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Abstract

We discuss a mebold of weightion the likelibood syuations with the aim of ohigining Wty
elficien! and robust cstimators, We discuss the case of discrete probabality menlels using scveral
weighting functions. 1f the weight funetions gonetate increasing residual adjustment functiens
thert the mesthed provides o link between the maXimum lkelihsud seors equations and minimuym
digparily estimabion. 45 well as 8 set of disgnostic weights and a goodness of fir cotenion.
However, when ihe weights do not gencrate incrcasing residual adpustment funetions a sclection
criterion is nceded o obtain the robust root,

The weight taagions discussed in this paper do not aweomatically downweizht 3 propurlion ol
The datn; an observalion iz signifcamlly downweighted only 1f il s inconsisien! with the sssumad
medel, At the trec model, therefore, the proposed estimating cquations behave like the ordinarny
likelihood equations. We apply our results to several discrere models; in addition, a txicology
expenment lusinites the method oo the conteal of logislie regmession,

AME clessilicalion: 62112; 62A10; 626335

Kepweords; Generalized linear models; Likelihood approach; Residual adjusiment  functions:
Robustneas

L. Introslisction

Robusmess of estimation procedurss and bhypotheses tests has been a maor con-
cem in recent statistical literature. ITuber (1964, 1973} demonstrated the existence of
M-estimators of location and regression with minimax asymptotic variance over a spec-
ified neighborhood of & mven distribution shape. This gemerated the minimax approach
Lo robustness. Hampel (1968, 1974) nssessed the robusiness of an estimator by view-
ing 1l as a funcnonal and examining the behavior of the first Gateaux derivative of
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this funciional al the ideal moded distribution. Thiz penerated the important coneept of
influence funclion and the Infinitasimal approach to robustness. Following the above
two schools of robusiness a number of important papers have been wrtlen extending
the ideas from the locadon-seale case o the regression cuse.

The problems that have cxlensively been treaed in the literature are charmcler-
ized by the prescoce of the myvarianee stucture. Linear models, and generally prob-
lems in which ordinary leasl squares 14 the basic cstimation lechnique, have reecived
considerable attention. Howcewver, less attention has boen paid to probiems that do
nol have invariance stryclune These are precisely the problems which motivated the
gurrent work. For this type of problems, such iy exponentigl family models and
mixture medels. ordinary  least squares doss not constitute  the  basic  fifting
technique and sfandard robustness methods ate either not available or are not well
developed.

The approach we fake iz based on the idea of modifying the usual likeli-
hood equations 1o achieve efficient estimates with good breakdown properties. To
do rhis, we replace the maximum likclibood seore equations with weighted score
equaiions, in which the weighls ure funcoons ol appropniately defined residuaks. The
role of Lhe weights is tw reduce the impact ol oullyimp observations on the score
gquations.

The description of resistant allernatives to maximute likelihood estimation al least
[or gencralized hnear models 15 nol new; sec Besag {1981) and Pregbon (1982,
A Royal Statistical Socviety, Series B, discussion paper by Groen { 1984), while cxten-
sively discussing the theory and wse of ieratively roweiphted least squares for maximum
likedihood, sugaested the replacement of the sual mavimym hkelihood seore cquations
with weighted scorc equations, The weight functions proposed by Cirgen (1984) arc
functions of the deviance Ay i} — - 2{In f{x; #) — sup, In fiz; )}, Tenth and Green
(1987) use weights w {4 (xi §)} = ye(d"*(x; B33/ (x; f) where . is the Huber's
psi-function. Field and Smith {1994} use weights based on the empirical cummlative
distributeon function.

In the present paper, we discuss a new method to constmet weighted likclihood
score eguations and study the comesponding estimnators in discrete models. The casc
of continuous distibutions is treated in a sequel paper by Markatou ct al. {1993). We
note here that M-estimators for discrete distributions were proposed by Simpson et al,
{ 1987), while minimun Hellinger distance estimators as well as other robust estimators
whieh are fully cfiicien were studied by Beran (1977a, b, 1982) and Simpson {1987).
Simpson (1989) also proposed the rcobust [lellinger deviance test. Section 2 of the
present paper develops the methodology and discusses the properties of the estimators
in discrete models. Section 3 applies the wechniques to a faw specific models and also
illustrates the methodology in the convext of a toxicology expariment with the legistic
regression model,
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2. The weighted likelihiod equations
2.1 Methodotogy

Suppase that {X7,A4%,....X,) is a random sample with probability mass function
atg( v} defined on the sample space Ry = {{L1,..., T} where 7 is possibly infinity.
et ulx; i1 = Vyln{mg(x)) be the maximum likelihood score function, ¥y heing the
gradient with respact to . Assnming thar the family of distributions is regular, the max-
imum likelibood estimator tor # is a solution of the set of equations 3 w{X,1fi) =
0. Given any point ¢ in the sample space we construct a weight depending on «,
Lthe assurmued probability medel Mg, and the empineal cumulative distribution Tune-
tion £, say u.-'{.t',.-‘lri’ﬁ,.‘:'}. We will congider solutions to the weighted likelthood cogua-
{inny

Sl X M Flu( X ) — 0 (21

The weipght function u.={x;ﬂhf|.;,ﬁ } 15 selegted such that it has a value close to 1 if thers
iz o evidence of model vinlation at x from the empinical distribution function, Ir has
a value clase ta 0 or exactly 0 at X; if the empirical cumulative distribution funcrion
indicates lack of fit at or near X;, § = 1.2,...,r Thus, the role of the weipht func-
tion is to downweight peoints that are inconsistent with the assumed model. Ilowever,
to be efficient, the method should not automatically downweight a propornon of Lhe
data; if the asswned meodel s correct, the weight assigoned to cach observation should
asymprolically be cqual 1o 1.

To deseribe an observalion as an outlier we need to define an appropriate set of
tesiduals. The proper definition of cesiduals depends on the pumpose for which they
are lntended. If there i3 a struetural relationship between the observations and the pa-
rameters, such as m the lincar models, Lhen il is appropriate to cxpect a one-to-one
carrespondence between residuals and observations. In our context, the relationship
between patameters and observations is probabilistic. Hence, nstead of using a geo-
meltic merpretation, in which a pomt is an outlier it it is the gway from the bulk of
the dala, we will call an observation an owtlier if the offending value would be very
unlikely to oceur if the fited model were true. Such a probabilistic cutlier is called
a swrprising observation {Lindsay 1994), and occurs in locations ¢ with small proba-
bilities gl ) under the model. We note that Travies and Gather {1993 also defined
oulliers in tenms of their position relative to the model that most of the observations
forllera

For any value ¢ in R, defing the Pearsan residial 0 as

. din)
oL = Mgt h

(2.2}
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wherc 4(¢) is the proportion of sample chservations with value ¢ and mp(¢) is the
cormespomding probability under the hypothesized model. Note that

F? = n S mg(n)d(2) (2.3}

is the Pearson’s chi-squired statistic for the goodness of fit of the model my(r). The
Penrson residnal takes values in the interval [—1,o0) I the observed proportion of
values at 1 i3 the same as the probability of observing ¢ under the assuned model,
then &{r) — tk when the model is cormeetlly specified, &¢) convorges to 0 almost
surcly. Also e} = —F il no daty s observed at ¢

Cur method downweights ohseryations that have larue Pearson residuals. Large
Pearsum residuals comrespond to surprising observations. This downweighting acheme
iz distinctly different from downweighting observations that have large influence on
the maximowm likelihood estimator, in the sense that their presence or absence substan-
tially changes the value of the estimator. Tnfluential ohservations in the latter sense
correspond fo large values of the score function.

The weighis we use are functions of the Pearson residuals and they are defined as

Aot +1
eyl
where 4 is a strictly increasing. twice differentinble function defined on [ 1.~0}, with
the propecties 4(0) =0, 40 = . In particular we will choose 4(-) to be a residual
adpstrmens function (RAF) (Lindsay, 1994} which arises naturally in some density-
based minimam distance methods. Lindsay has shown that the choice of an RAF may
have a dramatic effect on the robustness of the comesponding estimators. Rowghly
speaking, the etfect of the RAF on Pearson residuals is similar to the cifect ol g fune-
ton (in M-estimation) on the ordinary least-squares residuals. In the next subsection
we will describe the connection of the weighted likelibood estimators with the mini-
mum dispanty cstitnators of Lindsay {19945, Thiz will explain the rationals behind the
choige of the weighls (2.4), and will help us (0 describe the robustness properties of

the new csbimalors using previensly established eesnles,

wit, Ma, FY = wid(t)) — (2.4)

2.2 Minfmunt dlixpariry cstimodinn

In thiz subsectton we roview some fundamental background results. An extensive
discussian of this topic can be found in Lindsay (1994}

Minimum dispacly estimutors of the parameter ff are obtained by minimizing a
disparity, which is a density-based “distance™ between the empirical density (-} and
the underlying density me(-). Soch a measure is defined by

potd,my) = T GEWm1), 2.5)

where & iz a real-valued. theice diffecentiable strictly convex function on [—1,00) with
G0y = 0, The function {8y = (5 — 1305 + 1) penersles 1 Kullback—f vibler diver-
genee that is minimized by the maxitoum likelibood estmator. The function Gid) =
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[{d+ 13" — 1)® correspunds 10 the squared Hellinger distance. Under differentiability
and appropriate regularty conditions, the minimum disparity estimating cguations have
the form

3 AL N amp(r) = 0, (26)

whete A(4) = (T —dWF(AY — 4 8Y, & being the detivative of 7. Without changing
the estimating propetlcs of the disparity, the function 4 can be recentered angd sealed
s thal A{D) — U and A0 = 1. This standardized versiom of the function 4 s called
the RAF ul the dispanty g, snd controls the theoretical propertics of the minimum
dispanily cstimatees. The lneur RAF, A(8) — 4, vormespongds 1o maximum likelibogd,
white A{d) = 2{(é —1)"* — 1} comesponds to the Heflinger distance.

Simee A{d) — & vorresponds to maximum likelihood, it is clear that the degree of
robustness of the minimum disparity estimators {relative ro maximum likelihood) will
depend on how much A{4 ) deviates from the linear RAF. 17 A(4) is much smuller than 4
when & is larpe, then larpe 4 outliers will have small impact on the pararoeler estimates.

Since ZL, Vimplr) — 0, and se 3 = Sypmp(f Wimplf), using (2.2) ooe can rewrite
the estimating equatlon (2.6) as

E‘ A—E;:::'_:_ : qu,ﬁ}du} -0 {27
Huweyer, using wix, .-'H’u,ﬁ'} = widlx )y = [A{de)) - 11T+ 1] (see Eq. (2.43), and
hy rewriting the sum in ¢ in terms of the sum in L we sec Lhal the estimating equation
12.6] iz exactly equivalent ro the estimating equation in 2.1, Thus defining the weights
as in (2.4) guarantzes that the weighted hkelihood estimator is a root of Lhe minimym
disparity estimating equation (2.6), The sulution of the weiphted likelihood equation
can be obtained iteratively by calcolating new weights at cach stape and solving the
estimating equation treatng the weights as lxed conslanes.

Lindsay (194 ) has shown that the broakdown properties of the estimators are deter-
mingd by the tails of 4(#). In & model with finite Fisher's information, any estimaror
with A{3) ~ d''? as J becomes infinite has a S0% breakdown point, Also. the curvamre
parameter 47 = 47{0) can be shown w be a measure of the trade-off hetween efficiency
and robusiness in a second-order asvmptotlic sense — large nogative valucs of A: Jead
tir higher robustmess, o a weighted likelibood context, defimtion (2.4% und the cheice
ot the function A(&) guarantes that the weights are all converging to 1 at the model,
indicaring the asvmptouc efficiency of the weighted lkclihood estimator.

On ihe other hand, the RAY ol a disparity ke the Hellinger distance, for which
A(d) <& J for large positive 4, the weighl lunction cun severely downweight large
Pearzon residuals. For the sake of simplicity and interpretation, however, we can trn-
catc the weights o constrain them in the clesed imterval [0, 1] This can be done by
using wix, M, Fy— min {[ACS(xY) | 118 + 1 1) Asyroplotically this makes oo
differenee in the estimation procedure under the model, From the forn of the weights
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it 15 clear that one van tecover the RAF piven the weightlys us
Aldy = =14+ {d + Ll d} {28}

Lindsay {1994, Hg {153} has shown that as donpg as the function A{d) 15 increasing,
the associated cstimating equation (2.6) comesponds to 2 minimom dispanty problem.
Since the truncation wix Mp F) = min{A{3(x)) + 1F{3x) — 13,1} preserves Lhe
imergasing nature of A(A) in (2.8), the correspunding procedure stll generates fully
efligicnl cxtimales,

2.3 Rebpasmmess properties

The robustness of a statistic can be studied in terms of its intluence function and its
breakdown peint. The concept of influence function was introduced by Hampel (1968,
1974 and describes the bias caused by infmitesimal contamination on the value of the
slatistic. IF ¥{F} is g lupetional comresponding to an esnmator, the infuence lunction
of T8y i miven by IV 180 = Hm[¥{{1 — e+ 24,0 — £{)]s, where the limit is
taken as & approaches 0 leom sbove and A, is the disteibution that concentrates all ifs
mass al the point x

The breakdown point characterizes the plobal stability of an estimator. There are both
asymptotic { Honpel, 1971; Huber, 1981 ) and (inite-sample {Hodpes, 1967, Doncho and
Huber, 1983 versions of the concept of breakdown, Roughly speaking, the breskdown
puoint of an estimator is the distance from the assumed distribtion of the data beyond
which the estimator becomes totally uninformative,

In our case the functional B.{F) corresponding to the weighted likelihood astimator
will be a chosen element of the solution set of the equation

[w{x;M_ Fudey frdFixy — A {2.9}

Maote that if & — Mg, then the ime value of fi, fp, 15 among the solutions of equa-
tion (2.7} Therefore, the method is Fisher consistent for § if the root is chosen ap-
propuiately. We will discuss the root selection in the examples section,

T determine the infloence function set ffix) = (1 )P +oduled 0= ¢ = 1
Lo f; and f be the densities corresponding to £ and £, and the Pearson residuals are
BE)— fe)mp () =1, 3400 — filt¥mp () L where fi = B(F) and B = B(E ).

Proposition 1. The inffuence function of the welghied Sfelifiood estimator is given by

-2

£,

E;é]rjl;lc o= LtV — A(FIR(v; F),
wihere

All) = [fw’tei{sj}u{r:ﬁa}u"{r;ﬁumﬁm+ Lydee)

-1

+ [ tbox- utes oy o)
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B{vo 80 — w{dl v b vs o) + w80 b isel v3 Ba )80 p) - 1)

i ., W find
— s Al
fﬂll ESVFACH: = ()

At the model F = My #hix reduces to the simple form

gy - [ [ —Npult: faydM, (21w ek

which v exaetdy the wme wv the fafluence function of the wraxionon Hkelifood
LI

{ln l[ulure references, we will denote the corresponding second derivarive evalnated at
g hy N

Proof. Implicie differeniation of | w@{¢) ke $£0d5{0 — 0 leads 1o the cquation

/w’{d;unc‘.’:{r}uu;ﬁ;}dﬁ-{r} | j Wi (Vi B dRe) -

- [u{ﬁ,{r}]u{r; feddid, —Fy =,
where
S0l o= ZLAmate) = Ul o

—[Fe = ) = S =T ) - O],

Thus the influence function has the form #° = {4 ¢y = A(F W8 F) where 4(F) and
Bl vy are as above, 1P 8 — My then & — 0, wid) — 1, w'(é) — 8, and the influence
lunetwm 1% exuclly the same as thal o maxmum likelihomd.

The above anslvsis indieaes thar the method provides an effivient estirnator of Lhe
mode]l parameters wheo the model 15 eoe. However, since the influence funcion ol the
weighted likelihood esrimators (s identical to that of the maximnm likelihood estimaror
at the model, it can potentially be unbounded. Tn fact, all rhe weighted likelibood
esbimalors are exselly cquivalenl 1o the maximum likelibood estimator at the model
up 1o the firdt order of analysis. Any distinedon berween these moethods, therelore,
has to be made through a higher-order analysis. Later i this section we show thart
g second-order aoudysis of the blas funeton demuonsirates the limitations of the first-
order analyses based on the influence lanetion and illusicates why the influence function
can be a misleading indicator of the robustness properties of the weiphted likelihood
eslunalors,
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While it cannot be employed to assess the robustness of the new estimarors, the
influence function is uset] for obraining their standard errors. From the previous
calculation, the asymptatic variance of n'? times the estimators is

D AUOELBY P Y ) LA R (2,11

which can be estimuted consisiently in the “sandwich”™ fashion hy

Zy = A(F} ; = B{X.-;Fwnzﬁf? AF, (2.11)

J

Wiewed as a function of 2, Afay = #E ) BF) represents the biws of the functional
BOF ) under contamination. We now show that [rst-order approximation through the in-
fluenee function may give an unreliable prediction of the bias for the new estimators.
By a simple Taylor series expansion, the ratio of the quadratic-to-linsar approdimation
of Afi(e) can be seen to be |+ y}_-"ﬁ'{_v}j{—éz}. Therefore, 1l the anount of contami-
naion & 15 greater than g, — FOAEYCF)]. and B0 p) and §7 v} are opposite in sign,
the: two approximations will differ by more than 30%, with the gquadratic approximation
prodicling lower hias.

Consider a scalar paramcter § for the modet {ma}, and let ) be the Fisher in-
formation, Fram DProposition 1. #( 2y = [ "uly: )% a straightforward calculation
involving the second derivative of the estimating function pnder contamination gives

By = FOAENTTAG) 1 dufn), (2,12

where

H0pY=29u s ) - 2E[Vux; (Y] + PO0ETV 2 uixg 11,

HBY s B2 )
?’J‘J'II?{_V:I = 2’“ {J': ]Ijh} | Elu ‘.-‘h ﬁ:”- :-{‘IH-,] ' {2-]3:]
Maoreover, if the model is a one-parameter exponential family, with £ being the mean
value parameter, f1{r) — 0 and hence fgy — |A20(2)] 1 with
1 ELX - FPly - By, (v Y
Ol e B B Pl B, (2.14)
() {E[(X - J¥I E[tX - p¥]

[t we use the approsimation () =2 Umgl ek we gel g == mg v )ds 104z = 0, then
the signs of #{») and £ ¢} are opposile; in this cage. whenever & > & the quadeanic
approiimation will predict a bias whichk iz smaller by 30% or more compared fo the
bias predicted by the first-order influence function approach, showing the limitation of
the latter in this case.

&)=

2.4, The weights: qoodness of it tests and calibrarion

{me of the imporlant ixsues in the development of die theory of welghted likelihood
equations 15 the calibration of the weights. That is, how do we sclect an appropnate
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weight function, and measure its impact on our procedurs. Some key insights into this
question ¢an be obtained by examining the vanability of the weights when the pumied
15 correct. Let v = p—! e X};Mﬁ,ﬁ}. The following surprising result indicates that
the: [mal sum of fieed weights, in the multinemial case, is a chi-sguare goodness of fit
test for the model, against the gweneral multinomial alemative, Let Fh — —4"(0), and
assurne Lhat B £ 0.

Proposition L. Under regularine conditions, in the k-vodf padtinomiod model, when the
pradel is correctly specified

200 —wi, ' — P =

in profabifily. where P2 is the Pearson™s chi-squared sigtistic,

Proof. Lo a Taylor expansion of wi{aé(r}) about &(¢) — 0 and obtain

-

oW . .
b — W) = — [n b d(:};ﬁi{;}] + ol b,
“ i’
where the summued term s asymptotically eguivalent w the Pearson chi-squared good-
ness of fit lest, as the parumeter estimawe for f is asymptotically cquivalenl o the
maximum lkelihped catimator,

As a corollary, we note thit the differenes in weights between twvo competing nested
models can be used as a chi-squared test of the smaller model apainst the Targer.

The relevance of this resulr to the estimation process is that we can expect the
sum of weights, when the model is correct, to be roughly equal in magnitude to
{n— ), with »* — IW7'(k — 1 - dimig)). Thus #* reflects, at least in an in-
witive sense, he loss of sumple sive necessary Lo achieve the improved robustness
PropeTtcs.

ln generad, a bigher degree of robostness may be achieved by making the weights
sharper; this can be wecomplished by choosing u hisher power of the weighes, o
inglude such cases within the family of weightod likehhood estimalors, we define the
general weighted likelibood estmation method through the cstimating equation

3wl A My PP B =0, k=0 {2.15)
We reeover the maximum likelibood score equations when & — 0, pet the weighted
likelihood equanons in (213 tor & — 1, and for & = 1 gel estitnaling cquations whieh
provide stronger downweighting of the oullying (high Pearson tesidual} cells. The
estimating equation can again be iteratively solved by creating new weiglrs ar each
stage, Note that at the medel the weights are still converging to | for any finite 4. Tt is
gasy to gencrilize the influence function analvsis of Praposition | and show, by tsking
a derivative of Lhe estimating equation {2.15 ) under the contamination £, F — My, that
the resulting estimator s1ill has the same influenee function as Lhe maxinum Hkelihood
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estimaror at the model. Lllowever, the larger the wvalue ol &, the greater is the smount
of downweighting for an outlving observation. A straightforward analysis similar to
the second-order hias function analysis of Section 2.3 shows that the second-order
approximation to the bias &as a similar form given by Egs. (2.12) and (2.13), but now
the term f3{ 1) is & times the rerm obtained in (2.13}. Therefore, for the mean-value
parameter of the one-parameter exponential family model, s 18 now k42007
where (N ) is defined o (2.14). Thus & 18 8 devrcasing function of &, and larger
values of & will predice smaller bias. This sceond-order hias analysis parallels that of
Eimdsay {1994, Seetion 4.

Rewrting Fg. (2.15] in the form (2,63, one can see that this comresponds fo an RAF
AA — =1+ (A + D[w{H)]*; this manipulation of the weights provides no theoretical
problems as long as this corresponds to an increasing A(F). in which case it follows
from Lindsay {1994, Eq, ¢15)) that there exists a convex (05 that generates a dis-
parity measure as in (2.5, with comesponding estimating equation given by (2.15), Tn
particular when starting from Fq. (2150 we get A8 = (1 | $w(d e’ (8Y | w14},
angd following Lindsay ¢an regenerate the function

i i iy i &
Gy = | (w(  §dde +j o
S A

g =7 e

Since when the weighis produce an ineressime RAE there s 4 one-lo-one catTespon-
dence between the set of likelibood equations and a minimizativn problem the resulls
of Lindsay {1994 can be wsed 1o show that the weighted likelihood cstimatoms bave
hish breakdown points; in particular when A4 ~ 87 in the weight finction, the
broakdown puoint of the ¢stimators can he 0%, For comparison, Christmann {1994
showed that in logistic regression with large strata 2 modification of Rousseenw’s
lcast median of squares estimator has a finite sample breakdown point of appravi-
mately f

In case the function A{#) is not an increasing fumetion, as it would generally be
the case for arbitrary power of the weight £, the above procedure generates a criterion
function via {2.53). Although it #e forger B o formad disparity measure, [t asymproti-
catly has a local minimurm at the rrue parameter. o select the robust root the criterion
function generated via (2.5) 5 wsed.

While we are slill using minimum dispariey ideas 1o scleel the tobust rool m the
case ol mulitple sulutions w the eslimuling equalions, there are severa] imporlant dil-
ferences between minfmum dispadly cstimanon and weighted likelibood estimation:
{a) The method establishes a link between the maximum likelihood score equation
angd the minimum dispanty estimation equations vig the weights, {b) Apart from ro-
bust cstimates, the method provides a set of dugmostic weights, For observations that
arc consistent with the mode] we cxpect the weights o e close to |5 if the data sct
containg observations absolutely meonsistent with the medsl their weights are closs
1o 0, s that we expeel sulutions moch like lhe maxinm likelihood cstimator of the
subset of the data excluding the most unlikely observations. {¢) The set of weights are
extremely usefd in testing goodness of fit and calibration.
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3. Examples

In this section we apply the theory developed of some discrets models to demon-
strate the robustmess properlics of the procodure. We also diseuss the application of
our nuthodology to cxamples from logistic regression. The goal of these numerical
exumples 15 to study the bebavier of the roos of the set of estinatng equations and
L show how we cun construe! robust and cilicien csdmators. All the numericat eal-
culations prosented in this seetion were camed out on 2 50N workstaion, and the
programs were wrillen in splus and Forinsn,

When the tre donsity 18 given by 008 F{x) + 05g{x ) where cach of the component
densitics are in the neighborhood of the assumed moedel {mp}. we measure Tobusmass
by the existence of a root at or near one of the compeonents involved. When the
contamination peoportion is less than 003, we neasure robusiness by the existence of a
tool at or near the component with the larger mass. The examples presemed here show
that the robustness properties of the proposed methods are dependent oo the power of
Lthe weipht & and the separation of the two populations invelved. Although the sct of
exlimating cquations may nol have a onigue soluiion, we can select the rolost Toot
by going back o the comesponding mimimization problem, In partieulsr our examples
show the following:

{21 When the sepurution between the twa compunents, as measured by she distance
hetween their gorrespomding: centers is sufliciently Targe, there always cxists a robst
oot at o1 ngar the compenent with the larger mass.

ib) When the true density 1% 2 mixture of two densities with equal proportion and
the separation between the two populations 1s small, 4 rolmst root may be obrained by
increasing the power of the weight.

{¢) The number of roots may be a function of the amounr of contamination.

For the [ollowing caloulations, we let mpla} correspond to the Possondf ) model.
Initially, we replace the data by the mixiure density d(x) — (1 — £¥ela) 4 emsix ),
and attempt 1w determing the estimate ol § osing the weighted likelibood method, for
the residual adjustment function 4(3) = 2{(d + 1252 — 1}, which comesponds to the
Ilellinper distance.

Fig. 1| shows a plot of the weighed likelihood canmating functions sgaingt varous
values of the paramcier f ound varons levels of contamination r, The power of the
wolghts used here is &£ = 1. Note that for & < 0.3 there is only one sinale root near 2,
For & = (b3 more toots appear, such that it & = §.5 there is one oot in the neighbarhood
of 2, anuther voot in the neighborhood of 1% and a third root in the neighborbood of
the maximwm likelihood cstimator, The point of the praph is to demounstrate tha the
numher of roos changes as the amount of contamination increases provided lhere s
sulficierd scparation in the bwe populations; in this cxunple there is alwavs a wobust
tool in the neighborbood of 2 i the proportion of coptamination is less than of 0.5,
If the rwo populations are not solliciently seperaled, then this may reguire 3 higher
power of the weighis. The role of the power of the weiphts i clearly llustrated in
Figs, X and 3.
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Fig. 2 is the praph ol the weighted likelihood estimating lunctions against f, but this
lme eix) is the Q5w (e — 050 p{x) mixlure densily. When the power of the weights
15 cqual to 1, the sel of the cstimating equations bas only one root, which 15 close o
the MLE, 7.5, However, us one inercases the power of the weipht more roots appear.
Thus, for £ = 11 we weain observe three tools, one close w5, a second elose w the
MLE 7.5, and a third close to the mean of the Poisson{10) compotenl. Howewer, 1
the compeonents have a larger separation, multiple roots appear for a smaller power of
weights, as 1% scen in Fig, 3,

Fiz. 3 shows the graph of the weighted likelihood estimating functivns against §
when we replace @{x) with the 03sn(x) + himglx) mixture donsity, Notice hers
that the separation of the two populations is preater than in Fig. 2 as indicated by
the diflerence of their means. We sec that powers of 1 and 2 @till produce one root
while if &3 we obuerve three toots, one in the neighborhood of 3, a second in Lhe
neighborhood of the MLE and the third one in the neighborhood of 100 To select an
appropriale root when (bere exisis muliple eools, we recommend choosing the root
which provides the minimum in the corresponding minimization problem.

We will now discuss the application of cur methodalogy 1o an example from logistic
regression. [radiionally, logistic regrossion models have been fitted 1o data oblatned
under experimental conditions, lor cxample bioassay applicanons. Currently, logistic
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regression models are being applied to daty from observational studies. Data from such
studies can be notorlonsly bad from the point of view of outlving v values as well as
extreme values in the design space.

There {5 a considerable body of literature that discusses robusiness issues assoclated
wilh the logistic repression model. These are mostly adaprations of the uswal hnear
regrossion model wechniques. See, for example, Stefanski et al {19868), Kunsch e al
(1989, Copas { 1Y8E), Carroll and Pederson (1993% and Christrmann (1994} 16 mention
g few. Here we discoss Lthe application of our methodology o o particular situation of
fopristic TouressIon.

Suppuse we have ! different covarale patterns and there are repeal observations al
euch covirale pattern x;. Thus, there are », binary observations cormesponding Loy,
and gt ¥; he the number of ohservalions equal to 1. We will denole the observed
vilue of ¥, as v benee ¥: has a binomial distribution with parameters {n;, 50 Lel
di = wimound let g, — eapl 7000 4+ expl §Tx; )], We may define the Pearsim residual

:‘5.[1‘,-]--—&—]._ an
7

where fi. = exp{,l’}'rr, 3 -i-::xp[f;‘TJf,- )] 15 an castimate 1 p;. We will like our estimation
procedure o downweight the fh case i the cormesponding Pearsen residual d:0x) is
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Fig. 2. The madel is Poigsoni)T], and the data is the 115 Poisson(3 ) + 0.5 Porssang 10) density. 1 he wedphited
likeliknogd seore funetinms are plotted against 3, for several valucs ot &, the power of the weighes.

large. Howewver, vonsider the case where the observed value of; is substancally smaller
than the value predieted wnder the model. IE we only downweighl based on the value
ol the Pearson residual in 3.1, sueh u celt wifl penerate a negative value of the
Pearson residual 4, and may end up gelang a weight close or equal to 1 for certain
KAFs Smee sny ohservanon corresponding to a given covariale pattern t; generares
a twoecell Bemowlli distrebution, these negative residuals for the “1-cells™ (suceesses),
avtually may correspond W large posinve residuals for the “0-cells™ (failures). lence,
we also define

e % sl (32)
te be the residual associated with the “0—ell™. Our estimators then are obfained by
mininizing a weighted sum of distances. For a piven convex function {7 we minimize,
with respoel Lo 3,

; ] -ﬂp[ﬁT‘xﬂ_} . —1 I ..
,Zf g + exp{ #Tx 1 +¢Xp{|3'r.r¢}b(5n{1'}ﬂ ;

Simee Or ia thriee differendable the shove oplimization problem is cquivalent to

Clo(xidh +

] e z 3 expl i) i
E ”r[&‘!lal{/‘:f}} =3 A{f:'ﬂ{-ré ]'ﬂ"':}.l { P Em} =0 (3.1)
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Fur itlustration puopeses note that the maximum likelihood estimuting equations are

o) - Sole)Nl pd] = EI, mildits)  dolm ) =00 (34)
i=l =
The equalion (3.3) can be rowrilen as

;'}__‘{ [l bpd 1 — o) — wadx, Mo, — wopnfe — G, {3.3)
where beyix,) = LAY + 1140000 + 1y and wots ) = {408ale 00 1 1 0Aals Y 10 1)
Thiz is because Siev = 01 — pi1s,. This can then be selved as a weighted likelihood:
for current values of [ and a given RAL we construct weipghts w,, wy and perform
a Newlon—Raphson iteralion o oblain a new value of § We repest the procedure
Ul convergenee. Again the method provides fully efficient cstitnators of the parameter
vogtor fi
We have scen that the role of the RAF is to shrink large residuals. It may alse be
uf interest to sudy the behavier of the procedurs for negative valoes of 4. particularly
thase near — 1. To smoothly downweiaght such values (called Pearaom imbiers) we may
use the regative exporertip! RAF {Lindsay 1994, defingd as

Agtdy =2 {2+ 61 ™ (3.6}

The negative expooential RAF downweights both positive and neganve residuals rela-
uve 1o Lhe maximum likelibood, in the sense Lhal [A(8)] =48] We will apply both the
negative cxponential and Hellinger distance RAFs i the Fllowing cxample.

Fxample. This example invelves data which resubted rom a tovicological experiment
conducted at the Liiversity of Waterloo, Canada, and are presented in €7 Lara Hines
and Carter {19493, p. 13} Six differenr concentrations of the wxicanl polassium cyunate
(KSCN) were applied to 48 vials of trow fish epgs. Hach vial comained between 61
and 179 epps. The eggs m half the wials were allowed 10 waler barden fur severl
hours before the wxicaor was applied (tis {5 a process in which the surface of a
fish ceg becomes toughened aler 8 few houwrs m water). For the remaining vials, the
wxicanl was apphed mmediately alter fertilizanon. After 19 days of the start of the
expermenl the number of deud egps in cach vial was counted.

Treating the number ol dead cpus in cach wiwl as the rosponse we it a logistic
regression model to the data with covadates tor water hardening (0 if the toxicant
was applicd before water hardeming ungd 1 1if it was applied after), and for a linear
and quadratic term in log-concentrativn af the toxicant. The quadratic term in log-
concentration is used to describe a sharp ingrease in momnality caused by the two
highest concentrations. The maximum likelibood estimators were wsed as the sturting
wialiey,

Table 1 gives the weighl of those cases that did nol receive a weight of nearly or
exaolly 1. We have two columns of weights, colwnn 1 corresponds 1o the weights of
the response cells and column O to those of the ponresponse cells. for any piven a,.
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Taklg 1
Weights fir KSCN example

Lase Megative cap. woights Hellinger weights
num ber

CrHlumn 1 Curlummn 0 Column 1 Column 0
il 0 BHIZNAZ T AVHICAKICk 14352530 [L2R&3012
13 TECNIETHIEN) 09YTTR47
14 h327Us48 (LORR221Y
25 L1746 [hSHI3424
3k TECHICIKICK] LR
14 (L RBFO02S | ARG ILA541044 (hGU7 3058
L 112964502 (5036005
k1 742827 DALl
37 0.B532178 L AOGHII0 NEZEI6TL (9836277
ig 06217513 L IET LI .7F543E 0,BP5E06S
B 0.71260k] [WALIET (755057 (9477168
4 0L.CHICIIErK) (h9UTIVA2
4 M RSRHSHT 0943002
32 MLHIGHAT (b Red1 14
3 1LIMIENICH 1) (hEIREGTAT
H (. CCKITWI WD (9328280

The parameters o, §), f2 and ffy wre the intercept, and the slope parumelers associated
with water-hardening, log-concentration and squared log-concentration.

The nepative exponentizl RAF downweights observations 12, 34,37, 38, and 39, After
inspeition of the data we see that observation 12 with weight 0.3H5 and observation 34
with weight {18940 have, respectively, the highest number of dead epgs at concentration
level 360, after and hefore water-hardening was applied. Observations 37, 38, and 39 at
concentration level 724, prior to water-harderming, are also downweighted as having high
martality. Natice that observations 38 and 39 received the lowest weipht. Examination
of these observations showed that the mortality was high compared to all four replicares
at the nexi higher concentration level at the same water-hardness level. O Tlara Ilines
and Carler {1993 pinpoint observations 38, 39 and 26 as possible outliers. Our method
gives observation 26 a weight of nearly 1 indicating that it ig consistent with the fiued
model. An analogue of Cook’s statislic also pinpointed observations 38, 3% as potential
outliers.

When the Hellinger RAE s wsed for the constuetion of the weights, observa-
tions 13,32,40,43 and 44 received a weight of {4 Examination of those obseiva-
tions reveals thal observation 32 hax a 0 response, while observations 40,43 and
44 have the lowesl mortality at concentration levels 720 and 1440 respectively at
the same waler-hardening level. For similar reasons observation 42 receives u weight
of 1.303%, while observation 41 receives a weiphl of OKSRR. Observation 13, ax
having the lowest mimber of dead cpps ot concenralion level 720 and after waler-
hardening is applicd. reccives a weight of , indicating inconsistency with the hited
model.
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Table 2
New etfeclive sample size For Lhe dowaweiphted cascs for NED BAF

Cuse New Diaws M ellcclive Ol sample
fusttibec suiaple size size
L-Celd 0-Cell
12 15 Ré 181} 103
34 14 124 143 145
37 23 ™ a5 94
H i b1 B9 148

B3 auy i b o

Some comments about the interpretation of the (mal weights arc appropriate here.
Somc ingight mio the role of the weights can be obtained by cxamining the solulion as
it the weights were fixed at final values  this gives the “data”™ for which the weiphted
likelihood estimator is the MLE. In our logistic regression problem, let v and (m, — 1)
represent the number of successes and the number of failures, respectively, at the fth
case, and let v, and wy; represent the final weights for the "!-cell” and the “0-cell”
cotresponding to the qth case; this gemerates the new “data™ {w(, p,wipelm — )0 The
following are of note: {(a) this decreases the effective sample size from w, o the oew
cffective sample svae (w1 + wolm — w30, apd (b)) shifis the sample proportion ¢, to
fwr v 4wl — w0~ w0, which reflecis the exient to which the model disagrees
with the observed proportion. Mote that 11 3y — O then wy; s irelevant, hemee the role
of the weights 15 hard oy separate from el counts.

The case of binary data with no rephications at each x; is currently being investigated
by the auythors.
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