases not in the
jth subset�

� For each 
 � � select the model �	j� that minimizes AIC��� �

� For each 
 compute the loss rj�
� �
P

ind� bYi �� Yi�� where the sum is over the cases in the
jth subset �which were not used to 	t these models��

For every 
 we now compute the cross
validated loss R�
� � n��
Pc

j�� rj�
�� Let  
 be the
geometric mean of the endpoints of the interval of values of 
 that minimizes R�
�� We proceed
by 	tting a sequence of POLYCLASS models to all data� using AIC with penalty parameter  
 to
select the model�

Note that minR�
� is a slightly optimistic �downward biased� estimate of the risk for classifying
a new object using the 	nal POLYCLASS model�

��� POLYMARS	 A Least Squares Approximation of the Addition Process

The stepwise addition process� as described in the previous subsections� is computationally too
expensive for huge data sets� We determined that for the phoneme recognition problem discussed
in Section 
��� for which n � ������� K � 
�� M � �� and Pmax � ���� the computations would
require O����
� �oating point operations ��ops�� which would take several years of cpu time on the
SGI workstation that we used for most of our computations� �See Appendix B for details�� This
computation led us to consider the following least squares approximation to the stepwise addition
process when dealing with large data sets� Let Zi� � � i � n� be the column vector of length K�
whose kth element is ind�Yi � k�� The estimate b� of � is obtained by minimizing

V ��� �
X
i

X
k

�Zik � ��kjXi����
��

where ��kjXi��� �
Pp

j�� �jkBj�Xi�� The selection of the new basis function is carried out by

minimizing V � b��� while the same allowable spaces as in POLYCLASS are used �see Section �����
The stepwise addition part of the model selection can now be carried out in a few hours for the
phoneme recognition problem� See Appendix B for more details� This least squares version of
the stepwise addition algorithm� referred to as POLYMARS� is similar to the MARS algorithm in
Friedman ������� but it is substantially faster�

The least squares problem described above eventually yields Pmax basis functions� We now
	t a POLYCLASS model with these basis functions using the method described in Section � and
a quasi
Newton algorithm� The stepwise deletion procedure remains the same as in Section ����
except that we use the quasi
Hessian for the computation of the Wald statistics� It has been
our experience that� though the quasi
Hessian is not adequate for stepwise addition� it does give
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satisfactory results during stepwise deletion� The idea for using POLYMARS as a preprocessor for
POLYCLASS was inspired by Bose ������ and Hastie et al� ����
��

For the example mentioned above� using the approximations described in this section� the cpu
time can be reduced to about �� days� Using a network of workstations this was further reduced
to approximately one day� See Appendix B for details�


� EXAMPLES

We used two data sets to compare the performance of POLYCLASS to a variety of other classi	

cation methods� linear discriminant analysis �LDA�� �exible discriminant analysis �FDA� �Hastie
et al� ���
�� classi	cation using splines �CUS� �Bose ������ and classi	cation and regression trees
�CART� �Breiman et al� ���
�� The 	rst example involves the arti	cial waveform data from the
CART monograph� and the second example involves real data from the area of speech recognition�

Linear discriminant analysis� a classical method that has been used for decades� assumes that
the predictors have multivariate normal distributions with di�erent means� but the same covariance
matrix� for each class� The distributional parameters are estimated and the resulting decision rule
is linear in the predictors� See Mardia et al� ������ for more details�

When the assumptions underlying LDA are far from being satis	ed� the method may perform
poorly� This has motivated researchers to come up with various alternative methods� One such
method is CART �Breiman et al� ���
�� which predicts the class membership of an individual
based on a binary decision tree� Each node of the tree splits the ranges of individual predictors to
separate the measurements from di�erent classes� The option of splitting the predictor space by
linear combinations of predictors is also available in CART�

CUS �Bose ����� uses an additive cubic spline model to approximate the conditional class
probabilities� However� in contrast to POLYCLASS and like the procedure described in Section
���� this model is estimated using least squares regression� The model selection is carried out using
a stepwise deletion algorithm and cross
validation�

Breiman and Ihaka ����
� observed that discriminant analysis can also be performed by multiple

response linear regression using optimal scaling to represent the classes� Hastie et al� ����
� re

placed linear regression by nonparametric regression methods such as MARS or BRUTO �Hastie
����� and thus developed the FDA classi	cation method� While MARS is based on linear �or cubic�
regression splines and their tensor products� BRUTO uses an additive smoothing splines model�
FDA follows a two
step approach� the initial estimates are obtained by least squares regression
using MARS or BRUTO as described in Section ���� and then an optimal scoring step is performed
to obtain 	nal estimates� Hastie et al� showed that the second step �essentially a linear discriminant
analysis with the initial estimates treated as predictors� can provide lower error rates than those
achieved by the initial estimates�

�� Waveform Data
In our 	rst example �the detailed description of which can be found in Breiman et al� ���
� there
are three classes and �� predictors� Let� h�� h� and h� be the triangular �waveforms� de	ned by
h��i� � max��� j i� � j� ��� h��i� � h��i� �� and h��i� � h��i� 
�� for i � �� � � � � ���

The distributions of the �� predictors conditional on the class of the observation are now de	ned
by

xi � uh��i� � ��� u�h��i� � �i for class ��

xi � uh��i� � ��� u�h��i� � �i for class �

and

xi � uh��i� � ��� u�h��i� � �i for class ��
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Table �� Misclassi	cation error rates for the waveform data� averages based on �� simulation
runs�

Method Training Test Cross
validation

POLYCLASS ���� ���� ���

LDA ���
 ����
FDA �BRUTO� ���� ���

FDA �MARS� ���
 ����
FDA �MARS� degree �� ���
 ����
CUS ���� ���
 ����
CART ���� ���� ����
CART �Lin� Comb�� ���� ��
� ���


where u has uniform distribution on ����� and the �i are independent random variables with a
standard normal distribution� Note that for 	xed u this problem would exactly satisfy the conditions
under which LDA is the optimal classi	cation procedure� Since u is random this is no longer the
case� however� we may still expect that LDA would work quite well on this example�

A training set of size ��� was generated using equal priors� For the POLYCLASS models� CUS
and CART� the model selection was performed using ten
fold cross validation� In LDA no model
selection was used� and in FDA the model selection was done using a generalized cross
validation
criterion� After the models were 	tted� the classi	cation was evaluated on an independent test
set of size ���� that was generated the same way as the training set� The whole experiment was
repeated �� times�

Misclassi	cation error rates on the training and test sets based on the ten repetitions are
reported in Table �� The typical standard errors ranged from ���� to ����� For the methods
using cross
validation� the training column in this table contains the resubstitution errors �which
can thus be compared with the training set errors for LDA and FDA�� while the cross
validation
column contains the cross
validation estimate of the error rate� �Cross
validation is never used
for standard LDA� while the implementation of FDA that was available to us did not allow for
cross
validation��

The results in Table � show that POLYCLASS performed quite satisfactorily in this simple
example� Except for CART� the other methods performed about the same as or a little better than
LDA� POLYCLASS had very similar error rates as LDA� FDA� using BRUTO for the nonparametric
regression� seems to have a slight edge over the other nonlinear methods� Note that LDA� CUS
and FDA with BRUTO or MARS �degree �� use additive models� In this example additive models
are probably su�cient� so that the other methods� including POLYCLASS� are somewhat overly
complicated� particularly since the predictors are highly correlated� We note that POLYCLASS
performs better than the other nonadditive models�

In Figure � we show some plots related to one particular POLYCLASS 	t� This 	t was based
on a training set of size ���� The selected model had �
 basis functions� the constant function� nine
linear functions� a knot for predictor ��� a knot for predictor ��� an interaction between x� and x

and an interaction between x�� and x��� This is not the best POLYCLASS 	t� Most POLYCLASS
models selected for di�erent realizations of the waveform data were linear� yielding smaller test
set errors� However� we choose this model to illustrate some of the features of POLYCLASS� In
particular� in Figure �a� we show the decision boundaries as a function of the value of predictors
�� and ��� when all other predictors have the value 
� In the other panels of Figure � we show
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perspective plots of the probability estimates� We observe from this plot that large values of x��
and x�� together are associated with class � and that small values of x�� and x�� together are
associated with class �� This seems reasonable in light of the true measurement models for these
classes�


�� Phoneme Recognition

Our second example is taken from the area of speech recognition� The source of this data set is
the Center for Spoken Language Understanding in Portland� Oregon �Cole� Roginsky and Fanty
����� Cole et al� ���
�� The data set involves ���� utterances from telephone calls� which are
numbers that typically are parts of addresses� zip codes and street numbers� Each utterance
was processed by one or more listeners� who produced a time
aligned phonetic description of the
utterance� For example� for one particular utterance� ��o�� �three
oh
three�� it was determined
that from � millisecond �ms� to ��� ms� the speaker produced phoneme T� followed by phoneme
r from ��� ms to ��� ms� and so on� It should be noted that the person who determined which
phoneme was spoken was not aware of the text of the utterance� The phoneme transcription� which
we obtained from the International Computer Science Institute �ICSI� in Berkeley� California� is
based on the LIMSI phonetic alphabet �Gauvain et al� ���
��

The utterances were also processed to produce perceptual linear predictive �PLP� features�
Every ���� ms the audible spectrum is determined from a concentric �� ms piece of sound� Since
we consider telephone data� which is sampled at the frequency of � kHz� there are ��� observations
of the sound wave in such a �� ms interval� A Hamming window is applied to these ��� observations
before the spectrum is estimated using the discrete Fourier transform� The estimated spectrum
is next transformed to yield a critical
band integrated power spectrum with an equal
loudness
preemphasis and a cube root nonlinearity to simulate the auditory intensity
loudness relation�
Then the eighth order autoregressive all
pole model of the transformed spectrum is obtained� The
coe�cients of the Fourier transform representation of the log
magnitude of this model are known
as its cepstral coe�cients� The PLP features �Hermansky ����� Rabiner and Juang ����� Bourlard
and Morgan ���
� that we used are the log
gain of the model �similar to the variance� and the next
eight cepstral coe�cients �similar to autoregressive coe�cients��

The goal in our analysis is to estimate the probability distribution over all phonemes at intervals
of ���� ms based on the �nine� features available at that time point as well as the c time points�
���� ms apart� before and after the point at which we want to estimate the phoneme distribution�

Such a probability distribution �or� more precisely� a likelihood that is obtained by weighting
the estimated probabilities by the empirically determined frequencies of the phonemes� can be
used as input to train �estimate� a hidden Markov model� which in turn can be used for automatic
speech recognition �Bourlard and Morgan ���
�� In the hybrid approach described by Bourlard and
Morgan� a multilayer perceptron network �a type of arti	cial neural network� is used to estimate
these probabilities�

There were 
� di�erent phonemes� yielding �
���� cases ����� ms intervals�� We randomly
divided the data into a training set of about ������ cases and a test set and 	nal test set of about
����� cases each�

We used the vector of features at seven di�erent time points� so that c � � above� The eight
cepstral coe�cients were used exactly as we received them from ICSI� Since some speakers speak
more loudly than others� the log
gain by itself is not an informative predictor of the phoneme that
is being spoken� Di�erences in the log
gain may be more informative� If e�i� is the log
gain at time
instance i� we used d�i� � e�i�� �e�i� �� � � � �� e�i� ����� instead of e�i��

The POLYCLASS methodology described in Sections ������� would be practically impossible to
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Fig. 1. Classification map and estimated conditional class probabilities as
a function of predictors 13 and 16, when all other predictors are equal to 4.

White: class 1; grey: class 2; black: class 3.
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apply to the phoneme recognition data� for which K � 
��M � � �� � �� and n � ������� Instead�
we used the least squares approximation for the stepwise addition procedure and carried out the
actual 	tting of the model on a network of workstations �see Section ��� and Appendix B�� The
largest model that we 	t had ��� basis functions� This number is much larger than the default value
of ��� �see Appendix C�� but initial analysis suggested that a larger model would yield much better
results� �See also the discussion of Figure � below�� This maximum number of ��� basis functions
was constrained by the computing resources that were available to us� We believe that a larger
number of basis functions would give better results� Exhaustion of our resources also prevented us
from applying the stepwise deletion algorithm on the largest model� However� intermediate results�
not reported here� suggest that the deletion of some basis functions would not signi	cantly improve
our results�

In Figure � we report the misclassi	cation rate and the 	tted log
likelihood
P

i logP �Y �
YijX � Xi��n for the training set and both test sets combined� From these graphs it appears that
the 	t would continue to improve if we were to increase the number of basis functions�

As mentioned earlier� in this particular application the estimation of conditional class proba

bilities is more important than classi	cation� since these probabilities can be used as the inputs
to the hidden Markov model for the approach to speech recognition described in Bourlard and
Morgan ����
�� POLYCLASS is particularly useful in this situation� since� unlike most other clas

si	cation methods� it provides estimates of the conditional class probabilities that are positive and
add up to one� In Figure � we plot the estimated probability that a case is a particular phoneme
grouped in bins of size ���� on the horizontal axis and the fraction of cases with that probability
that corresponded to the correct phoneme on the vertical axis� Note that every case contributes 
�
observations to this graph� one observation per candidate phoneme� These graphs are extremely
close to the ideal straight line �fraction true class� � �estimated probability� for both the test sets
�Figure �a� and the training set �Figure �b��

Clearly� not all phonemes are correctly estimated with the same probability� In particular�
frequently occurring phonemes are correctly classi	ed more often than infrequently occurring ones�
The �� phonemes that occurred fewer than ���� times in the test set and the 	nal test set had a
total number of 

�� cases of which only ���
! were correctly classi	ed� The �� phonemes with
between ���� and ���� cases in the combined test set had a total number of ����� cases of which
����! were correctly classi	ed� The �� phonemes with more than ���� cases in the combined test
set had a total number of �
��� cases of which ����! were correctly classi	ed�

In Table � we summarize misclassi	cation rates for various methods on the phoneme data� We
compare POLYCLASS to linear discriminant analysis using the �� features� POLYMARS �assigning
a case to the largest 	tted value for the POLYMARS least squares algorithm�� and CART� with
and without linear combinations� Inspired by Hastie et al ����
�� who use a form of discriminant
analysis with predictors selected by MARS� we also compare POLYCLASS to linear discriminant
analysis using the �
� nonconstant basis functions selected by POLYMARS�

Table � shows that POLYCLASS has the best test set error� 
! better than the next best
error rate �POLYMARS� and ��! better than LDA on the features� It is interesting to notice that
least squares regression on the �
� basis functions �POLYMARS� performs better than LDA on
these basis functions� The POLYMARS algorithm that we use to estimate the basis functions gives
us the POLYMARS classi	er for free� while additional computations have to be carried out for
LDA� Conceivably� both for LDA on the basis functions and for POLYMARS the error rate would
decrease further if we increased the maximum number of basis functions� �For the other methods
the graphs of misclassi	cation rate versus model size look very similar to Figure �a� except that
the misclassi	cation rates are higher�� Since we did not employ stepwise deletion here� the model
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basis functions. Solid = training set, dashed = test set combined with final test set.
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Table �� Misclassi	cation rates for the phoneme data�

training set test set 	nal test set

sample size ������ ����� �����
POLYCLASS �����! �����! �����!
LDA 
 �� features 
����! 
����! 
����!
LDA 
 �
� basis functions 
���
! 
����! 
����!
POLYMARS 
 �
� basis functions �����! 
����! �����!
CART 

���! �����! �����!
CART 
 linear combinations 
����! 
����! 
����!

selection for POLYCLASS is independent of the test set� The di�erence in performance between
the test set and the 	nal test set is therefore due to random variation� the same is true for all other
methods but CART� which does use the test set for model selection� The regular CART tree was
formed by using ��� as the minimum atom size for splitting and had ��� terminal nodes� When
linear combination splits were allowed for nodes of size at least ����� the resulting tree had ���
terminal nodes�

Misclassi	cation rates for neural networks in exactly this data set were not available from
either OGI or ICSI� However� they reported to us informally that� using somewhat di�erent features
and�or time periods� they got test set error rates of approximately ��!� The higher misclassi	cation
errors of POLYCLASS could be attributed to the following reasons�

�� The set of features that we considered as possible predictors are far from optimal� Further
examination of our 	t revealed that the most important information is obtained from time
points �� ����� ms before the phoneme was spoken�� � �when the phoneme is spoken� and �
����� ms after the phoneme was spoken�� After our analysis we learned from OGI and ICSI
that the actual times at which they use the features are chosen more optimally� based on
considerable experience� As con	rmation� when we used the times ��� �
� ��� �� �� 
 and
�� instead of ��� � � � � �� the misclassi	cation errors for the two LDA based methods as well
as POLYMARS dropped by approximately 
��!� To save computing resources we did not
apply the other methods to this modi	ed data set�

�� A model with more than ��� basis functions would likely have led to smaller misclassi	cation
errors� as is evident from Figure ��

�� To make it possible to 	t much larger POLYCLASS models and try out many more sets of
features the computational tricks that we used �Section ���� Appendix B� are insu�cient�

We currently believe that much faster techniques for 	tting huge POLYCLASS models could be
developed by using the stochastic gradient methods that are employed in the 	tting of neural
networks �Boulard and Morgan ���
��

�� CONCLUDING REMARKS

In this paper the polynomial spline methodology that has already been used in density estimation
�LOGSPLINE� Kooperberg and Stone ������ regression �MARS�� and hazard regression �HARE�
has been extended to handle a categorical response variable with any number of categories �classes�
and any number of continuous covariates� The methodology involves maximum likelihood esti

mation� stepwise addition and stepwise deletion of basis functions� and 	nal model selection using
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cross
validation� an independent test set� or BIC� The main purpose of the methodology is to provide
accurate estimates of conditional class probabilities� which can be used to obtain good estimates of
optimal �Bayes� multiple classi	cation rules� As the application to the waveform data in Section 
��
illustrates� POLYCLASS is competitive with other multiple classi	cation methodologies� including
those that do not provide estimates of conditional class probabilities�

In POLYCLASS the number of unknown parameters is the product of the number of basis
functions and one less than the number of classes� In the context of the phoneme data discussed
in Section 
��� there are 
� classes and there could easily be 
�� or more basis functions� so there
could easily be ������ unknown coe�cients� Also� there are more than ������� cases in the training
sample� The LOGSPLINE� MARS and HARE algorithms and software were designed to handle
up to �� basis functions and as many unknown coe�cients� The standard version of POLYCLASS
can easily handle problems substantially larger than the waveform example� but it is unusable on
problems having as many cases and� especially� unknown parameters as the phoneme example�
Similarly� most of the methods that we used for comparison on the waveform example are not
directly usable on problems as large as the phoneme example� and the ones that we could use were
outperformed by POLYCLASS�

Perhaps the main contribution of this work has been the development of a modi	ed version of
POLYCLASS that is computationally feasible for much larger problems than the standard version�
To this end� we developed a linear least squares replacement for the nonlinear maximum likelihood
based stepwise addition of basis functions� This least squares stepwise addition procedure in turn
was carried out using POLYMARS� a modi	cation of MARS that we developed which is substan

tially faster when there are many basis functions to be selected� Then� to obtain the nonlinear
maximum likelihood 	t to the full set of initial basis functions� we employed a quasi
Newton in

stead of the Newton�Raphson method� we sped up the 	tting further by gradually increasing the
numbers of basis functions and cases used� and we parallelized the software to enable it to run
e�ciently on a network of �
 workstations�

In this manner� we obtained a version of POLYCLASS that could handle the phoneme problem�
The error rates that we obtained were better than those of the the competing procedures we
examined and also better than those reported for neural networks before the start of our project�
Since then� however� we have informally learned about still better error rates obtained by experts
in the area of speech recognition through the use of neural networks� This should not be surprising
in light of the extent of practical experience in improving the computational e�ciency in the 	tting
of neural networks with large numbers of weight parameters and in using such neural networks
in the contexts of speech recognition� Moreover� our results suggest that� with the modi	cations
discussed at the end of Section 
��� POLYCLASS would be competitive with neural networks in
this context�

APPENDIX A	 QUADRATIC APPROXIMATIONS TO THE LIKELIHOOD

In this appendix we give some motivation for the use of Rao and Wald statistics in the stepwise
model selection procedure described in Section ��

Rao statistics� Let S��� denote the score at � �that is� the p�K���
dimensional column vector
with entries 
������
�kj�� and let H��� denote the Hessian at � �that is� the �K � ��p� �K � ��p
matrix with entries 
�������
�k�j�
�k�j���

Let b���� be the maximum likelihood estimate of the coe�cient vector corresponding to a
p
dimensional allowable space G� but subject to the constraint that the estimates of ��kjx��
� � k � K � �� should be in a �p � ��
dimensional allowable subspace G� of G� Then the
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Rao statistic for testing the hypothesis that ��kjx� is in G� for � � k � K � � is given by
R � �S� b������T �I� b��������S� b������ where I� b����� � �H� b����� with S��� and H��� corresponding to
G� �See ��e����� of Rao ��������

Wald statistics� Let b� be the maximum likelihood estimate of the coe�cient vector correspond

ing to a p
dimensional allowable space G� and let b� be the �K � ��
dimensional vector of those
entries of b� that correspond to the basis function that would be deleted in going from G to a �p���

dimensional subspace of G�� Also� let �J denote the �K � �� � �K � �� submatrix of ��H� b�����
whose rows and columns correspond to these K�� coe�cients� Then the Wald statistic for testing
the hypothesis that ��kjx� is a member of G� for � � k � K � � equals b�T �Jb� �
Motivation� Let Q be a quadratic polynomial on RI q having negative de	nite Hessian matrix H

and set I � �H� Also� let b� maximize Q on RI q and let b�� � RI q� Then

� � rQ� b�� � rQ� b��� �H� b� � b����

so b� � b�� � I��rQ� b���� hence
Q� b�� � Q� b��� � � b� � b���

TrQ� b��� � �
��
b� � b���TH� b� � b���

� Q� b��� � �
� �rQ� b����TI��rQ� b����

and therefore
��Q� b���Q� b���� � �rQ� b����TI��rQ� b���� ���

Suppose now that b�� maximizes Q��� subject to the constraint that A� � �� where A is an r� q

matrix having rank r� Then A b�� � �� By the Lagrange multiplier theorem there is a � � RI r such
that rQ� b��� � AT�� It follows from ��� that

��Q� b��� Q� b���� � �TAI��AT�� ���

Moreover� b� � b�� � I��AT�� so A b� � A� b� � b��� � AI��AT�� Thus� by ����

��Q� b���Q� b���� � �A b��T �AI��AT ����A b��� ����

Furthermore� � � �AI��AT ���A b� and hence

b�� � b� � I��AT �AI��AT ���A b�� ����

If Q is the quadratic approximation to the log
likelihood function at b��� then the right side of
��� is the Rao statistic� If Q is the quadratic approximation to the log
likelihood function at b��
then the right side of ���� is the Wald statistic� Also� ���� yields a convenient starting value for
the Newton�Raphson method in the context of stepwise deletion�

APPENDIX B	 LEAST SQUARES APPROXIMATION

B�� The Stepwise Addition Process

When using the stepwise addition process as described in Section ���� quasi
Newton updates for
the Hessian matrix do not su�ce� Therefore� we need to compute the full Hessian� which requires
O�K�p�n� �ops� where K is the number of classes� p the number of basis functions and n the
number of cases� The computation of a Rao statistic requires O�K�pn� �ops� but for adding a
basis function to a model with p basis functions� we typically compute approximately O�p� Rao
statistics� so the computation of all Rao statistics at that stage involves O�K�p�n� �ops� If the
largest model has Pmax basis functions� the total number of �ops required is O�K�P �

maxn�� For the
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phoneme recognition problem discussed in Section 
��� n � ������ and K � 
�� while we used
Pmax � ���� Thus O����
� �ops would be required� We estimated that this would take several
years on the SGI workstation that we used�

If we were to use a quasi
Newton �instead of Newton�Raphson� algorithm� we would not have
to compute any full Hessians� However� the number of iterations needed is typically larger using
a quasi
Newton algorithm� The substantial costs of computing the Rao statistics would not be
reduced� Overall� we can expect that a quasi
Newton algorithm would be approximately ��!
faster than a Newton�Raphson algorithm� but at the expense of less accurate Rao statistics�

Using the least squares approximation described in Section ���� we carry out the stepwise
addition part of the model selection in O���P �

maxn� �ops� or a few hours for the phoneme recognition
problem�

As part of the least squares approximation to POLYCLASS� we need to solve many equations
of the form b�k � �XTX���XTYk for � � k � K� Here XTX is a p� p matrix having a previously
inverted �p� ��� �p� �� submatrix� Inverting XTX now requires only O�p�� �ops� Assuming that
all necessary inner products among predictors and between predictors and responses are known�
computing all b�k requires O�p�K� �ops�

In the context of deciding which basis function to enter next� we need to compute numerous
quantities of the form Qk��k� � �jjYk � X�kjj

�� To evaluate the corresponding Rao statistics�
we need to compute �rQk� b�k���

TI��rQk� b�k��� Here I � XTX and rQk��k� � �XT �Yk �X�k��
Only one entry of rQk� b�k�� is nonzero� corresponding to the candidate basis function� Since X b�k�

does not depend on the new basis function under consideration� it can be assumed known� Thus
to compute rQk� b�k�� we need to compute the component of XT �Yk �X�k� corresponding to the
candidate basis function�

We also need to compute the lower
right entry of I��� having already computed the inverse
of the �p � �� � �p � �� submatrix corresponding to the existing basis functions� For each k this
requires O�p�� �ops once the p entries �inner products� corresponding to the new basis functions
are determined� Thus the number of �ops required for each candidate basis function is O�p�K��

If Pmax is the largest number of basis functions that we consider� there areKPmax inner products
between basis functions in the model and the responses and �

�P
�
max between basis functions in the

model� If we 	x the number of candidate knots in each variable at N�� the number of candidate
basis functions �knots and interactions� remains limited� since typically only a few new interactions
are candidates after an addition� In our experience� the total number of candidates is approximately
N�Pmax� Thus approximately N�Pmax � �Pmax �K� inner products need to be computed between
candidate basis functions and basis functions in the model and responses� Note that each inner
product requires n operations�

In the phoneme recognition problem the computation of the inner products involving candidate
basis functions is dominant� When n � ������� K � 
�� Pmax � ��� and N� � �� this yields
O������ �ops� which took about one day of cpu time on our SGI workstation�

It should be noted here that our dedicated implementation POLYMARS of MARS is now much
faster than the standard version �Friedman ������ In particular� we generated a subset of the
phoneme data with ����� cases� � classes and �� predictors� and applied both POLYMARS and
Friedman"s program� When the maximum number of basis functions was set equal to 
� in both
programs� our program took ��� seconds of cpu time� while Friedman"s program took ���� seconds
on the same machine� With �� basis functions the corresponding cpu times were 
�
 seconds and
����� seconds� We save considerable cpu time by storing old inner products� which MARS does not
and must recompute� Note that the standard version of MARS takes O�MNP �

max� �ops �Friedman
����� p� ����� while POLYMARS �in the case that K � �� takes O�N�NP �

max� �ops� Since N�

��



�about ��� and M ���� are comparable in size� the computations are reduced by about a factor of
Pmax� Our illustrative cpu results agree with this order
of
magnitude comparison�

There are other di�erences between POLYMARS and standard MARS� the stepwise addition
schemes are di�erent� we add 	rst a linear term and perhaps later a knot� while in MARS two basis
functions� essentially corresponding to a linear function and a knot� are added at the same time� in
MARS� but not in POLYMARS� a piecewise cubic approximation to the piecewise linear function
is applied after a basis function is added�

B�� Speeding up POLYCLASS after POLYMARS

Fitting the largest POLYCLASS model with basis functions provided by MARS �see Appendix B���
is a major problem� This model has Pmax�K� �� parameters� In the phoneme recognition problem
this amounts to approximately ��
�� such parameters� Although the least squares approximation
does provide us with useful basis functions� it does not give us usable starting values for the
maximum likelihood 	t�

Our current approach to 	tting the largest POLYCLASS model is to introduce the basis func

tions one at a time� The estimates for the previous model with p� � basis functions can then be
used as starting values for the current model with p basis functions� However� when we 	t this
model with p�K � �� parameters� we use only �p�K � �� cases� We use quasi
Newton updates for
the Hessian matrix� and we stop iterating at the current model when the di�erence between two
consecutive log
likelihoods is less than ��� which yields a very rough convergence criterion� Upon
completion of the sequential addition process� we 	t the largest model using all data with increased
precision� This method of gradually increasing the number of cases provides us with good start

ing values as well as a decent initial guess for the quasi
Hessian� while the computational cost is
tolerable�

In 	tting the sequence of models� the most time consuming parts are the computations of the
score statistic and the log
likelihood� each of which requires O�pKn� �ops� �Thus� for all models
from p � � to p � Pmax basis functions the computations require O�P �

maxKn� �ops�� Typically we
may need ��� such computations for a model with p � Pmax basis functions for a large problem
like the phoneme recognition data� while we need approximately ���� of them for the model with
p � Pmax� The computations require O����	� �ops for the phoneme recognition data� which would
take �� days of cpu time on our SGI workstation� which is a major improvement compared to the
several years for POLYCLASS without the least squares approximation�

However� �� days is still not realistic� Instead� we carried the computations out on �
 work

stations from a network of 
�� RS���� workstations with a high
speed communications network
at the Maui High Performance Computing Center� We parallelized our computations by sending
���� of the data and ���� of the columns of the quasi
Hessian to each of �� workstations� while
the �
th �master� workstation coordinated the computations� On this network the computations
took �
 hours� � hours on the �master� and �� simultaneous hours on each of the �� �slaves��

APPENDIX C	 NUMERICAL ISSUES

Numerical stability� For numerical reasons� we add a small penalty term to the log
likelihood
function� Speci	cally� set

����� � ����� �
X
i

KX
k��

u�ik�

where

uik � ��kjXi����
�

K

KX
k���

��k�jXi���� k � K�

��



The penalized log
likelihood function� in which we have typically used � � ����� is guaranteed to
have a 	nite maximum� Without the penalty term� however� it is possible that� when the likelihood
function is maximized� some ��kj equals 	
� This can happen� for example� if Bj�Xi� � � for all i
such that Yi � k�

The e�ect of this penalty term is negligible when j��kj j � 
 for all j and k� that is� in our
experience the estimates of the parameters with and without the penalty parameter are extremely
close� while the estimates of the conditional class probabilities are indistinguishable� Actually� we
choose � as small as possible subject to providing numerically stable estimates�

Maximum number of basis functions� Unless we use the least squares approximation to the
stepwise addition procedure� we stop the addition of basis functions when one of the following
three conditions is satis	ed�

� the number p of basis functions equals Pmax� whose default value is min�
n���� n���K�� ����

� �lp� �lq �
�
��p� q�� ��� for some q with q � p� �� where �lq is the log
likelihood for the model

with q parameters �so the addition of more basis functions is not likely to improve the 	t��

� the search algorithm yields no possible new basis function�

Optimizing the location of a new knot� The algorithm for 	nding the location of a potential
new knot for the POLYCLASS model when the model selection is not carried out using the least
squares approximation discussed in Section ��� is identical to the algorithm for 	nding a new knot
in a covariate that was employed in HARE �Kooperberg et al� ����� sec ������
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