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INTRODUCTION

One of the findanental problemns in Measure Theory is the followine:
given a measurable space (X, Bk), to find subclasses D of BX such that
whenever for two probability measures u and v on (X, BX), u(B) = v(®)
for every B £ D, then u(B) = v(B) for everv B ¢ BX. The first basic
theorean of Measure Theory, viz., thebaratheodoﬂﬁxtension Theoren says
that any sub-aleebra P of BX which ecenerates BX has the above mentionad
property.,

Let (X, BX) be a piven measurable space. 4 subclass 1 of BX is

called a deteraining class for a class P of probability msasures on

(X, BX) if for u,v ¢ P, whenever u(B) = vw(B) for every B ¢ D, then

u(B) = v(B) for every B ¢ By The problem of finding deterninine classes,

other than the ones assured by the Caratheodory Extension Theorem, has been

of interest. One of the earlier results in this direction is due to

Cramer aqd Wold [43. They considered the case X = R and showed that the
n

class D = {St 5 |E.E R, s ¢ R} is a deteraining class for the class of
9

all probability neasures on ', where for t= (tl,...,tn) e B and s ¢ R,
n

s = = i o Lo s X . = > i
t,s {x=0x, %5, x ) e 7 izl t;x; < sty In the case, when X is a

retric space and BX is the ov-algebra of Borel subsets of X, various
deternining classes (which utilize the topolooy of X) are known for M(X),
therclass of all probability neasures on (X, BX). For exanple one knows
that the class Cj of all open subsets of X is a determinine class for
M(X). If X is a comlete separable metric space, then the class X of all

compact subsets of X is a deteraninine class for M(X )., Another class of
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subsets in a metric space X which is of interest is the class S of all
clogsed balls in X. It turms out that, in meneral S is not a deteraining
class for M(X). Davis [5] has shown that one can construct a compact
metric space and two distinet Borel probability measures on it which

atree on all closed balls, The problem of finding netric spaces X in which
the class § is a detzaraining class for M(X} has been investipated by

many authors, for example : Besicovitch [2], Anderson {13, Christensen [3]
and Hoffmann ~ Jorrensen [121].

Utilizing the group structure of Rn, a meneral method for constructing
determining classes in A was given by Sapogov [14]. . Let E ¢ Ben and let
D(E) = {E+x |x « 7'}, Saporov has shown that D(E) is a deterainine class
for the class of all probability measures on 7 if, either E has positive
finite Lebessrue measure or the support of the Fourier-transform of Xg
eontains an open subset of 7.

This thesis is concerned with the following situation:let (G,BG) be a
measurable croup acting on a measurable space (X,BX) and let u and v be
two probability measures on (¥, BX)' Do there exist sets E eB, such that
whenever u(z+E} = v(g+E) for every & € G, then v = v ? That is, can the

action of the proup G on X be utilized to find determinine classes for

prbbability neasures on (X, BX)? Let a set E ¢ BX be called a G-deteramining
set for a class P of probability measures on (X, BX) if the class

{zg+E | 7 € G} is a determining class for P. Our aim is to find G-deternining
sets and also to analyse the size »f the class of all determninine scts

using the Baire catesory theorem appropriately. We sive below a section-

wise sunmary of the thesis.
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( 1ii )
§ 1. We introduce the concept of a G-deternining set and give some

examples to illustrate the idea.

§2. In this section we considsr the translation action of a locally-
compact second countable abelian sroun G on itself and study the following
problan : do there exist determininpg sets for M(G), the class of all
probability measures on G? If yes, how bis is the class of all deternining
sets? The main result of this section says that generically, a subset

of G with finite positive Haar measure is a deteraminine set for M(G).

5 3. The set up of this section is the same as of § 2., Let E ¢ BG be a
fixed subset of G such that it has positive Haar neasure and its closure
is compact. We consider the question: for what kind of classes P of
probability measures on G, is E a deternining set? We show by an example
that E need not be a deteramining set for M(G). However, to every such
set E one can associate a compact subsroup K of G (depending only on E)
such that E becomes a determinine set for the class M{KN\G/K) of all

K - iInvariant probability measures on G.

54, In this section we consider the action of a locally-compact
second-countable (not necessarily abelian) sroup G on itself by left
aultiplication. We show that every compact cpen subgroup K of G is a
detérmining set for the class M(G/K) of all risht K ~ invariant
probability measures on G, However, the problem of finding determining

sets for M(G) remains open,

£ 5. We consider the translation action of a locally-compact
second-countable abelian sroup G on itself and introduce the concept of

a weak-converdence datermining set: a set E ¢ BG is called a
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( iv )

weak-converrence deteraining set for a class P of probability measures

on G if for every sequence {un} in P, un(E+g) + uo(5+q) For

n=0,1,25...
every 7 ¢ G inplieg that K, converges weakly to My We show that
generically, a subset of G with finite positive Haar-measure is a weak-
convergence deteraining set for M{(G). We also show that to every set
Ee BG such that it has positive Haar measure and has comnmact closure,
a compact subgroup K of G can bs associated such that E becomes a

weak-convergence deternining set for M{K\G/K), the class of all K-invariant

probability measures on G,

§6. Let G be a locally-compact second countable croup and let K be a
comnpact subsroup of G, In 6,1 we introduce the concept of a svinretric
pair (G,K): a pair (G,K) is called syametric if there exists an
autonorphisn 1 of G and Borel naps wl and ¢2 of G into K such that
1(g) = ¢l(g)ﬂ_l¢2(g) for every g e G,

In 6.2 and 6.3, ws develop the theory of Fourier-transform for
reasurss in MKNG/K). Using this; in 6.4 we show that renericallv, a
subset of G with finite positive Haar neasure is a determinine set for

M(K\G/K), In 6.5, we consider standard svametric pairs, i.e.,the case

when G is a non-compact semi-simple lie-rroun with finite center and K is

a maximal compact suberoup of G. In this case it is shown that every

E-e BG with positive Haar-measure and with compact closure is a deternining
set for M(K\G/K). Finally, in 6.6 , the implications of the above
results are explicitly described in a particular case: the standard

synmetric pair (SL(2, €), SU(2)).

§ 7. In this last section, weak-convergence determining sets for the
class M(KN\G/K), in a symmetric space (G,K) are analvsed. A reneric

result analogsus to the one in § 5 is obtained.,
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§ 1., DETERMINING SETS : DEFINITION AND
SOME EXAMPLES

Let (X, BX) be a measurable space. Let (G, BG) be a measurable group,

i.e., G is a group and BG is a o - alpebra of subsets of G such that

(g,h) -~ gh-l , F,h €06

| is a measurable map from (G x G, Bé x BG) into (G, BG).
By an action of (G, BG) on (X, BX) Wwe nean a measurable nap
$ ¢+ G xX - X, such that
(i) ¢(e,x) = x for every x ¢ X, e being the identity element in G ;

(ii) ¢(gl, ¢(g,, x)) = ¢(£122, x) for every g € G and X € X;

el
(iii) TFor every g € G, the map x> ¢(z, x) is a measurable map fron
X into itself. When such a map exists, we say that G acts on X, We shall

sometines denote o¢(g, x} by g+x. For g € G and E ¢ By, we shall write

g:E for the set
{o-x|x ¢ E} .
1.1 Definition : Let (X, BX) bea a measurable space and let a measurable

proup (G, BG) act on (X, BX)° Let ¢ denote this action. A set E ¢ B,

is called 2 (G, $) - determining set for a class P of measures on

(x, BX) if E has the following property: for u,v e P, if
u(g-E) = v(g+.E) for every g e G ,

then p = v .
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Whenever, it is clear from the context what G and ¢ are, we shall
call a (G, ¢) - deterainins set simolv a deterainine set.
Clearly, if E is a deteraining set for a class P of measures on

K, BX), then so 1s the set g:E for every o £ G,

1.2. Example (Sapogov) : Let G = X = R be the n-dinensional Euclidean

gpace and let Bﬁp be the ¢ - alpebra of Borel subsets nf %'. Let Agh
denote the Lsbespus measure on Ep and let M(Rn) denote the class of all
probability measures on 7. Let R act on itself as, (x,y) » wty for
every x,y £ R.. Sapegov [14] has shown that a set E ¢ BFp is a

determining set for M(F") whenever, either 0 < Aﬁp(E) < =, or the support

of the Fourier-transforn of Xg contains an open subset of Rn.
1.3. Example : Let X = G be any locally-compact second-countable group

and:let BG be the o - algebra of Borel subsets of G, Let AG bPe a Haar
reasure on G and let M(G) denote the class of all probability neasures

on G, Let G act on itself by left-multiplication. In view of Exawple 1.2,
sne asks the question : is everv set E & B, with 0 < AG(E) <®, a
deteraining set-for M(G)? We show bv an examnple that the above question
cannot be answered in the affirnative,

Let G = 7ZxK, where Z 1is the interer rroun and K is anv compact

abelian group. Choose two probzbility measures

4 and u2 on K such that

Hy # Uy Choose a non-zers nrobability measure ) on Z, Put
u=?\><u1, v=?\><u2 .

Let, E = {0} x K,
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w
-

Then E is a compact subset nf Z x X = G and XG(E) = 1, Further,

for any ¢ = (n,k) ¢ G
u{E + a) = u(E + (n,k))
= . X
Aln} ul( )
= x{n} .
Similarly,
v(E + g} = Aln} , for every ¢ = (n,k) e G,
Thus,
p(E + ¢) = V(E + g) for.every o e G,

But w # v. Thus E is not a deternining set for M(G).
However, consider 6 = 60 X AK’ where 60 denotes the probability

measure degenaerate at ¢ € Z  and AK denntes the normalised Hzar

measure of K. Then it is easy to see that
%8 = vwg

where % denotes the convelution operation.

1.4. Lemma : Let G be a lncallv-compact second countable abelian eroup

and let G be the dual aroup of G. Let E € B, be such that 0 < AG(E) <
and the set {y ¢ é]ﬁg(y) # 0} is a dense subset of é. Then E is a

deterninine set for M(G),

Proof + Let wu, v ¢ M(G) be such that

wE +¢a) = WE+ g) (1.1)
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-

for every o € G. We have to show that u=v. Condition (1.1) is

equivalent to

fxo(<th) u(dh) = fxE(g+h) v(dh)

E
for every 7 £ G,

A
Thus, for every character v in G, we havs

f<my> (F xgleth) u(dh),(dg) = f <g,y> ( f Xg (7¥h) v(ah A, (dg)

Usinp Fubini's theorem and chaneing g tec m-h, we have for every y in G,

f(fxE(p) <g-h,y> AG(dg))u(dh) = f(fXE(E) <g-h,y> AG(dq)7v(dh) ;

Since each y € G is a hommorphism, we have

FUxg(R) <a,y> <h,y> A (ds)duldh)= S Uxg(e)<e,y> <-B,y> Ay (de))v(an),

Once apain, usine Fubini's theorem, we have for evervy vy in G,

(Ixg(e) <az,v> Ag{dm))e (S<-h,vy> u(dh))
= (fXE(F’.)“!,P?\G(dr.{))(f<-h,y>v(dh)) 1 (:.?)
For a probability measure n on G, let n denote the probability measure

define * by

n(a) = n(-8), Ae By uo

where -A = {-g|g ¢ A}, Then, equation (1.2) can be written as

SO0 T = xely) Sy (1.3)

for every y e 3. Since the set {y & é]iE(Y) # 0} is denss in & and

A oA

U, V are continuous functions on &, it follows from equation (1,3) that

u(y) = (y) for every vy e G.

Hence u = v,
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5

1.5Example: Let T denote the circle aroup, i.e. the multiplicative eroup

of all complex-numbers of abselute value one, Let X = G = 7

be the
n-fold product of T with jits=1Ff. Let 7 act on itself by left-multiplica-

tion, For 0 < 4§ < 27 and any real number a, let

6

Ala,ats) = {e” e T | a <8 <a*s} |,

=

a

an-

i.e., A(a,atd) denctes an arc of lensth § in ” with end points o

(2t
e1(3 6)' Let

E = A(O,Gl) x A(O,62)>‘- cea X A(o,sn),
where ‘for every § = 1,2,...,n, 0 < 8j < 21 and Si is an irraticnal nultinle
of 2n. Then I is a deternining set for the class of all totally-finite

Teasures on Tn.

In view of Lemma 1.4, we have onlv to show that the set

v e | R () # 0}

is a dense subset of (%) . Let m = (ml,m?,...,mn) e (™Y = Z. ‘Then,
) ] N -inj &5 -
xg(n) = — =l
(2m)” S§=1 - 1By

Since, for each % = 1,2,...,n, 6% is an irrational multiple of 2w, it

follows that
iE(ﬂ) # 0 for every 1 e T

Hence, E is 2 determininc set for the class of all totallv-Ffinite

neasursSs on Tn.

1.6. Exanple Let G = T be the circle sroup., Let T bz resarded

as the additive group of real numbers modulo 27, i.e. T = [0,27),
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[92]

the group operation being addition, +, module 2m. Let the semi-circle
[0,7) ba denoted by X and let ths semi-circle [m,27) be denoted by Y.
Define

b+ T xX -~ X

as follows: for g ¢ T and % € X,

olpg,x) = g o x = gtx if gtx e X ,

AL if ptx e ¥ |

where 7 denctes the point m ¢ 7 = [0,2n). It is easy to see that ¢
is a well defined action of T on the semi-circle X,

Let E = A(0,8) = {ge T | 0<g<8}, where 0 <& < 1 is an
irrational multiole of 2w, Then E is a (7,9} - determining set for the
class of all totally-finite :néasur-es on ¥,

To see this, let u and v be two totally-finite measures on X such that

ulg o E} = v(g o E)} for every ¢ c G.

We have to show that u = v,
Dafine ;1 and v on T as feollows: for a Borel set A T,

ua) = ua) if  ACX

1]

u(A+gO) if Ag Y
U is defined similarly.

Let ¥ and v be extended by additivity for ceneral Borel subscts
of 7. Then, U and v are totally-finite measures on 7T and it is easy

to see that

n(E+g)} = v(E+g) for every g e T.

Since, E = A(0,§) and § is an irrational multiple of 2m, it follous

from Example 1.5 that 1: = v, Hence u = v,
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1.7. Example : Let (Gi’ BG ), i = 1,2 be measurable srours acting on

measurable spaces (Xi’ BX ), 1 = 1,2 vespectively. Let the respective
i

actions he ¢ and @2. Let G = Gl x G2 and BG = BG x B, . Then (G,BG)
1 9

is a measurable group. Let (X, BX) = (Xl X Xy» By x B, ). Define

as

2l amy)s (k) 5%)0) = (4 (g, %1250, (2,,%,))

= 1,2, Then ¢ is an action of G on X and let it be

e

for g, ¢ G., x. £ X,
By i* i 1

denoted by (¢l, ¢?).

Let P(Xi) be the class of all tctally-finite measures on (Xi’BX ),i=1,?
respectively, and let P(X) denote the class of all totally-finite measures
on (X, Bk).

It is easy to see that if Ei is a (Gi’ ¢i) - deterainins set for

P(Xi)’ i = 1,2 respectively, then the set

is a (G,3) - deterazining set for P(X),

1.8, Example : Let 3 & {(x,y,2) ¢ 7’ [ x2+y2+22: 1} be the surface of

. . . 3 . .
the unit sphere in R, In polar cocrdinates we can write

2 . {(¢,e)lo <¢ <m0 < g<2n},

; i 2 .

i.e., 2 point P on $° has polar-coordinates
(¢,6) if & is the anale between the radius
vector OF and the z-axis, and 8 is the angle

between the projesction OM of the radius vector

OP on the xy-vlane and the x-axis, ‘6 being
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measured in the counter-clockwise direction. In otherwords, we consider
82 as the cartesian product of the semi-circle [0,7] and the circle
T=1[0,2m). Let X = [0,m) x 7, i.e., X = 52\ {Zo}, where the point Z_
has cartesian coordinates (0,0,-1), Let T act on the semi-circle [0,7)

as desecribed in Example 1.6, and let @l denote this action. Let the

5.) is an

natural acticn of T on itself be denoted by ¢,. Then ¢ = (@l, 9

action of 7 x I on X as describad in Example 1.7,

Let 0 < 61 <1t and 0 < 62 < 21 be such that 61 and 62 are irrational
multiples of 2n. Then we know from Example 1.6 that A(O,Gl‘ is a (T,@l) -
determining set for the class of all totally-finite measures on [0,1). We
also know from Example 1.5 that A(O,GQ) is a (T, @2) - deteraining set for
the class of all totally - finite measures on T, It follows from Example
1.7 that the set E = A(O,dl) x A(O,GQ) is a (T x T, ¢} - determininc set
for the class of all totally-finite measures on X. This fact can be
explicitly stated as follows:

Let p and v be two totally-finite measures on 82 such that

u{ZO} = \J{ZO} and let u,v satisfy the followine relations:
(1) uAla,ats ) x Alb, b#8.)) = vlAla,ars ) x A(b,b¥s,)) ,

whenever 0 < a <1 = 61’ 0 <b <273

(11)  wlAla,m) x A(b,b¥6,)) + u(A(0,ats -1) x Alb,b¥5,))
= v(Aa,mxAb,b¥8,)) + V(AW ,ats ~m)xA(b,b¥s,)),

whenever W—Gl <a<m, 0<b<2m
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s 2.DETERMINING SETS IN ABELIAN GROUPS

Let G be 2 locally-compact second-countable groun and let BG be the
o-algebra of Borel subsets of G, Let AG denrte a Haar-measurs on G and
lat M(G) denote the class of all probability measures on 5. When G is
abelian and G denotes the dual -rour »f G, then by Lemma 1.4 we know that
every E ¢ B, with 0 < AG(E)'< = and such that the set {v e é!iE(Y) # 0}
is dense in é, is a determinine set for M(G). Also bv Example 1.3, not
every E ¢ BG with 0 < AG(B) < = ig a determinine set for M(G). This
leads tc the natural question: how bi~ is the class of all determining
sets For M(G)? In this section we will show that when G is abelian, then
senerically a set of finite positive Faar-measure in G is a determininge

set for M{(G), Let,
s(@) = {E € By | A (E) <=}

Let A,B ¢ 5(G). We say that A is equivalent te B, and write A ~ B,
whenever AG(A A B) = 0. The relatinn ~ is Aan equivalence relation on
s{@). We denote the set of equivalence classes of s{G) under this relation

by s{G) itself. For A,B e s(G), dcfine
a(a,R) = (A A B) .
G

Then 4 is a well-definad metric on s{G) and s(G) becones a comnlete metric

space under this mnetric. For anv real number o > 0, let

s, (6) = {E ¢ s(6) | 2B <al .
Then Sa(G) is an open subset of {(s(G),d)., Let d,denote the restriction
of the metric d to Sa(G)' Then, a metric d& can be defined on sa(G)

such that d) is equivalent to 4 and (su(G),q;) is a complete metric space,

{see Dieudonne [63, p. 55).
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2.1, Lemma ¢ Let G ke a locally-compact second cowumtable ercup *and
let £:G6 = & be a bounded continuous function such that F(g) = 1. Then
the set

D(asf) = {E e s (8) | [ FlxIr (dx) # 0}
o o G

is an open dense subset of (%1(G)’ dé).

Proof : Clearly Do ; f) is open in sa(G). Tc show that D{x ; f) is dense
in Su(G)’ we have to show that for every & >0 and E ¢ Sa(G)’ thare
axists an A € D@ ; f) such that AG(A AE) <8,

Let E ¢ §u(G) be chosen arbitrarily and fixed. Let § > 0 be aprbitrary.
Without loss of generality, let § < 1. IfE £ D{@ ; f£), then there is
nothine to prove. Let E £ Dl ;3 f), i.e., é f(x)AG(dx) =0,

Since, £ is continuous and f(e) = 1, choose an open neirhbourhood

N of ¢ in G such that

0 < AG(N) < ain(s, u-AG(E)) ,

and
|1-f(x)] < & for every x e N,
Then,
| {; Frag(ax) | > A 00 -;; ]l—f(x)!)\G(dx)
> (1-6) 2,(N)
> 0 .,
Thus,

J f(x)lG(dx) £0 .
N
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I [

Now two cases can arise :

Case (i) foo£x) x(dx) £ 0
- E(N
Put, A = EUN, Then [ £(xIr,(dx) # 0 and
: A
0 < AG(A) = AG(ELJ N)

< AG(E) + AG(N)

Thus, A € D 3 f) and clearlv ?\C(A AE) < AC(N) <48,

Case (ii) ! F(x)l (dx) = 1
EUN

Pyt A = Ex_(ENN),

Then,
! f(x)A (dx) + S ”(X)AG(dx) I f(x)l (dx) =
A 5 BN ©
i.e.
F (=, (@x) = - f F(x)_ (dAx) # 0 ,
A 2 N d

Further, clearly C < AG(A) <o and AC(A AE) <§.
Thus, in either case there exists an & e D¢ ; ) such that
AG(_A AE)<8§,

This proves the lemma completely.

2.2. Theorem : Let € be a locally-compact second-countable abelian grour.
Then for every real number a > 0, there exists Dla ; G)(::BG such that the
following hold:

(i) D ; G) is a dense Gy
(ii) Every E € Dla ; G) is a determining set for M(G)

- subset of (s (G),d');
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Proof : Since G is second-co:ntable, its dual group G is separablae, Let
Yyo Yoo ees be a dense subset of é. Since Yj is a continuous davmvlax-valued

funetic on G and Y%(e) = 1, i1 fnllows from Lemmna 2.1 that the set
Dliy,) = {E e s (G)|f<x,v.>x . (dx) # 0}
] a T e

is an open dense subset of (%x(G)’ d&). Since (sa(G), d&) is a complete

retric space, by Baire's Category Theoren,

o

D :G) = N D(G;Yj)

J=1
is a dense subset of (gl(G), q;). Obviously D{o 3 G) is a G = set.

Let E € D(@ ; G), Then, 0 < AG(E) < a and the sat

vy € G |%(y) # 0}

is a dense subset of G, since it contains Yﬁ for every § = 1,2,... .

Thus by Lemma 1.4, E is a determining set for M(G).

Q.E.D.
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§ 3. SOME MORE DETERMINING SETS IN ABELIAN GROUPS

Let G be a locally-compact sacond-countable abelian group and let
Bé bes the o - algebra of Borel subsets oF_G. Let AG denote the Haar
measure on G and let M(G) denote the class of all probability measures
on G. Let G act on itself by translation. Let E & BG be a fixed subset
of G such that KG(E) > 0 and its clesure, E, is compact. We showed in
Eﬁample i.S that such 2 set E necd not be a datermining set for M(G), For
what kind of classes P of probability measures on G, is E a determining
set? In this section we show that to any such set E one can associate a
compact subgroup K of G such that E becomes a determining sat for the class
M(KNG/K) of all K-invariant probability measures on G. To prove this

result, we need sone elementary rasults which we prove in 3,1 znd 3.7.
3.1

Let u,v € ¥(G). The conwolution of u with v, denoted by u & v,

is defined by

{u = \,)(A) = ru(A—X)U(dX}, Ae B, .

[rp}

Clearly, n & v e MG) and v & v= v & U,

Let u € M(G) and let f be any measurable function on (G, ). Consider

)
G
the function x> [ Fflx-yluldy), x ¢ 5. VWhenever, this is w2ll d="ined,
G
it will be called ths convolution of £ with p and written as f &« u. For

exanple, if £ ¢ L (2) then £ & u is well-defined and f & u ¢ Ll(G). 1f

f is a bounded continuous function, then £ & u is well defined and is a
bounded continuous function. It is easilyv seen that the following
relations are true in the sense that whenever either side is well-defined,

so is the other and they are equal:
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(i) fa (g (Fag)exu=(Fru)ag;

(3.1)

(i1) fa (U V) (F« u)xv ;

.where £, g are measurable functions on G and U,V € M(@G) .
3.2

Lat K be any compact subgroup of G. Consider the auotient group
G/K with the quotient topology. Let the o - algebra of Borel subsets of
G/K be denoted by BG/K' Let Ry denote the normalised Haar-measure of K
and let AG/K denote the Haar-measure of ¢/K,  Let I'(K) denote the space
of all K-invariant Borel functions on G, i.e., £ & I(K) iff f is a Borel

function on G and
Flxtk) = £f(x) for everv x e G, k € K,

Let B(G/K) denote the space of all Borel functions on G/K. Define the
mnap

T : I(KY ~» B(5/K)
as follows: for every f ¢ I(K) and x € G,

(T£) {>+K)

il

F(x) .

Then T is a well-defined map. Some properties of T are given by the

following proposition.

3.2.1. Proposition : (i) T is one-one and onto:

(ii) Tf is bounded whenever f ¢ I(K) is bounded and Tf has compact
support whenever f ¢ I(K) has compact support;
(111) T(f.g) = (T£)«(Tg) for every f,g € I{K);

(iv) If £ ¢ I(KIN Ll(G) and g e I(K) is bounded, then

T(Fag) = (TF) % (Tg) .
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Proof : (i), (ii) and (iii) are easy to prove. We shall prove (iv).

For f ¢ Ll(G), the Haar-measures Ago Ay and AG/K satisfy the

follow®ng relation :

S FCGOA(Ax) = f  T( f £(xtk)n, (dk))IA (A(x¥K)) .
G G G/K K X G/

(See, Dicudonne [7], o. 249). In particular, if f e I{(X3{\ Ll(G) .

we have

5 f(x)XG(dx) = [ (TF)(xtK) A

G G/

Now, let £ ¢ T(K)M Ll(G) and let g € I(K) be bounded, Let fx(y)=f(x~v)

/K (d(x+K)) (3.2)

for x,v € G, Then for = ¢ G

[T(Ff % g)](x+K) (F % g) (x)

= é fx(y) g(y) AG(dy),

= [ [T(F +g)NytK) A (a(y+K))
a/K % G/K
= T (TE K- (Te)(y*K) Ay, (d(rHK))

G/K

H

I (TEY(z-y+K)(Tg) (v+K) )\G/K(d (vtK))
G/K

i

[TF & Tal (x + K).

This proves the propositisn completely.
. Next we prove a result concerning the real-zeros of a functien of
saveral complex-variables which we need for proving the main presult of this

section,

3.2.2. Lemma : Let f : £ - r ke a non-zZero analvtic function. Then

the set {x ¢ Rn|f(§) # 0} is an open dense subset of A,
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Proof : Let D = {x e Rn,f(g_) # 0}, Clearly D is an open subset of 7.
We prove, by inducticn on n, that D is dense in A .

Let n=1, Then £ is a non-zers analytic function of one complex-
variable. Thus the set {z ¢ & | £(z) = 0} is atmost countable and consists
of isolated points only. In particular the set {x ¢ R I £(x) = 0} is

atmost countable and all its points are isclated points, Hence the set

{x e B | £(x) # 0} ic dense in ~.

’ =Y

Now suppose the statement is true for n = k-1, Let
A= {z'e a'lf('z',g) = 0 for evary 2 e &1 .

Then A is a closed subset of @ and all its points are isolated points,

In particular, the set

B= {teR| flt,z) = ¢ for every z ¢ (,J(-l}
is a closed subset of R and all its points are isoclated points, Thus the

set K\ B is a dénse subset of F. For every t € RNB, let

Bt={§€}?1<_l l f(t,_s_)#O} "
By the induction hypothesis, the set B‘t is dense in }-?k*l for every t ¢ R\ B,

Consider the set

U aoxs) € #& .

t € R™B
Clearly, it is a dense subset of Rk and is contained in the set
{xe 7 | £(x) # 0}. Hence the statement is also true for n = k,

This proves the lemma.

3.2.3. C_orollarz : Let £ dﬁk + & be a non-zero analytic function.
.Then the set

{(z,x) e T x §° | £(z,x) # 0}

is an open dense subset of T° x Hk
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Proof + Apply induction on r and procesd on the lines of the proof of

Lemna 3.2.2.

3.2.4 Corollary: Let C = 75 x Ek amd l=2t f be anv non-zero bounded Beorel

function on G with compact supoort. Then the sat

{y e I x 7 | #y) # 0}
iz an onen dense subset of ™ x Ek 5

Proof : Write 7 ¢ G 23 (E} 5), whera D ¢ z8  and X € Ek. Also, write

T L
yeI xK as (8, y), vhere 8 e ™ and ¥, o€ Rk. Then bv the definition

A

of £ , we have

%x.V. 1 (n,x)dn)d(x),
2 ="=oan=l =

Wher'e g: (el’ o " (eEy er)’ E= (nl,.-.,nr), X = (Xl, “ ey X-k) and

Y= (yys ooy 70
Define -

b 1 $r+k - &
as follows:

1 ols 2 r .
i) 27 2y eee 2 exp{-i
(20)" 2¥ x R ' 3

$(z) = X z.+r}f(g_,§_)d(£)d(§_),

1 3

jou
3
HooM
[ W

+
for evervy z = (Zl""’zr+k) e & k. Then ¢ is a well defined analytic function

+k . . . s
on € °. Further ¢ is non-z=ro. In fact, ¢ restricted to 7" x Ek is f.

Thug, it follows from Corollarvy 3.2.3 that the seot

{y e T x 7 | %(Y) Z 0}

is an open densa subset of 7 x Rk .
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4

3.2.5, PFProposition : Let G ba a lncally-compact second-countable abelian
group and let E ¢ BG be such that KG(E) >0 and E is compact. Let Go

be the subearoup »f G penerated by E and let K be the maximal compact
subgroup of Go' Let £ ¢ LI(G) be a continunus function such that

z 0, where AK denotes the

(XB % £){x) = 0 for every x ¢ G. Then f # A
!

i

normnalised Hzar measure of K.

%]

Proof : First nntz that Go is an open subrroup of G, Further; G is a

locally-compact, compactly senerated abelisan croup. Hence, by the Structure
Theorem, Go is isomorphic to Z¥ x Rk * K, where 7 iz the intewer sroup, K
is somg compact abeli=an eroup and r,k are non-negative integers (sa¢
Hewitt =nd Ross [10], 7. 90), 5o we can write GO = 70 x Rk x K, Then K is
the maximal ccampact subaroup of Go'

To prove the proposition, first assume that £ e T(K). Ve shall

show that undsr the given hypothesis, £ =0, Let X € G be chosen arbitrarily

and fixed. Put

F (%) = f(x *+ x), x £ G,
X o

Then £ ¢ I(KI Ny Ll(G) is a continuous function. Further, from the civen

o
condition on £, we have

S F (x=-y.(dy) = 0 Ffor every x e G .
E X, G

Since, the inteeration is onlv over a2 subsat of G s we have
=

é £, (x-v) Ag (dy) = 0 for everv x ¢ G
2 o}
where lG denotes the Haar-mneasure of Gd' Eouivalentlv,
o]
(xg # £, )(x) = 0 for everv xeG_ .
X o

)


http://www.cvisiontech.com

R O T < el WL

: 19

.

Thus

[(XE % fxq) % lK](X) = 0 for every x e G,
i,e.,
% -' = qJ_ . -
£fxo * (xE % AK)J(X) 0 for every  xeG_ (3.3)
Let y=xp # Ay Then ¢ ¢ I(K) and ¢ is a non-zerc bounded function with

compact sunport. Applying the map T{(defined in section 3.2) to both sides
of equation (3.3) and using Proprsition 3.2.1, we have
(TF, )& (W) =0 on G /K=7" xR,
o

Takine Tourier-transforans , we have

A ~
(T, )y + (W) (v) = 0 (3.4)
o]

for every vy € 7 x Rk. Since T is a non-zerc bounded functicn with
compact support, it follows from Corollary 3.2.4 that the set

A A
{y e T x 7 | ()(y) # 0} is dense in T x F°. Also (Ty ) is a continunus

function on T x Ek. Thus it follows from equation (3.,4) that

A FAN
(fo Y (y) = 0 Ffor avery vy € 7 x ﬁk = (GO/K).
o)
Since fx is eontinucus, so is fo . Thus it follows that fo =0 on
o o) o}
GO/K, and hence fx =0 o¢n GO. Since X, € G was chosen arbitrarily,

0
we have £ =0 on G,

To prove the proposition in the reneral case, nut

£ I f* )\K .

Then f is a continuous functieon, £ € I(K)(\ibl(G) and f f(x—y)hc(dy) =0
. E ’
for every x € G. Thus it follows fron the above discussion that

f % lKEO on G,
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3.3.1 Definition : Lzt G be a lncally-comact second countable
group and let K a suboroup of G, A probability measure n -n G is said +»
be K-invariant if

n(klﬂkz) = n{A) for every A ¢ BG’ kl’ kQ e K,

We denote the set of all Keinvarisnt prebability measuraes en G bv M(K\ G/K)

3.3.2 Theorem : Let G bz a locally-comract sccond countable abalian opour
and let E € B, be such that AG(E) > 0 and E is compact, Let G be the
subgroup of G generated by E and let K be the maximal comnact sub~roun

of €. Let u, ve M(Z) be such that

w(E+x) v(E+x)

for every x ¢ G. Then

U 2 AK = Vv o% AK .
In particular, E is a determinine set for MK\ G/K),
Proof : Let u, v ¢ M(G) and 12t

u(Etx) = v(E+x) for everv x e G,
Equivalently,

(X_E 2 udx) = (X-E # v)(x) for every x e G,

where -E denotes the set {- x}x ¢ E}. Let f be any continuous functinn

on G with compact supnort. Then for every x e G, we have

L% (x o2 W) = [F 5 (x o % vINx)
-E -E

Using equation (3.1), we have for avery x ¢ G

[(fxu) = x_Bj(x) = [(F % v) % x_E](x) (3.5)

Put

-~

f = faxyu-~-fx v .
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Then f ig a continuous function and f e Ll(G). Further,

-

(f = X_E)(x) = 0 3 for every x ¢ 6.

Since the groups renerated by E and - E are the same, we have fron

Prbposition 3.2.5,
| (£ % AIx) = 0 ’ for every x ¢ G.
Using equation (3.1), we get
[Fx (ux AK)](X) = [fx (va& A1)

for every x € G, Since this holds forp every continuous function f with

compact support, we have

QoEoD.
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§ 4, WEAK CONVERGENCE DETERMINING SETS IN
ABELIAN CROUPS

=
-]

|

Let G be a locally-compact second countable abelian group, Let BG
denote the o-zleebra of Borel subsets of & and let AG denote the Haar
measure of G, Let M(G) denote the set ~f all nrobability measures on G.

We say a sequence {un} in M(G) converges weaklv to u in M(G), and write

L if for every bounded continusus function £ ~n C

JE(x) pn(dx) +  [F(x) ulax)

as n + =, The tonolony induced by this convergence is callad the

weak-topolory on M(G)., TFor a detailed discussion of the weak-convergence

and the weak-topology, we refer to Parthasarathv [13], Chapter ~I1I, Under
the convolution operation % and the weak-tonolocy, M(G) becomes a complete
separable metric semni-rroup,

A set T CM(G) is said to be conditionally compact if the closure of

I' in the weak-topolonsy is compact, Let {un} and {vn} be twn sequences

i = If +i 2]

in M(G), Let AL S ou v, for every n. If the sequences {An} and {un}
are conditiomally compact, then so is the sequence {vn}, (see Parthasarathy
(23], p.58). In particular, let f ¢ Ll(G) be any bounded function and let
-{un} be a sequence in M(G), If f b [ # u, u & M(G), then it

follows that {un} is conditionally compact.

For u e M(G), let U denote the probability measure on G defined by

p(A) = p(-A), Ae By .

Where ~A = {-x[x ¢ A}, The map u + I is a homeomorphism of M(G) onto

itsgelf,
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4,2, Definition : Let E ¢ B,. We say that E is a weak-convergence

determining set for a class P of probability measures on G if E has the

fbllowing property:
1 1 E+ E+
if for a sequence {Un}n=0,l,2,....... in P, un( X) -+ uo( x) for

3 =>
every x € G, then I o

4.3, Example (Sapogov [141) : Let 6 = A% and P = M(A)., Let E « Bop
be such that 0 < AHn (E) < ®». Then E is a weak-convergence determnining

set for M(F),

4.4, Lemma : Let G be a locally-compact second countable abelian group
and let E ¢ ﬁé be such that 0 < AG(E) < », Let {un}n:0,1,2 - be a

sequence in M(G) such that

un(E+x) > UO(E+x) for everv x ¢ G,

Then

{1) {“n}nzl,Q, ... is conditionally compact ;

(ii) For every limit point v »f {“n}nzl,Z,....,

{xg * uo)(x) = (xp % v)(x) for almost all x(A,).

P e m the gi iti
roof : From the given condition on {“n}nzo,l,Q,----

we have
Sihce, Xg € Ll(G), it follows that {ﬁn}n=l,2..... is conditionally compact

and hence {un}n_l 5 is conditionally compact. This proves (i).
Tlslseanse

To prove (ii), let v be any limit point of {un} Let

n=1,2,.... °

Tu }k=1,2 ... be a subsequence of {y_} such that

K n=l,2,-o-
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Going ~o Fourier-transforms, we have

e = v,
%
Thus, |
Xp * U % K e v .
E nk E
i.e.,
Pa Pt
(xE % unk) + (xE % V) (4.1)

-

On the other hand, since e (E+x) » uo(E+x) for every x ¢ G, we have

k
Xg % unk > Xp % o g

Going to Fourier-transforms we have

PaN P
(xE % unk)' + (XE % uo) (4.2)

Fron equations (4.1) and (4.2), we have
(xg # uo)(x) = (xg * v)(x) f@r almost all x(g).

This proves the Lemma.

4.5 Lemma : Let G be a locally-compact second-countable abelian group and

let E ¢ BG be such that 0 < )G(E) < » gnd the set

{y € é-] iE (y) # 0} s

is dense in G, Then E is a weak-convergence determing set for M(G).
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Proof : Let {un}n= be a sequence in M(G) such that

0,1,2....

un(E'f::) > uO(E'l'x) for every x e G.

Then it follows from Lemma 4.4, that {un} is conditionally

0=1,2,4i0.

compact, Further, for any limit point v of {un} , we have

n=1’2’3--o-n-.

()(E % uo)(x) ()(E % v){x) for almost all x(AG).

Going to Fourier-transforms, we have

)‘EE(Y) ﬁo(y) )?E(Y) v(y) for every y € G .

Since, {y ¢ G | ;(E(Y) # 0} is a2 dense subset of G and GO,G are continuous

on G, we have

A

ﬁo (y) = V(y) forevery vy e G .

Hence u_ = v,
o}

Thus the sequence {u_} _ has only one limit point, namely u .
n n=1,2,..,.. o

This proves the Lemma.

4.6. Theorenm : Let G be a locally-compact second countéble abelian group.
Then for every real number a > 0, there exists D@ ;GjCBG such that the
following holdy

(1) D@ ;G) is a dense Gy - subset of the metric space (sa (¢), do'L).

(Recall, S, (G) = {E e B, I J\G(E) <al) s
(ii) Every E ¢ D& ;6) is a weak-convergence deteraining set for M(G).

Proof : Let D(ax3;G) be constructed as in Theorem 2.2. We have only to
prove (ii).
Let E € D{a;G). Then it follows from the construction of D ;G)

A

that a > )\G(E) > 0 and the set {y € G | ;(E (vy) # 0} is dense in G, It
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i follows from Lemma 4,5 that E is a deterninine set for M(G).

This proves the theoren.

4.7. Remark : Theorem #.6 tells us that fenerically, every subset of G

“with finite positive Haar measure is a weak-conversgence determinine set

for M(G).

4.8, Theqrem : Let G be a locallv-compact second countabls abelian sroup
and let b ¢ BG be such that AG(B) > 0 and E is compact. Let GO be the

subproup of G generated by E and let K be the maximal epmpact suboroup of
3

o Then E is a weak-converpence deteranining set for M{K\ G/K), the class

of all K - invariant probabilitv measures on G.

Proof : Let {“n}nzc 1.2 be a sequence in M(G) such that
sl oo

uw (E+ x) > pn (E+ x)
n o

for every x & G; We shall show that

This wiil prove in particular that E is a weak conversence deternining set
for M(K\G/K). Since

un(B+x) + pO(B+x)

for every x € G, it follows from Lemma L.4, that the sequence

{un}n-l 9 is conditionally compact. Further, for any 1linit point v
- ] ,.‘l

of {un}n=1,2,... we have

(xg * uo)(x) = (xg * v)(x) for almost all X(AG).

Let f be any continuous function on G with compact support. Then

[f*(xE*uo}](x) = [f*(xE*v)J(x) fop every x & G,
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This equation is similar to the equation {3.5). Proceeding as in the
proof of Theoren3.3.2from equation (3.5) onwards, we will get

o A =.v & AK g

Thus, for every limit point v of the sequence {un}n=l,2,..., H # A= Vi Ay
Hence M ® A FFOM % Ay
Q.E.D,
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§ 5, DETERMINING SETS IN GRQUPS WHICH ARE
NOT _NECESSARTILY ABELIAN

Let G be a locally-compact second countable group {(not necessarily
abelian)., Let B, denote the o - algebra of Borel subsets of G and let
A; be a Haar measure of G. Let E ¢ BG be such that 0 < A, (E) <&, In

this section we consider the following problem: for what families P

of probability measures on G, is E a deteraining set?

5.1. Example : Let G = Au be the group of all even permutations on four
symbols, say {1,2,3,4}. The group 4, has 12 elements. Considering each

ge4é, asa bijection from {1,2,3,4} onto itself, g can be represented as

1 2 3 4

s(1)  gl2)  g(3) g(u)

In this notation, the elements of Au are :

f a5 2L T 3l
£ : : g, =
b Rl e

1

2 3 4 1 2 3 4
» By T
2 1 u 3 3 4 1 2

il

12 3 4 1 2 3 4 i B = u
= u321>’g5=(23114),%6:(3124)
12 3% 1 2 3 4 12 3 1
i =(2 b3 1)’ gS:(u 13 2)’ I P 1)
12 B L 2+ b R
I P 3) ’ gll:(l 3 u 2) * e (1 42 .3)

The group operation on Au ig defined by the composition of maps, i.e.’

1 2 -3 y

g.(2) gigj(3) gigj(u)
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Au is a non-abelian group, It is a topolomical group with the discrete

topology, The o-algebra B is the class of all subsets of Aq and the

Ay

Haar neasure A of Au is the neasure which rives wnit mnass +o every
point of Au.
Let E = {gl,gu}. ‘Then E is a subaroup of A, and A(E) > 0. Let

and v be two probability measures on Au d2¥ined as follows:

U{Ql} = v{gu} = 1/78 o u{qz} c v{cf,a} = 2/78
u{gs} = v{gz} = 3/78 u{gu} = v{gl} = u/78
wlegl = vig} = s/78 ulggl = vlg b= 68/78
wle,l = Ve b= s, wlggl = viggd = 8/78
ulggl = vig,} = 9/78 wleg gl = vig} = 10/78 ,
CA vie,} = 11/78 rle,t = viggl = 12778

It is easy to see that u{g.E)} = vw(g-E) far every g e A However,

LI_.
W #v ., Thus E is not a deternining set for the class of all prrbability

neasures on Au. Let AE denote the Haar measure of the subproup E, i,e,,

rOf b

AE{Q } = AE{QLE =

Then it is easy to see that u % AB = v % AE .

Our ncxt Theoream shows that more senerallv, this haopenes to be true

for any locally-compact second-countable aroun,

LS

5,1.1, Definition : Let & be = locally-compact second countable sroup

and let K be a subproup of G, u ¢ M(G) is said to be richt K-invariant if

u(Ak) = u(A) for every A e B, k ¢ K .

Let M(G\K) denote the class of all right K-invariant probability measures

on G,
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5.2, Theorem : Let G be a locallv-compact second countable rroup. Let

K be a compact open suberoup of G, Let u,v € M(G) be such that

ui(sK) = v(aK) for everv g ¢ X,
Then wu # A =V oE A o

- In particular, K is a deteramining set for the fanilv M(GN\ K),

Procf : Since K is open, the fanily {qK}g foras an open coverins of G.

e G
Since G is second-countable , there exist Fys Pps cee in G such that
0
G = K .
U ey
i=1

Since for i # j, giK‘”\ng = ¢ , to show that u % A¢ = v & A on G, it is
sufficient to show that 1y # A TV Ay on giK, for every 1 = 1,2, ... =
Let 7y be chosen arbitrarily and fixed. Consider the probability

measures Gggl % W% AK and 6231 % V% AK' Showing that u = AK=v 3 AK

on giK 1s equivalent ?o showing that thl % oU o AK = 6271 £V % AK on K,

i
. % |
Suppose, (Sgil % u? AK) (K = 0o .
Then,
0 = (5g71 £ uE A (K)
i
= uleK)
5 v(giK)

= (6g£1 VIR AK) (K)

Thus, if either of the measures GF—l U AK and 63-1. Vo Ay

i i
vanishes on K then so does the other and hence they are equal,

Now suppose that (ngl % U % AK) (K) # 0 and (GE{J' SRV AK)(K) #0.
Note that

wg{l £y * A )(K) = @g;1 LI R 109 B
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To complete the proof we show that boath these measures are right

K-invariant. For this,_let Ae BK' Then,

. -1
- * Y = B
(5gil # U AK) (A) ih L(EiAk ) AK(dk)
Since K is compact, Ay is both left and right K-invariant, Thus for

every kl e K,

P

(Gp-l f U % }\K) (A)

=

“l -
J'u(in(}ckl ) ))\K(dk)

-1

1

= (5'{’:1 % U *AK)(Akl)‘

Similarly,
(59‘:1 VR )\K) (4 = ({SQTI VR ?\K) (Akl) .
1 1 E
QlElD.
5.3

The following questions on a locally compact second countable groun
G remain open:
(1) Dr=s there exist a deternrining set for M(G) ?
(2) Let E ¢ BG be such that 0 < AG(B) < », Can one associate a compact

subgroun K to E such that E becomes a determining set for the family

M(GN\K) of all right K-invariant probability measures on G?.
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§ 6, DETERMINING SETS IN SYMMETRIC PAIRS

Unless otherwise stated, fhroﬁqhout this section, G will stand for a
locally~compact second countable srour and BG will stand for the o-alrebra
of ﬁorel subsets of G. For any compact'SUbﬁroup K of G, BK will denote
the o-alsebra of Borel subsets of K and AK will dencte the normalised

Haar measure of K. We choose and fix, once for all, a Haar neasure

AG of G,

6.1.1., Definition : The pair (G,K) is said to be symmetric if there
exists an automorphism T of G with the.fbllowing property: there exist
Borel maps wl.and ¢2 from G into K such that

(%) = wl(x)ox—lﬂpz(x), for every x € G,

Note that 7(K) = K. We shall refer to T as the automorphisn

associated with the syaretric pair (G,K)

6.1.2 Examples :
(i)

Let G be any compnact group and let
K={(x,x) e 6x6G6| xeG} .

Then K is a compact subgroup of G x G, Let
T:IGxG +» GXG

be defined by

T(%,v) (y,x), X,y € G,

Then 1 is an automdrphism of G x G and for every X,y € G,

G, 0- Ly Dy, .

t(x,y)

‘Thus (G x G,K) is a syametric pair.
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(ii)
Let G = SL(n, R) be the group of all n % n real matrices with
determinant 1. Let K = S O(n) be the group of all h x n orthogonal

natrices, Then K is a compact subgroup of G, Let
T : SL(n,?) - SL{(n,R)

be defined by

t)—l

g) = (g ,» ¢ € SL(n,R).

Where gt denotes the transpose of the matrix g. Then t is an automorphism
of SL(n,R). Further, since every g ¢ SL(n,R) can be written as g = kE Pys

where kg € S 0(n) and Py is a syametric matrix, we get

-1
{g) = kEE kg » £ € SLin,R) '

Thus (SL{n,R), S0(n)) is a syametric pair.
Similarly, it can be shown that (SL{(n,®), SU(n)) is a symnmetric pair,

the associated automorphism 1 being

w(g) = ()71, g ¢ SL(n,e),
where g* denotes the conjugate transpose of the matrix g,
(iii)
Let G be a non-compact semi-simple lie-group with finite center and

let K be a maximal compact subgroup of_G; Then there exists an (involutive

analytic) automorphism T of G such that

T .
(g) = kg-g- kP ,

for every g € G, vhere g -+ kg 1s continuous map from G Into K (see
Helgason [21)., Thus the pair (G,K) is symmetric, We shall refer to this

pair as the standard syannetric pair.‘
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6.1.3., Definition : Let M(G) denote the set of all probability measures
on G. We say that u e M(G) is K-invariant if for everv A ¢ BG and

k. ,k

1°%2 € %

2
U(kl A k2) = w(a)

Let M(X\G/K) denote the set of all K-invariant probability mneasures
on G,

The ain of this section is to cbtain deternining sets for M(K\G £ K).
In 6.2 and 6,3 we develop the theory of Fourier-transforss for mneasures
in M(K\G/K) and use it in 6.4 to obtain determining sets in synmetric

pairs,

6,2
Let G be a locally~compact second countable group and let X be 3
fixed compact subgroup of G.

A continuous unitary representation of G in a Hilbert space H is a

mapping T which assignes to each g € G a wmitary operator I{g) on ¥
such that
(1) 1n(e) = 1, the identity operator on # ;
(ii) H(glg2) = H(gl)H(gQ) for every g ,g, € G;
(iii) for each v € H , the mapping g + I{g)v is a continuous napping
of G into H.

One calls H the representing Hilbert space of I .

Let Hl and I, be two continuous unitary representations of G in

Hilbert spaces Hl and H2 respectively, We say n, is equivalent to 1,

if there exists a Hilbert space isomorphisn T : Hl > Hé such that

P T = (e)

for every g £ G.
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A representafion I of G in a Hilbert Space H is said to be
EEEEQHEEEEE.if no proper closed subspace of H is invariant wnder I(g)
for every g € G, A fundamental result due to Gelfand and Raikov ensures
that there are sufficiently many irreducible continuous unitary
representations of G which separate points of G. More precisely, for
every g € G, there exists an irreducible continuous unitary representation
I of G in some Hilbert space H such that H(go) # 1, (see Hewitt and Ross
[10] p. 313), |

Let U(G) denote the set of equivalence classes of all irveducible

continuous unitary representations of G.

6.2.1. Definition : Let p e M(G) and let Il ¢ U(G) with the representing
Hilbert space H. Let u(l) denote the unicue bounded operator on H

defined by
< ﬁ(H)v,w > = [ < a(glv,w > u(ae) ,

for every v,w ¢ H, where < s , « > denotes the inner-product on H.

Thus for u ¢ M(G), we get a zap
1 > u(m)

which assigns to every Il ¢ U(G) a bounded operator u(N) on H, the

representing Hilbert Space of I, This map is called the Fourier-transforn

of u,
The following properties of the Fourier - transform are well known

(see Heyer [11]):

6.2.2, Proposition : (i) For u e M(G), u(I) = 1, where I denotes the

identity representation of G in some Hilbert space H;
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(ii) é"g () = H(go) for every g e G and 1 € U(G);
o © ' i

(iii) For wu,v e M(G), Tt ¢ v(a),

A ~
(b v) (M) = §(m) v ;

*
L]

(iv) If for p, v € M(G), n(M)= 9(I) for every I ¢ U(G),then u = v

) ) .
(v) If {un}n=0,l,2,... is a sequence in M(G) such that W=,

then un(H) - ﬁO(H) weakly for every 1 e U(G),

6.,2,3, Definition : Let I ¢ U(G) and let H be the representing Hilbert

space of II, We say that @I is of class -1 with respect to K if there exists
v € H such that vok¥ 0 and H(k)vO = v for every k e K.
Let Ul(G;K) = {0 e U(G) | T is of class-1 with respect to K},

Let T ¢ Ul(G;K) with representing Hilbert Space H. Let
HOI;K) = {v e H | T(k)v = v for every k e K}.

Then H(N3;K) is a closed subspace of H. Let PH denote the unique bounded

operator on H defined by

<Py > = f< Tlkdvw> A (k)
for every v,w ¢ A, Then PH is an Qrthogqnal projection wi?h range A(O:K).
Note that if 1 e U(G) but I ¢.Ul(G;K), then H(;K) = 0 and hence PH = 0,
6.2, Lemna : Let T ¢ Ul(Q;K) and let for every g e G,
| @H(g)! = ?ﬂ H(%?PH. .
Then @H(g) is a bounded Qperatgr_onfﬂﬁniﬁ),aqd‘hgg the:fp;logiqg,propeptggs:
(i) For every v e H(I;K), the function

g +» < @H(gjvgvfﬁ

is a continuous positive-definite Ffunction on G;
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(¢H(g)) = ¢H(g )

for every g € G, where & dsnotes the adjoint of an operator;

( iii) For ecvery Bge Boi £ -8

(g0 _(z2.)

I@H(glkgg) Aldk) = ¢ 1285z,

n
Proof: Let v & H(I;K), Then for everv o ¢ G,
< ®W(Q)V,V> = < H(g)v,v>
i

Since T is a continuous unitary representation, it follows that the

function

g > < ¢H(H)V’V>

is a continuous positive-definite Ffunction on G.

To prove (ii), let v,w ¢ H(3K). Then

<(®H(g))*v,w> <v,o (g>

= <v,P M{sz)P >
= <P H(p*l)P V. WD
m "= n?

= <®H(g-l)v,w>

Hence (@H(H))* = ¢ (le

]-[ )‘

Finally, for 810 Fy € G,

1

f@n(glng)AK(dk) fPHH(qlkp YP_ o (dk)

720
= By (UM ke,) AK(dk»PH
= Ppll(a YOm(k) AK(dk))H(Hz)PH
= Pyl IPpCe, By
A (PH II(;zl)PH)(P]I H(HQ)PH)

. ¢H(gl)-®n(n2).

This proves the Lemnma completely.,
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6.2,5., Lemma : Let p,v € M(KN\G/K), If for every Il ¢ Ui(G;K)

rep () w(de) = S ep(a) vide)d,

them p = v,

Proof : Let N e U(6). If T ¢ U (G;K), then clearly p(m) =0= w(m).

Now, let I ¢ Ul(G;K). Then for every k,,k, € K,

u(m)

SM(e) u(dg)
= fH(klng) u{dg)
= H(kl) ( fi(g) u(dg))ﬂ(kz)

Integrating both sides with respect to kl and k2, we get

iy = PH(IH(E) u(ds?))PR
= f@n(g) ulds).
Similarly ,
() = f@n(a)v(dg) R

Thus, for every 1 ¢ U(G)

u(m) () .

Hence, by Proposition 6.2.2, u =v .

6.2.6. Definition :  Let G be a locally-compact second countable group
and let K be a compact subgroup of G. Let H be a Hilbert space and
let B () be the space of all bounded operators on H. 4 function

® :+ G ~ B(H) 1is said to be operator-valued K-gpherical on G if

i) 8(e) = 1, the identity operator on H 3
(i31) f@(glqu) Acldk) = @(ql)é(qz},

for every gl, £, € G.
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Further ¢ is said to be of positive definite type if for everv

v € H, the function
g -+ < dlglv,v >

is a positive-definite function on G.
By Lemma 6.2.4, for every T ¢ Ul(G;K), there exists an operator-valued

K-spherical funiction & For u e M(KN\G/K), if we define

no

i @Y =T el pidsy w

where ¢ runs over the class of all operator - valued K-spherical
functions of positive-definite type, then 11 behaves like the Fourier-
transforn, in view of Lemma €.2.5.

In the next section, we aoply these ideas to symmnetric pairs.

6.3.

Let {G,K) be a symmetric pair and let Tt be the automorphism

associated with it.

6.3.1. Lemma : M(KNG/K)} is a commutative semigroup under the

convolution operation.

Proof : Let o(g) = (T(H))—l, g e G.
Then, o :+ G > G satisfies the following properties:

(i) o(gh)

oth) als) for everv o,h e G ; (6.1)

(ii1) o) wztg#”l .« g s ¢lﬁg)’lfbr every g &£ G (6.2)

where wl and w2 are the Borel maps from G into K whose existence is
ensured by the properties of 7.

It is easy to see that o leaves XK,-the normalised Haar-measure
of K, invariant. Further, usinz the definition of convolution, equations

(6,1) and (6.2), it is easy to see that for any u e M(G),
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(lK‘ﬁ u % AK)O'I = AK AT AK (6.3)

Let ¥ be a random~variable or. some fixed nrobability space (R,B,P) with

values in the group G. We say X is distributed as u ¢ M(G) if

We write this as X ~ u. TFurther for two random-varisbles X and Y on
(2,B,P), we write X & ¥ if PXx~1 = pY 7L,

ﬁith the sbove terminolosyyequation (6.3) can be restated as
follows:

if-gr‘n, X are independent random-variables on (R,B,Pj such that

Evnn i, and X v o, then : 7  o

K

o(E+Xsn) ~ EuXen (6.4)

Now, let £,n,7,X and Y be independent random-variables on (%,B,P)

with values in G, Let ¢ ~ n ~ r ~ Ay X n u and Y ~ v, where u,v eM(G).

K’
We clain that

E'X.C.Y.n v E.YJC.XI”
To see this, first note that we have from (6.4)
EeXeZeYen v o(EsXeZeYen)
= o{z-Y-nd)eo(£-X) : (6.5)
Since o(g+Ys.n) and o(£.X) are independent and o(z-Yen) ~ g.Yeq,
we have
0(Z+Yen)c(EsX) v 7+Yeneo(E.X)

& zeYea(n)o(EX)

v LeYeg(E.X 1) (6.6)
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Once again, Z.Y and o(£.X-n) are independent and o(£+X+n) ~ E-Xen.
So, we have
;.Y.o(g.x-n) ’\1 C.Y-E.Xon

N EeYereXen (6.7)

It follows from equations (6.5), (6.6) and (6.7} that
EeXegeYen ~ EeYeLeXen .
Rewritting this in terass of measures, we have

A, % U % A, % VR A, = AK f vk A

K £ u o A

K K K 1O

for every u,v £ M(G),

In particular, if u , v e M(K\G/K), then
H#% v = wvidop
This proves the Lemma.
6.3,2 Lemma : Lét (G,K) be a symmetric pair and let T ¢ Ui(G;K). Then
the H'lbert space H(3;K) is ore-dimensional.

Proof : Consider the family {&.(g) : g € G} of bounded operators on

A(N3K) as constructed in Lemma 6.2.4. Let fys iy € G. Then
¢H(gl}-®n(g2) = P H(gl)PH H(Ez) Po

i

Sli(g) p'(de)

where p' = AK % Sg % AK % Gg & AK :
1 2
Simnilarly,
— n"
@H(gz)én(gl) = [l(g) p"(dg)
I —
where o = AK % 8 % AK % GE % AK 0

Bo. )
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Since, by Lemma 6.3.1, p' = p", we have
¢ (pl)¢ (w D E o (g )@H(pl} for every g ,e,¢ G,

Also from Lemna 6.2.4,

(o, (g))* = @H(g_l

), for everv g e G,
It follows that the family {@H(g) : g € 6} is a commuting family of
normal operators on H(II;K),

Now suppose that the dimension of H(N;K) is rreater than one. Then
we can find proper closed subspaces Nl and N2 of‘E(H;K) such that both

Nl’ N2 are invariant under @H(g) for every g ¢ G, Nl and N2 are

mutually orthogonal and

’ .
H(H;K) = Nl ® N2 .
Let M denote the closed linear span of {li(g}v : v ¢ Nl’ g € 5}. Then
M # 0 is a closed subspace of H and M is invariant under li(g) for every

# € G, Fuprther, for every g £ G, v ¢ Nl and w e N?, we have

< H(g}v,w > < H(g)PHv, PH w>

< PH H(g)an,w >

< op(glvyw >

=1 [y

Thus M.i.Nz. Hence M is a proper closed subspace of H and is invariant

under I(g) for every g e G. This contradicts the irreducibility of I.

Hence dim(H(I;K)) dss

6.3.3. Definition : Let (G,K) be a symmetric pair. A continuous complex-

valued function ¢ on G is said to be K—sghericai, if
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(1) ¢fe) = 1

7

(ii) for every g, g, € G,

f¢(glkg2) AK(dk)_ = ¢(g1)¢(g2) . (6.8)

Further, ¢ is said to be of positive-definite type if ¢ is positive

definite.

Let S(G;K) denote the set of all K-spherical functions on G which are
of the positive-definite type. In view of section 6.2 and Lemma 6.3.2,
" it follows that for every Il ¢ Ul(G;K), the function ¢{g) = @H(g), g € G,is
an element of S{G;X)},

Let S(G3;K) be given the topology of uniform convergence on compact
sets. Then S(G3;K) becomnes a second-countable space. Note that, since

every ¢ € S(G3K) is a continuous positive-definite function, we have

#e) = 1, oe™D) = FC&7, Jote)| < 1,

for every g € G,

For u &€ M(X\ G/K), let the Fourier-transform of i be defined by
H8) = feleduldg), ¢ ¢ S(BIK) .

The following properties of the Fourier-transform follow from the

discussion in section 6.2:

6.3.3. Proposition :

(i) Let wp,v € M(K\G/K), If 1(¢) = v(¢) for every ¢ € S(G3K),
then u=v 3
n=0,1;2400.. ?e a sequence in M(XN\G/K). If no=>u,
then ﬁn(¢) - ﬁo(¢) for every ¢ ¢ $(G3K)3

(il) Let {un}

(iii) For every u € M(K\G/K), the map
o+ 0(e), ¢ £5(C3K)

is continuous.
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6.4;-Determinigg_sets»in svmjéfric pairs : Let (G,K) be a symmetric pair.

Using the theory of Fourier-transform for measuras in M(K\ G/K), as
develcped iIn sections 6.2 and 6.3, we show in this section that generically,
every subset of G with finite positive Haar-measure is a deteranining set

for M(K\ G/K).

6.4.1. Lemma : Let (G,K) be a symmetric pair. ‘Let B e BG be such that

’

0 < AG(E) < = and the set

{¢ € S(G3K)| 1 ¢(g) Ay (dg) # 0}
E

is dense in S(G;K_). i‘hen E is a detef.nining set for M(K\ G/K),
EEP_O_f : Let p,v e M(K\G/K) and 1let
w(gE) = v(gE) (6.9)

for every g g G, We hajre to show that wu=v. Frém equation (6.9), we
have for every ¢ e S(G;K),

£0(@)Uxg(gh ) (@I (dg) = So(g) Uxglsh ) vaIN,(dg) .
Using Fu];ini's theoren and changing g to gh-l, we have for everv ¢ ¢ S{G3;K)

f(f)QE(g)tp(gh'l)AG(dg))ﬁ(dh) = f(fxE(g)¢(gh'l)xG(dg))v(dh) :
Since up,v € M(K\G/K),changinz h to hk-l, we have for every ¢ € S(G;K)
and k € K

/f(fxE(g):i>(gkh-_l)AG(dg))u(dh) = f(fxE(g)q:(gkh-l)AG(dg))v(dh) 5
Integrating with respect to k and usin-g Fubinli's Theoren, we have for

every ¢ € S(G:K)

IUrxg (8o (gkh™ N, (k)N (dg) Tuldh)
= JTIxg(R) (S akh™ A (k) g (dr) Tuldh).

Using property (6.8) of ¢ , we have
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f(fxE(g)¢(g)¢(h'1)AG(dg))u(dh) = f(fxg(q)¢(g)¢(h-l)lg(dg))v(dh) .

for ¢ revy ¢ € S(G3K). Once 3gzain, using Fubinis theorem, we have

(f ¢(£)lp(d9))(I¢(h—l)u(dh))=(I¢(E)Ac(dg))(f¢(h‘1)v(dh)),
E = E 3

for every ¢ e S(G;K), Let
D o= {4 e 8(6;K) | £ 4(rm) A (d) # 0}
E

Then for every ¢ € D, we have
-1 -1
Soth T udh) = Seth TIv(dh)
Since ¢(h—l) = 3(h) , we have
H(e) = V(4) for everv ¢ e D. (6.10)

-~ A,
Since, p and v are continuous functions on S(G3;K) and D is dense in

S(G;K), from equation (6,10) we have
1(e) = V() for everv ¢ e S(G;K).
Hence wu=v .
6.,4,2, Theoremn : Let (G,K) be a symmetric pair. Then for every real
nutmber o > 0 ,there exists D@ ;G) C:BG such that the followine hold:

(i) D@ ;G) is a dense G_ - subset of (g}(G),d&) .

§
(Recall, s (G) = {E ¢ By | 2 (E) <al).

(ii) Every E e D{a;G) is a determining set for M{KN\G/K),

Proof : Since S(G3;K) is a separable space, we can choose a dense subset

¢y5 rseee in S(G;K), FTor every § = 1,2, ... , let

D&x;¢j) = B & su(G) I é ¢(x)kG(dx) Z 0} .
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Then it follows from Lemma 2,1, that D01;¢ﬁ) is an open dense subset

of (s (G),d')., Let
o o

D;0) = {\ Dlasd.) .
3=1 .

Since (qu(G), q;) is a complete metric space (see § 2), it follows from
Baire's caterory theorem that D(x;G) is denée in (ﬁx(G),q&). Cleariv,
D ;G) is a G, -set. Thislproves (i).

To prove (ii), let E ¢ D(a3G). Then 0 < A;(E) < a and the set

{6 €3(6;K) | sre(x) Agldx) # 0}
E

contains the set {¢j;j=l,2,...}. Hence it is a dense subset of S(G3K)
and it follows from Lemma 6.4.1. that E is a determining set for M(KN\G/K).

This proves the Theoren.

6.5, Determining sets in standard svmmetp%c pairs; Let (G,K) bz a

standard symmetric pair, i.e., 6 is a non-compact semi-simple Lie-sroup
with finite center and K is a maximal compact subgroup of G,

¢t G = KAN be the Iwasowa decomposition of G, Let Ol be the

(i

Lie-alpebra of A. Let EC be the space of all complex-valued linear
functionals on (. Then a fundazental result due to Harish'Chandra says
that K-spherical functions on G are in one-to-one corresnondence with

the space Ec. More precisely, let a(g) denote the unique elenent of &5

such that g = k.exp(a(g)ln, k ¢ X, n ¢ N. Then for every v e E_

b0 & exp(iv~p)@igk))AK(dkl (6.11)
e X

is a K-spherical function on G, Here p is a fixed element of Ec. Further,

each K-spherical function arises in this wav for some v e Ec' Let ER

denote the space of all real-valued linear functionals on (9{,80 that
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B. 5 ER + iER- Then for every A € ER’ ¢l is a K-gpherical function of
the positive definite~type on G.
for the above rapresentatinn and other properties of K-spherical

functions, we refar to Helsason [9], Chapter X, § 3.

For u & M(K\G/K), the Fourier-transform of u can be defined as

A = fe (mdulaz) , A eE . ]
A R

Then 1(A) is a bounded continuous function on Epe Further,. if
u,v € M(K\G/K) are such that (i) = (1) for every A ¢ Eps then u = v,

(See Ganpgolli [83, § u).

6.5.,1. <‘Theorem : Let (G,K) ba a standard symmetric nair and let E € BG
be such that AG(E) >0 md E is compact, Then E is a deteraining

set for HM(K\G/K),

Proof @ Let

D={)ekE| é ¢,(=)rg(dr) # 0} ¢

In view of Lemma 6.4,1, we have only to prove that D is dense in ER.

Let ¢ ¢ Ec »~ @ Dbe defined by

g(v) = f ¢U(g) AG(dg), v £ Ec "
E

Since E is compact, ? is a well-defined function. Further, it follows
from equation (6.11) that ¢ is analytic. Let us consider it as a
function of n complex-variables, where n is the dimension of EC. Then

D is precisely the set

{r e B | o)) # ok
Since ¢ is a non-zero analytic function, it follows from Lemma 3.2,2,
that D is a dense subset of ER.

Thig proves the theorean.
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6.5.2. Remark : Let G be a locally-compact second countable aroup and
let K be a compact subgroup of G, Let I:G + G/K denote the cannonical
honomorphism from G onto the space of all left-cosets of G by K, Let
G act on G/K in the natural way. It is =asy to see that if E € BG/K is
such that the set E = H_l(é) is a determnining set for M(K\ G/K), then
E is a determining set for the class of all K-invariant probability
neasures on G/K.

6.6,

Let G = SL(2, @) be the group oFf all 2 x 2 complex-natrices of

determinent one. Let m > 0 be scne-fixed real nurber. Tor any
3

X = (xl,xz,xs) e B7, let
XO=+ \/.n2+x + %+ x, (6.12)
and let
+ +
. x_*x x,tix,
i =
xy-ix, X =%y

The map x + é identifies every element of HB with a 2 x 2 Hermetian
natriv of deterainant .112. It is easv to see that it is a one-to-rne
correspondence.,

Let o € SL(2, €) and let x ¢ RS. Consider the matrix @ .;i . The
matrix ¢ _;_::_ g® is a 2 x 2 Hermetian mtr.ix of determinant 1°. Thus
there exists 2 unique elenent of RB, which we denote by g + X, such that

o~

g% = (g.x). This enables us to define a map

EX

>4

6 : SL(2,8) x B> + B° ;

$(a,x) = g+ x , e 8L2, &), xekR.

0 Doar 5 3 )
It is easv to see that ¢ is a transitive action of SL(Z,€) on R°, Let

Go denote the isotropy suboroup of G at the point 0 = (0,0,0) ¢ RB,

ete

.E.,
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m 0 ¥ a 0
Go={-geSL(2,@')_|2( ),;*:( ) A
0 n O m

It is easy to see that G, = SJ(2), the eroup of all 2 x 2 unitary metrices.

Thus, we have

SL(2,0) gy 29 T R,

A SL(2,¢) - invariant neasure A on'Ra is pgiven by

dx, dx, dx
dr(x) = S szfs Xz (% 4%, 4%.) .
- +\_/q,2+x§+xg-+xg" e 17%2°%

It follows from-Theorem §.5.1 and Remark 6.5.2, that a set E ¢ BRS with

E compact and AR3 (E) > 0 is a determining set for the class of all SU(2) -
invariant neasures on R°. Since, g € SU(2) acts on o as a rotation,

we ret !

let u and v be two rotation-invariant measures on RS and let E EBRS

be such that E is compact and 1.3 (E) > 0, If

ulg+E) = v(e«E) for every g e SL(2,0) ,

then U = V,
In particular, let

E={xce R | tIx]] < r}, where » > a.

Then, for & ¢ SL(2,£),

pEsixe B | |l x| <o) .

Note that,

SL(2, €) = SU(2) A SU(2),

where
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Thus, if p and v are two rotation invariant probability measures on R

such that "
a 0 a 0

%
TPy B T

g [ g =l -~ fa 0
RN N Y (RN RTINS
0 a , O a

for every & > 0 and some r > m, then p= v,

wix e 2] ||

An easy computation shows that for a > 0 and X = Cxl, Xy s X'S)’
’ a 0 a 0]
B 0 a

iff

2 - ‘f 2
xo(a4+a 2y + xl(aQ-—a 2) <+t Vu(r ~m2),

where X is given by (6.12),

Thus, if we put s = \é(rz—mz) and o = a2, then we have the following:

6.6.1., Proposition : Let u and v be two rotation invariant probabilitv
3
measures on K. Let for some m,s > 0 and for every a > 0, u and v
satisfy the following:
1
)

‘ B | “1 2
u{@ll,xz,xa) e B i xo(oc‘h:x )+ Xl(O!.-Ot < s}

&l =H -1
= +
vilx, ,x,,%,) € R Ixo(ot @ THx 7)< s},

3 o I NP
= | +
where, for (xl, s xs) e R, X \/.n tx]txy g

Then pw = v .,
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§ 7. WEAK CONVERGENCE DETERMINING SETS IN
SYMMETRIC PAIRS

Throushout this section, (G,K) will denote a syametric pair,

7.1. Definition ¢+ A set E ¢ BG is said tr be o waak-convergence

deterainins set for M(K\G/K) if E has the followine pronerty:

e - : ] 3 K '
if {un}n=0,l,2... is a sequence in M(KN\G/K) such that un(itE) -+

E 7 -
uo(g ) for every g e G, then RO=> U

7.2, Lemma : Let (G,K) be a symmetric pair and let E ¢ B, be such

that « > )\G(E) > 0 and the set
{3 ES(G;K)]JE#(E))\G(dg) # 0}

{5 dense in S(G;K). Then E is a weak~-crnversence deterazinine set for

M(X\G/K),

Pronf : Let {un} be a sequence in M(K\G/K) such that

n=0,1,2,...
pn(gE') > “ﬂ(QE) for every g e G, (7.1)
We have to show that N = e

First note that equation (7.1) is equivalent to

(xE % ﬁn)(g) > Axg ® 1-3())(,.';) for every o e G,

where for n e M(KN\NG/K), n is defined by

AR =@, a e Bls

Since, xg € Ll(G) and M(X\ G/K) is a closed subset of M(G), it follows

that the sequence {un}nz is conditicnally compact in M(K\ G/K),

1,230-0
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U5 1,

Let v ¢ M(KN\G/K) be any liamit point of {un}n-l 5 and let
1=y *tes

{un 1

k

K=1,2,0.. §¢ a subsequencs of {un}n=l,2.,, such that

u = > v -
n -
k

Going to Fourier-transforas, we have

ﬁn (6) =+ v(¢) for every ¢ € S(G;K).
k
Thus,

Cf o dg)) i (8) + (f ¢()A (dm))Iv(s) (7.2)
E 3 By E €

for every ¢ € S(G3;K). On the other hand,

v (gE) =+ u_(gE) for every g e G.
’ A
Thus

f¢(g)(fxE(gh)unk(dh))AG(dg) > f¢(g)(fxE(gh)uo(dh))AG(dg)

for every ¢ e S(G3;K). Using the fact that Hoos My € M(K\G/K), and
k
using the property (6.8) of ¢, it is easy tn see that the above is

equivalent to
(é @(g)AG(dg))un;¢) - (f¢(g)AG(dg))uo(¢) (7.3)
for every ¢ € S(G;K), From equations (7.2) and (7.3), we have

(So (@A, @e)i_(8) = (Fo(2)r(dg) )V (4) (7.4)
E A

for every ¢ € S(G3;K), Since the set {4 € S(G;K)If¢(g)kc(dg) # 0} is dense
E ¥

in S(G;K) and ﬁo, v are continuous sn S(G:;K), it follows from (7.4) that
ﬁo(¢) = v(é) for every & € S(G3;K) .

Hence u = v,
o ,

Thus, the sequence {un}n_ has only one linit point namely

1’2’I..

. Hence => .
Ho Y L
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7.3. Copollary : Let (G,K)} be a standard symmetric pair arnd let 2 IS
be such that AG(B) >0 and E is compact. Then E is a deteraining set

for MKN\G/K),

7.4. Theoren : Let (3,K) be a syametric pair. Then for everv o > 0,
there exists Dla ;G)C:.BG such that
(i) D(o;6) is a dense G, ~-subset of (S"t (G)’do:)

(Recall s_(G) = {E ¢ B | A (B <al).

(ii) Everv E g D ;G) is a weak convergence deterninine set for

MIKNG/K).

Proof : Let D(a;3) be as constructed in the Theoren 6.4.2. Then, onlv
(ii)} remains to be proved.

Let £ ¢ D{x;G). Tt follows from the construction of D(a;6) that

the set
{¢ ¢S(G;K) | J ¢(eIr (de) # O}
E 3

ic a dense subset of S(G;K), Thus, bv Lemna 7.3, it follows that E 1s a

weak-converpence determining set for MK\ G/K},

7.5 Remark : Theorem 7.4 tells us that senerically, a subset of G

with finite positive Haar-measure is a weak-convergence deterninineg set

for M(KN\G/K).
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