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Some new results are oblained on stwochastie orderings between random vectors
of spacings [rom heterogeneous exponential distributions and homogeneous ones.
Let £y, .. 0, be the normalized spacings associated with mdependent exponential
random wvariables X, .. X, where X, has hamed rate 4, i=1,2,..n Lt
D, DF be the normalized spacings of a random sample Yy, . ¥, of size » lrom
an exponential distribution with hazard rate =57, i,/ It is shown that for any
n =2 the random vector (£, .., 0,115 greater than the random vector (OF, ., DX
in the sense of multivariate likelhood rate ordering. It alse follows rom the results
proved in this paper that for any § between 2 and s, the survival function of
X, — &, is Schur convex.

L INTRODUCTION

There is an extensive literature on order statistics and spacings from a
single underlying distribution. However, not much attention has been given
to the case when the underlying random variables are not independent or
not identically distributed. Some interesting partial ordering results on
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order statistics and spacings from independent but nonidentical random
variables have been obtained by Pledger and Proschan [ 10], Proschan and
Sethuraman [11], Bapat and Kochar [1], Boland, El-Neweihi, and
Proschan [2]. Kochar and Kirmani [6], Boland, Hollander, Joag-Dev,
and Kochar [ 3], and Kochar and Korwar [ 7].

Let X, ..X, be independent random wvariables with possibly different
probability distributions. Let X, denote the ith order statistic of
XX, Let D, =(m—i+1)(X,.,—4X, ., denote the ith normalized
spacing, i =1, .., n, with X,., =0. To simplify notation, we shall drop the
second suffix n in D, when there is no ambiguity. Pledger and Proschan
[10] considered the problem of stochastically comparing the order
statistics and the spacings of nonidentical independent exponential random
variables with those corresponding to stochastically comparable independ-
ent and identically distributed exponential random variables. Kochar and
Korwar [7] pursued this topic further in their paper and strengthened
some of the results of Pledger and Proschan [ 10]. In this paper some new
results on this problem are obtained.

There are many ways in which stochastic comparisons between a ran-
dom variable X and another random variable Y can be made. In the wsual
stochastic ordering case, one says that a random variable X with distribu-
tion function F is stochastically smaller than a random variable ¥ with dis-
tnbumn function 7 {and write it, as X~=< ¥y if Fit)= Gi¢) for all ¢ That
s, X~=< Y if the survival function of X is everywhere dominated by that of
Y. In some cases, a pair of distributions may satisfy a stronger condition
called likelihood ratio ordering. Il distributions # and & possess densities
jor probability mass functions) f and g, respectively, and f{x)/g(x) is non-
increasing in x, then we say that X is smaller than Y according to
Inkeluhood ratio ordering. This is denoted by X~=< Y. It is known that
X% Y implies M x)/G(x) is nonincreasing in x, where F=1—F and
(r = 1 — (7 denote the survival functions of X and Y, respectively. This latter
condition defines fuzard rate ordering. In the case of absolutely continuous
distributions, this is equivalent to the hazard rate of F, rp(x) = f'[r:l'Hr:l,
being uniformly greater than r(x) = g(x)/G(x), the hazard rate of G. If
this happens, we say that X 18 smaller than Y according to hazard rate

na

ordering and write it as X % Y. MNote that hazard rate ordering implies
stochastic ordering. Lehmann and Rojo [ 8] characterize these orderings in
terms of maximal invariants with respect to the group of monotone trans-
formations.

The above notions of stochastic dominance among univariate random
variables can be extended to the multivariate case. A random vector

=X, ... X, is smaller than another random vector Y=(Y,...Y,) inthe
multivaricte stochastic order (and written as X= Y) il E[¢(X) ] = E[ (Y )]
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for all increasing functions ¢ whenever the expectations exist. To define
multivariate likelihood ratio ordering, let us denote by fand g the density
functions of X and Y, respectively. Then X iy smaller than Y in the mudti-

variate likelithood ratio order (written as X —:EJ{ Y if
fixiglyisfixay)gixvy) for every x and y in #",  (1.1)

where x A y={min{x,, y;), .. min{x,, y,)) and x v y={maxix,, ¥y, L ...
maxix,. ¥,

It is known that multvariate likelihood ratio ordering implies multi-
variate stochastic ordering, but the converse 5 not true. Also if two
random wvectors are ordered according to multivariate likelihood
ratio (stochastic) ordering, then their corresponding subsets of components
are alko ordered accordingly. See Chapters 1 and 4 of Shaked and
Shanthikumar [ 12] for more details on various kinds of stochastic orders,
their interrelationships and their properties.

The concepts of majorization of vectors and Schur convexity of functions
will also be needed. Let {x,,,€x,,<..-<x,,} denote the increasing
arrangement of the components of the vector X = (X1, X2, cs Xuo The vector
y is said to maforize the vector x (written as x= y) il 2{ v s 200 x5

for j=1...n—1land 37, v, =201 x4

DeFrraTion 1.1 A real-valued function ¢ deﬁngd on a set .of = #" is
said to be Schur convex (Schur concave) on o f x= y=d(x)=( = ) diy)

In this paper some new stochastic relations between spacings of inde-
pendent but nonidentically distributed exponential random variables are
established. Let D, .., D, be the normalized spacings associated with inde-
pendent exponential random wvariables X, .., X,. with X, having hazard
rate 4, i=1,..n Let ¥, ... ¥, be a random sample of size n from an
exponential distribution with common hazard rate A=%7_, 4,/ Let
DY, ... DY be their associated normalized spacings. Pledger and Proschan
[ 107 proved that in this case

AT

DY=p,., DD, for i=2, ..n (1.2)

Kochar and Korwar [7] strengthened this result from stochastic order-
ing to likelihood ratio ordering. In the next section this result is further
strengthened to establish multivariate likelihood ratio ordering between the
vectors of spacings (D, .. D, ) and (DY, ... D¥). This result is analogous to
Theorem 1.2 of Proschan and Sethuraman [11] on multivariate stochastic
ordering between the corresponding vectors of order statistics. In our case
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the stochastic comparison 1s in terms of mudtivariate lkelihood ratio order-
ing, an ordering which is stronger than the multivariate stochastic ordering.
A consequence of this result is that X, — X, 5 stochastically greater than
Y., — Y., for lsi<j<sn In the case of the sample range, a stronger
result is proved. It i1s shown that its survival function is Schur convex

in {4...4,) This and some other related results are discussed in
Section 3.

2. COMPARISONS WITH LLD. EXPONENTIALS
Now we prove the main theorem of this section.

Tueorem 2.1, Let Dy, . D, be the normalized spacings associated with
independent exponentiol random variables X, . X, where X hay hazard
rate A, i=1, .0 Let DY, L DY be the normalized spacings of a random
sample ¥, ., ¥, of size n from an exponential disteibution with hazard rate
A=%4_A m Then for any nz2,

(DY, ...D% < (D, .. D,) (2.1)
Proof.  Let
iy
I, S T T R
f n—i+1 f

Then as seen in Theorem 3.1 of Kochar and Kirmani [6], the joint density
of (D,..D0,)is

:I- i’ g At
H[}"=HH—1IZ‘-‘ Tl iy (22)

r

where Y denotes summation over all permutations {j. .. j,| of n
integers {1, .. n}.

Since DY, ... D} are iid. exponentials each with hazard rate 4, the joint
density of D}, ., D¥is

f'[xi=}."r: .3::.\1 boasa e Xl

KAl F 22« + An)

Therefore,

a o £ .
nx:l g[},:=n1—1l J.-‘."Evl‘." z___lz.-:u..__r.n.]
Ml

r
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and

fix Ay) glx v y) =izl “'Z e A+ TE)

*

where (. ... j,) is a permutation of n integers { 1. .. n} and

XV ¥y

4
=3,

Sn—i+l
It is enough to prove that under the given conditions,
fAxiglyisfix ay)glx vy) for every x and y in #". (2.3}

Since the exponential density is log-convex, it follows from Marshall and
Olkin [9, p. 83] that the function

hz)=Y e E-145

r

is Schur-convex in z={(z,, .., z,). The required result will follow from this
if we can show that

M

() + 5, o, FX)=S (0 + X AV, a0, +X AT (2.4)

Clearly the components of the two vectors in {2.4) are nondecreasing and
the sum of the elements of each vector is n(x + ¥).

We have to prove that

J
Z (v, +xn ¥ = Z (u,+x) for j=1,..n (2.5)

PR & -

The right-hand side of (2.5) is

_1
+5) = + %
;Eﬂ[ux 4 ngﬁzln_”’l x:'
i j—1 1 =
_n}l+n—1}:+ +n—j+1"’r+"u
i — 1 1
={}’| +j e SR B [TI A= +'TJI'
7 n—1 n—j+1
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*‘ ' f—1 1
e | J I y
AR D)t s )

I T
+(‘i—u)xﬁ+(i—f _)xﬁ----
n n—1/ " ‘\m n=-2,/"

%,

i & 5 16
+(n n—_,.r'+1)xj' (26)

A similar argument applied to the lefi-hand side of (2.5) yields the follow-
ing result:

j—1 . 1
J?I[u +tA1’II——[1’ +I|?"'n (Fz+xz)+ - *m[."f"xﬂ
bl g il
+(J——f )[.r: A_l’:!l'l'(i—f )[n Ayt
non—1 n n-—2
JE§ S
=+ (;! _n_—;-;-_]_) [.T_l- Ea _'I-’_,’. [2?:'

The required result (2.5) then follows by comparing (2.6) and (2.7) and
noting that jin—(j—k)in—Fk) =0 for j<n The relationship (2.3) then
follows immediately. ||

Theorem 35 of Kochar and Korwar [ 7] which establishes likelihood
ratio ordering between D, and D! immediately follows from this since if
two random vectors are ordered according to multivariate likelihood ratio
ordering, then so are their marginals. As is well known, multivariate
likelihood ratio ordering implies multivariate stochastic ordering, and the
latter is invariant under monotone transformations. This is the context of
the following corollary.

CorotLary 2.1, Let D, . D be the normalized spacings avsociated
with independent exponential random variables X, ., X, where X, has
hazard vate 4, i1=1, ... n Let DY, D be the normalized spacings of a ran-
dom sample Y. .. Y, of size n from an exponential diviribution with hazard
rate 4. Then

Jor any nz=2
(D*, .. DM< (D,,...D,), (2.8)
b ofor l=i<j=n,

[}(j:“ =3 }?J:JI’%\ [X_I:JI_XJ:JI,'
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Proaf. (a) Since multivariate likelihood ratio ordering implies multi-
variate stochastic ordering, the result follows.

(b) It follows from the property of multivariate stochastic ordering
that if Xfi Y then E[¢(X)]=E[$iY)] for all increasing functions ¢
whenever the expectations exist. The proof follows afier observing
that X,.,—X,.,=%/_,,  Dfln—r+1) is a nondecreasing function of

(D, .. 1

In particular, the above result gives a lower bound on the survival func-
tion of the sample range of heterogeneous exponential random variables in
terms of that of the sample range of'a random sample of the same size form
an exponential distribution with common hazard rate 4 The distribution of
the sample range of a random sample from a distribution # is well known,
(See. ez, Eq (23.3), page 12 of David [4] ). Taking F to be the exponen-
tial distribution, it is then easy to see that the distribution of the sample
range is the same as that of the largest order statistic in a sample of size
(n—1) from the exponential distribution with hazard rate 4. Using these
resulis we get the following corollary.

Corotrary 220 Ler X, .. X, be independent exponential random
variahles with X, having hazard vate 2, for i=1, ., n Then for x=10,

"‘:I[‘)Y.u:.u_‘¥I:.l|gx:l""d‘::'-[]'_'::‘IK:I:I[_“;“T’:l‘lI I' [2]'{:H

3. SOME SCHUR TYPE RESULTS

The sample range and the peneralized spacings of the type X,.,— X,
are of special interest in statistics. Kochar and Korwar [7] have proved in
their Theorem 3.2 that for any n> 1, the survival function of X, — X, is
Schur convex in . The next result generalizes this result and strengthens
Corollary 22 above. It is shown that the wvector (X, ,— X, ...
X, .— X1..) is stochastically larger when the 4,s are more dispersed in the
sense of majorization,

TueorEMm 3.1, Lev X, ... X, be independent  exponenticl  random
variahles with X, having hazavd rate 4, for i=1, .. n Let ¥, ., Y, be
anaother set of ndependent exponential random var mHm W !H! .-"’m !J'w .’:.r{:.r.m’

rate of ¥, i=1, . n Let h=(4,, ., 4,) and W¥*=(1% . i¥%, then lfﬁ' AL
implies
[Xl:al_Xl:le"'v X.ll:.ll_Xl:u’}; ['F::JI_ }-’I:le Hih }(.II:JI i }rl:u:l' [31’
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FProof.  Proschan and Sethuraman [ 11 ] have shown that under the con-
dittons of this theorem,

[X|:JI7"'7X '% [}(I:le"'v }(.ll:.u:I [32'

MIH
A

and Ao Z | ST

It follows from Kamae Krengel, and OBrien [3] ialso see
Theorem 4.B.1 of Shaked and Shanthikumar [127]) that there exist random
variables 2 and (X, ,. ¥,.,). i=2. .. n on the same probability space such
that

£2 7

Xl:ng }(-I:.ug‘zﬂ7
y..2Y

£

) SR
I i

and with probability one,

Hence with probability one,

r

S 4 - I AR

[‘fl:al_zv'“v"f “;“_2:'. [33!

I

The required prool (ollows from this. ||

An important consequence of this result is that the sample range
X, ,—X,., is stochastically larger when the i,’s are more dispersed, a
result more general than the one given by Corollary 22

Boland, Hollander, Joag-Dev, and Kochar [3] have studied different
kinds of dependence relations between order statistics from independent,
but otherwise arbitrary, distributions. In particular, it follows from their
Theorem 2.2 that in the case of independent exponential random variables,
for any i=1, X, , is stochastically increasing in X,., in the sense that
PlX,.,=y|X,. ,=x] is nondecreasing in x for y= x. It will be interesting
to study the properties of this conditional probability as a function of the
A5 An important consequence of the next corollary is that this conditional

probability is Schur convex in A.

Cororeary 31, Ler X\, ... X, be independent  exponential  random
varighles  with X, having  hazard  rawe 4y, for i=1,..n Then for
ﬂgxlﬂ S ""{h'r.uv

_.i'.l[ Xl:u g v, PP XJI:JI }-Tlllelll =-T|:|

is Sefur convex in (A, ... 4, )
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FProof.

P[X::“}I:,...,X }'T.ule:.u:II]

nin
= P[X::JI_ X|:JI FX T X XJI:JI B X|:JI e |X|:JI ='TI:|
= P[X::JI_ X|:JI FX T X XJI:JI B X|:JI =Xy _'Tl:l' [34’

The last equality follows from Theorem 4.1 of Kochar and Korwar [7].
The fact that (34) is Schur convex in (4, ..4,) follows from
Theorem 3.1, |

One may wonder whether one can extend Theorem 3.1 to other spacings.
Pledger and Proschan [10] have shown with the help of an example that
for m =3, the survival function of the last spacing D, ; is not Schur convex.
However, we have the following positive and even stronger result for n=2.

Tueorem 3.2 Led X, and X, be two independent exponential random
variables with hazavd rates 4| and A5, respectively. Let Y| and Y, be another
set of independent exponential random vaviables with vespective hazard rates
AV and A% Then for [,E,._,}.:i;;'i (AF A5,

£r
Xoo—Xio7m VooV a (35)

Proof. Let 4, +4,=4A}+ i¥=s Assume without loss of generality that
A= da, Af=AY Then for A4 <At (and consequently for A.=A¥),
[,i.,,}.:ﬁ}: (A% 1% Now the pd.f of X,.,— X, .. is (4, 40 e A% 4 ¢ 5]
(see, Theorem 2.1 of Kochar and Korwar [7])

We have to prove that under the above constraints on the parameters,
the ratio of the densities

& z|.n.'+e, A
X =

iPx L, —A3%

is nondecreasing in x for x>0,
The numerator of g'{x) &

_[E, z'.r.n.'_!_e, 2!"'.][.-:.|£" 2|.~'+A:E .&1.!\.‘]_:_['.,\:I z|.r+£‘, .EJ_T]
x [Afle 5% 4 Ae = 4]
=[.-:.T—.-:.|H" {£|rk|‘].~'+[i§_i:,£‘, ':zl'z;]'v+[-:~§—i|“" (Al +Afhx
4 (AF—dy) e it i
—(A*—4,)[e

x [e (TR S o :'J].'-']_ (3.6)

PO E R . .
er"]"—t" {ﬂlrﬁ].‘]"'[*{:&_}*l?

Here we have used the fact that A¥— 4, =—(Af— 4 and Af— 4, =4, — 4%
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As 1, +A%< 1,4+ A% for each x20, e M+ *_p-tatifixS 0 Also
A¥= A,. Therefore the first term in (3.6) is nonnegative.

MNow consider the second term in (3.6) Since 4, <AV and A¥<i,,
A+ A¥< A¥+ 4, Therefore, for each x= (0, ¢ Ay _ptdf viniv s )
Also A3z Af= 4, = 19—24, 20 Therefore, the second term of (3.6) is also
nonnegative. Hence g(x) is nondecreasing in x for x 0. This proves the
required result. |

This result strengthens Theorem 3.3 of Kochar and Korwar [7] from
hazard rate ordering to likelihood ratio ordering.

ACKNOWLEDGMENTS

The first author is thankful o Professors P ). Boland and B, Korwar lor helplul discussions
on this problem. Thanks are due to one of the referees for suggesting improvements over an
earlier drall of this paper.

REFERENCES

[1] Bapat, B. B, and Kochar, 8. C (19941, On hkelihood ratio ordering of order statistics,
Linear Algebra Appl. 199 281-291.
[2] Boland, P. 1., El-Meweihi, E. and Proschan, F. (19941 Applications of the hazard rate
ordering in reliability and order statstics, J. Appl. Profab. 31 180- 192,
[3] Boland, P. 1, Hollander, M., and Joag-Dev, K., and Kochar, 5 (1996). Bivariate
dependence properties of order statistics. J. Multivariate Anal. 56 7589,
1 David, H. A. (1981). Order Statistics. Wiley, New York.
1 Kamae, T, Krengel, U, and O'Brien, G. L. (1975, Stochastic inequalities on partially
ordered spaces. Ann. Probab, 5 899912,
[6] Kechar, 5 €, and Kirmani, 5. M. UL AL {1995) Some resulls on normalized spacings
from restricted lamilies of distributions. J. Staeist. Plan. Inf. 46 47-57.
[7] Kochar, 5. C, and Korwar, . {19961 Stochastic orders for spacings of heterogenceous
exponential random variables, J. Multivariate Anal. 57 69-73
[E] Lehmann, E. L, and Rojo, L {19921 Invariant directional orderings. Ann. Statise. 20
2100-21140.
[9] Marshall, A. W, and Olkin, L {1979). Inegualities: Theory of Majorization and Itz
Applications. Academic Press, New York.

[10] Pledger, G, and Proschan, F.{1971). Comparisons of erder statistics and spacings from
heterogensous distributions. In Optimizing Methods in Stavistcs () 5 Rustagi, Ed),
pp. 89-113 Academic Press, New York.

[11] Proschan, F., and Sethuraman, 1. { 1976). Stochastic comparisons of order statistics from
heterogensous populations, with applications in reliability. J Mudticariate Anal. 6
HOE-61 6.

[12] Shaked, M., and Shanthikumar, J. G, [ 199, Stochasiic Orders and Their Applications.
Academic Press, San Diego, CAL

[4
[5



	Some NewResults-1.jpg
	Some NewResults-2.jpg
	Some NewResults-3.jpg
	Some NewResults-4.jpg
	Some NewResults-5.jpg
	Some NewResults-6.jpg
	Some NewResults-7.jpg
	Some NewResults-8.jpg
	Some NewResults-9.jpg
	Some NewResults-10.jpg

