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Abstract: Adaptive designs that optimize the Fisher information associated with a

nonlinear experiment are considered. Asymptotic properties of the maximum like-

lihood estimate and related statistical inference based on dependent data generated

by sequentially designed adaptive nonlinear experiments are explored. Conditions on

the experimental designs that ensure �rst order e�ciency of the maximum likelihood

estimate when the parametrization of the nonlinear model is su�ciently smooth and

regular are derived. A few interesting open questions that arise naturally in course of

the investigation are mentioned and briey discussed.
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1. Introduction: Adaptive Sequential Design of Nonlinear Experi-

ments

In a typical nonlinear set up involving a response Y and a regressorX, the de-

pendence of the response on the regressor is modeled using a family of probability

distributions, which involve an unknown Euclidean parameter (to be estimated

from the data) in such a way that the parametrization is smooth and regular,

and the associated Fisher information happens to be a nonlinear function of that

parameter of interest. Standard examples of such nonlinear models include the

usual nonlinear regression models (see e.g. Gallant (1987), Bates and Watts

(1988), Seber and Wild (1989)), various generalized linear models (see e.g. Mc-

Cullagh and Nelder (1989)), and many popular heteroscedastic regression models

(see e.g. Box and Hill (1974), Bickel (1978), Jobson and Fuller (1980), Carroll

and Ruppert (1988)). An awkward situation arises when one needs to design

an experiment in order to ensure maximum e�ciency of parameter estimates

in such a nonlinear problem. Since the Fisher information associated with any

such problem depends on the unknown parameter in a nonlinear way, an e�cient

designing of the experiment to guarantee optimal performance of the nonlinear

least squares or the maximum likelihood estimate will require knowledge of that

unknown parameter! (See Cochran (1973, pp: 771-772), Bates and Watts (1988,
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p: 129) for various interesting remarks in connection with this). An extensive

discussion on possible resolutions of this problem together with several examples

of nonlinear experiments can be found in Ford, Titterington and Kitsos (1989),

Myers, Khuri and Carter (1989) and Chaudhuri and Mykland (1993). A few

more interesting examples are discussed below.

Example 1.1. Treloar (1974) investigated an enzymatic reaction in which the

number of counts per minute of a radioactive product from the reaction was

measured, and from these counts the initial velocity (Y ) of the reaction was

calculated. This velocity is related to the substrate concentration (X) chosen by

the experimenter through the nonlinear regression equation (Michaelis-Menten

model) Y = �0X(�1 + X)�1 + e. Here � = (�0; �1) is the unknown parameter

of interest, and e is the random noise with zero mean as usual. The experiment

was conducted once with the enzyme (Galactosyltransferase of Golgi Membranes)

treated with Puromycin and once with the enzyme untreated. The main objective

of the study was to investigate the e�ect of the introduction of Puromycin on the

ultimate velocity parameter �0 and the half velocity parameter �1.

Example 1.2. Cox and Snell (1989, pp: 10-11) while discussing binary response

regression models mentioned about an industrial experiment, where the number

of ingots that were not ready for rolling were counted out of a �xed number of

ingots tested. The number counted depends on two covariates, which are heating

time and soaking time determined by the experimenter at the time of processing.

This leads to a binomial regression model and the main interest is in getting

insights into how variations in heating and soaking times inuence the number

of ingots that turn out to be not ready for rolling.

Example 1.3. Powsner (1935) collected data from an experiment that was

conducted to determine the e�ect of experimental temperature on the develop-

mental stages (i.e. embryonic, egg-larval, larval and pupal stages) of the fruit

y Drosophila Melanogaster. McCullagh and Nelder (1989) discussed the data

and demonstrated how it can be analyzed using appropriate gamma regression

models with the experimental temperature as the covariate.

Chaudhuri and Mykland (1993) investigated an adaptive sequential scheme

for designing nonlinear experiments and established asymptotic D-optimality of

the design as well as n1=2-consistency, asymptotic normality and �rst order e�-

ciency of the maximum likelihood estimate based on observations generated by

their proposed scheme in a nonlinear set up satisfying suitable regularity condi-

tions. Adaptive sequential and batch sequential designs for certain very speci�c

types of nonlinear experiments related to some special models were explored ear-
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lier by Box and Hunter (1965), Ford and Silvey (1980), Abdelbasit and Plackett

(1983), Ford, Titterington and Wu (1985), Wu (1985), Minkin (1987) and Mc-

Cormick, Mallik and Reeves (1988) among others. Some of these authors made

attempts to study the asymptotic behavior of their respective design schemes

and resulting parameter estimates. The key idea lying at the root of such design

strategies is to divide available resources into several groups and to split the entire

experiment into a number of steps. At each step, the experiment is conducted

using only a single portion of divided resources. At the end of each step, an

analysis is carried out and parameter estimates are updated using the available

data. The results emerging from this data analysis are used in e�cient design-

ing of the experiment at subsequent steps. As pointed out by several authors

(see e.g. Cherno� (1975), Fedorov (1972), Silvey (1980)), the most attractive

feature of adaptive sequential experiments is their ability to optimally utilize the

dynamics of the learning process associated with experimentation, data analysis

and inference. At the beginning, the scientist does not have much information,

and hence an initial experiment is bound to be somewhat tentative in nature.

As the experiment continues and more and more observations are obtained, the

scientist is able to form a more precise impression of the underlying theory, and

this more de�nite perception is used to design a more informative experiment in

the future that is expected to give rise to more relevant and useful data.

The main purpose of this article is to explore some fundamental theoretical

issues that are of critical importance in studying the asymptotics of sequen-

tially designed adaptive nonlinear experiments. In Section 2, we will explore the

asymptotic performance of maximum likelihood estimates based on dependent

observations generated by adaptive and sequentially designed experiments in a

very general nonlinear set up, which amply covers situations occurring in prac-

tice and models studied in the literature. Unlike Chaudhuri and Mykland (1993),

who considered a very speci�c adaptive sequential scheme, our focus here will be

on general adaptive procedures for sequentially designing experiments and some

related asymptotics. In Section 3, we will discuss the limiting behavior of some

adaptive design procedures and work out some useful conditions that guarantee

their large sample optimality with respect to a broad class of optimal design

criteria. Once again, unlike Chaudhuri and Mykland (1993), who concentrated

on D-optimal designs only, we will consider a general family of optimal design

criteria that includes D-optimality and many other optimality criteria as special

cases. In the course of the development of the principal theoretical results in

Sections 2 and 3, we observe certain intriguing facts, and some interesting ques-

tions, which arise naturally, remain unanswered at this moment. All technical

proofs are presented in Appendix.
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2. Maximum Likelihood and Related Statistical Inference

Suppose now that the conditional distribution of the response Y given X = x

has a probability density function or probability mass function f(yj�; x). Here the

form of the function f is assumed to be known, and � is an unknown d-dimensional

Euclidean parameter of interest that takes its values in � (the parameter space),

which will be assumed to be a convex and open subset of Rd. The value of

the regressor X is determined by the experimenter, who chooses it from a set


 (the experiment space) before each trial of the experiment. In applications,


 can be a �nite set (e.g. factorial experiments with each factor having a �nite

number of levels) or some appropriate compact (i.e. closed and bounded) interval

or region in an Euclidean space (e.g. when the regressor X is continuous in

nature) or a mixture of the two (e.g. analysis of covariance type problems). As

pointed out in Chaudhuri and Mykland (1993), the conditional distribution of

Y given X = x may involve an unknown nuisance parameter (e.g. the unknown

error variance in a homoscedastic normal regression model) in addition to the

parameter of principal interest �. However, as argued in Chaudhuri and Mykland

(1993, p: 539), for a number of models frequently used in practice and extensively

discussed in the literature, we can ignore the presence of that nuisance parameter

(and thereby keep our notations simple) as long as we are interested in the large

sample behavior of the maximum likelihood estimate of � and optimal designing

of the experiment to ensure greatest e�ciency in asymptotic inference based on

that estimate. We assume that the parametrization in the model f(yj�; x) is

smooth and regular in the sense that the following Cram�er type conditions will

be satis�ed. From now on all vectors in this article will be column vectors, the

superscript T will be used to denote the transpose, and j � j will be used to denote

the Euclidean norm of a vector or a matrix.

Condition 2.1. Suppose that the response Y takes its values in a set R (the

response space, which can be �nite, countably in�nite, an interval or a region

in an Euclidean space depending on the situation), which is equiped with a

�-�eld on it, and � is a �-�nite measure (which can be the usual counting

measure or the Lebesgue measure depending on the situation) on R such thatR
R
f(yj�; x)�(dy) = 1. Then the support of f(yj�; x) is R for all possible values

of � and x. Further, for every �xed x 2 
 and y 2 R, logff(yj�; x)g is thrice

continuously di�erentiable in � at any � 2 �.

Condition 2.2. Let r logff(yj�; x)g = G(y; �; x) be the d-dimensional gra-

dient vector obtained by computing the �rst order partial derivatives of

logff(yj�; x)g with respect to �. Then
R
R
G(y; �; x)f(yj�; x)�(dy) = 0 and

supx2

R
R
jG(y; �; x)j2+tf(yj�; x)�(dy) <1 for some t > 0.
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Condition 2.3. Let H(y; �; x) denote the d�d Hessian matrix of logff(yj�; x)g

obtained by computing its second order partial derivatives with respect to �.

Then we haveZ
R

H(y; �; x)f(yj�; x)�(dy)

= �

Z
R

fG(y; �; x)gfG(y; �; x)gT f(yj�; x)�(dy) = �I(�; x);

where I(�; x) is the d � d Fisher information matrix associated with the model

f(yj�; x). Also, supx2

R
R
jH(y; �; x)j2f(yj�; x)�(dy) <1.

Condition 2.4. For every �2�, there exists an open neighborhoodN(�)��of �

and a non-negative function K(y; �; x) that satis�es supx2

R
R
K(y; �; x) f(yj�; x)

�(dy) <1, and each of the third order partial derivatives of logff(yj�0; x)g with

respect to �0 is dominated by K(y; �; x) for all �0 2 N(�).

It is obvious that for a typical model in the class of generalized linear models,

Conditions 2.1 through 2.4 will hold. As a matter of fact, these regularity con-

ditions are satis�ed whenever the conditional distribution of the response given

the regressor is modeled using standard exponential families (see e.g. Lehmann

(1983)) or various curved exponential families (see Efron (1975, 1978)). Many

important heteroscedastic linear regression models, where the response variable

follows normal distribution with a variance that is assumed to be a nonlinear

function of the mean (see Box and Hill (1974), Bickel (1978), Jobson and Fuller

(1980), Carroll and Ruppert (1988), etc.) with a �xed and known form, are

curved exponential models satisfying Conditions 2.1 through 2.4. For a standard

nonlinear regression model with the error having normal distribution with zero

mean and a �xed (but possibly unknown) variance, Conditions 2.1 through 2.4

translate into some regularity conditions on the regression function that depends

on the unknown parameter of interest in a smooth and nonlinear way. It is easy

to see that such regularity conditions on the regression function are closely re-

lated to the conditions used in the literature (see e.g. Jenrich (1969), Wu (1981),

Gallant (1987), Seber and Wild (1989)) in order to establish n1=2-consistency and

asymptotic normality of the nonlinear least squares estimate based on indepen-

dent observations.

Consider next an adaptive sequential experiment in which the ith design

pointXi is allowed to depend on the past data (Y1; X1); : : : ; (Yi�1;Xi�1) for i > 1.

Clearly, when data will be generated from such an experiment, we will no longer

have a sequence of independent observations, and the standard asymptotics for

maximum likelihood estimates based on independent observations will not be

applicable. However, the dependence (if any) of Yi on (Y1;X1); : : : ; (Yi�1;Xi�1)

will be through Xi. As a result, the likelihood based on (Y1;X1); : : : ; (Yi;Xi)
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will continue to remain in a product form
Qi

r=1 f(Yrj�;Xr) for any i � 1. It

is then obvious that the log-likelihood and its various derivatives (with respect

to the parameter �) with suitable adjustments will give rise to sums of martin-

gale di�erence sequences, which form the rows of certain triangular arrays (see

also Chaudhuri and Mykland (1993)). As usual, de�ne the maximum likelihood

estimate based on (Y1;X1); : : : ; (Yn;Xn) as

�̂n = arg max
�2�

nY
r=1

f(Yrj�;Xr) :

Alternatively, �̂n can be viewed as a root of the likelihood equation

nX
r=1

r logff(Yrj�;Xr)g =
nX

r=1

G(Yr; �;Xr) = 0 :

In some cases, the likelihood may have multiple maxima, and in those cases

the likelihood equation will have multiple roots. However, for generalized linear

models, the concavity of the log-likelihood will guarantee the uniqueness of the

maximum likelihood estimate for suitable sample sizes. For a standard nonlinear

regression problem, appropriate conditions on the regression function will ensure

the uniqueness (at least in large samples) of the nonlinear least squares estimate.

The following results yield very general su�cient conditions, which are to be

satis�ed by the sequence of design points, for consistency, n�1=2 convergence rate

and asymptotic normality of the maximum likelihood estimate, when it is based

on dependent data arising from an adaptive sequential experiment.

Result 2.5. Assume that Conditions 2.1 through 2.4 hold, and the sequence

of observations (Y1;X1); : : : ; (Yn;Xn) is generated from an adaptive sequential

experiment. Let �n denote the smallest eigenvalue of the average Fisher infor-

mation matrix n�1
Pn

r=1 I(�;Xr) up to the nth trial. Suppose that the design

scheme is such that for some positive constant � < 1=4, n��n remains bounded

away from zero in probability as n tends to in�nity. Then there exists a choice of

the maximum likelihood estimate (i.e. a root of the likelihood equation) which

will be weakly consistent.

A proof of Result 2.5, which makes use of certain asymptotic properties of the

martingales associated with the likelihood and its derivatives, will be given in the

Appendix. A natural question that arises at this point is how to ensure that n��n
remains bounded away from zero in probability for some positive � < 1=4 as n

tends to in�nity. We will now exhibit a simple way of designing the experiment so

that this condition holds. First observe that for several models used in practice,

there exists a probability measure �0 on 
 such that
R


I(�; x)�0(dx) is a positive
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de�nite matrix for all � 2 �, and frequently �0 can be taken to be the uniform

probability measure (discrete or continuous depending on the nature of 
) on 
.

Let k1 < : : : < km < : : : be an increasing sequence of positive integers such that

m�1=(1��)km tends to one as m tends to in�nity. Then choose the design points

Xk1 ; : : : ;Xkm ; : : : as independent and identically distributed random elements in


 with �0 as their common distribution. Note that these design points are chosen

in a non-adaptive manner. Further, these design points can be chosen without

depending on the rest of the design points (i.e. the Xi's for which i 6= km for

any m), the latter ones being chosen in some appropriate adaptive way. It is

straight forward to verify that such a choice of the design points will guarantee

the condition assumed about �n in the statement of Result 2.5.

Note at this point that the condition assumed in Result 2.5 on the minimum

eigenvalue of the average Fisher information matrix is weaker than asymptotic

positive de�niteness of the average information. However, it is su�cient for weak

consistency of the maximum likelihood estimate. In the next couple of results, we

will consider su�cient conditions for n1=2-consistency and asymptotic normality

of the maximum likelihood estimate.

Result 2.6. Assume that Conditions 2.1 through 2.4 hold, and the observa-

tions (Y1;X1); : : : ; (Yn;Xn) are generated by means of adaptive sequential trials.

Suppose that the design scheme is such that the average Fisher information up

to the nth trial n�1
Pn

r=1 I(�;Xr) converges in probability to a nonrandom pos-

itive de�nite matrix A as n tends to in�nity. Then there exists a choice of the

maximum likelihood estimate �̂n such that as n tends to in�nity, n1=2(�̂n � �)

converges weakly to a d-dimensional normal random vector with zero mean and

A�1 as the dispersion matrix.

A proof of this result, which utilizes a standard martingale central limit

theorem, will be given in the Appendix. The following is an easy consequence of

Result 2.6, and is quite useful in statistical applications.

Result 2.7. Assume that I(�; x) is a continuous function of both of its argu-

ments, where � varies in � and x varies in the compact space 
. Then under the

conditions assumed in Result 2.6, n�1
Pn

r=1 I(�̂n; Xr) converges to A in probabil-

ity as n tends to in�nity for an appropriate choice of the maximum likelihood

estimate �̂n, and consequently the weak limit of f
Pn

r=1 I(�̂n;Xr)g
1=2(�̂n � �) will

be d-dimensional normal with zero mean and the d � d identity matrix as the

dispersion matrix. As a result, the con�dence ellipsoid for the parameter �, which

can be constructed using the �2 distribution with d degrees of freedom and based

on the maximum likelihood estimate �̂n together with the estimated total Fisher

information up to the nth trial
Pn

r=1 I(�̂n; Xr), will asymptotically have the right

coverage probability.
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A particular adaptive procedure for designing nonlinear experiments was pro-

posed in Chaudhuri and Mykland (1993), and it has been shown by these authors

to satisfy the limiting condition on the design sequence assumed in Results 2.6

and 2.7. Results 2.5 through 2.7 appear to be the most general su�cient condi-

tions that are available at this moment for consistency, n�1=2 convergence rate

and asymptotic normality of the maximum likelihood estimate constructed from

dependent observations generated by a sequentially designed adaptive experi-

ment in a nonlinear set up. The fundamental implication of Results 2.6 and 2.7

is that as long as the weak limit of the average Fisher information, which happens

to be a random object in �nite samples in view of the adaptive sequential nature

of the design, is degenerate and positive de�nite, valid asymptotic inference is

possible based on the maximum likelihood estimate just like the large sample

frequentist inference in �xed design problems, where successive observations are

independent. In other words, the adaptive sequential nature of the experiment

can essentially be ignored for making large sample inference even though there

will be randomness in selected design points and dependence in the sequence of

observations in such an experiment. It has been established in the literature (see

e.g. Johnson (1970), Johnson and Ladalla (1979), LeCam (1986), Prakasa Rao

(1987)) that under some standard smoothness conditions (including some Cram�er

type conditions) on the likelihood and the prior distribution (i.e. a probability

measure on the parameter space �) many desirable asymptotic properties (in

the frequentist sense) hold for the Bayes estimate and related Bayesian inference

based on independent data (e.g. n1=2-consistency and asymptotic normality of

the Bayes estimate, consistency of the posterior and its asymptotic expansion,

asymptotic accuracy of the Bayesian credible region constructed through high-

est posterior distribution, etc.). A natural question, which arises at this point

and is currently being investigated by the authors, is to what extent analogous

asymptotic results will hold if Bayesian techniques are applied to dependent data

arising from adaptive sequential trials. Recently Woodroofe (1989) has explored

some issues closely related to this in the context of adaptive linear models that

arise in some sequentially designed experiments.

The weak convergence of the average Fisher information to a degenerate

positive de�nite limit is a crucial ergodicity condition related to the growth of

the martingale processes intrinsically associated with the likelihood (see also Hall

and Heyde (1980), Sweeting (1980, 1983), Prakasa Rao (1987), who considered

maximum likelihood estimation in various dependent processes). It is desirable

that the chosen design ensures optimality of that weak limit with respect to some

suitable optimal design criterion. Then Results 2.6 and 2.7 together with such

an asymptotic optimality (if it holds) of the generated design will guarantee �rst

order e�ciency of likelihood based parameter estimates and related inference in
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sequentially designed adaptive experiments. In the following section, we consider

limiting properties of design sequences generated by some adaptive procedures

in terms of the asymptotic behavior of the average Fisher information matrix

n�1
Pn

r=1 I(�;Xr) and establish the large sample optimality of those procedures

with respect to a broad and useful class of optimal design criteria.

3. Asymptotic Optimality of Designs

Consider the following real valued functions de�ned on the space of d � d

positive de�nite matrices. They are frequently used to de�ne standard optimal

design criteria based on the Fisher information matrix associated with an exper-

iment.

(1) �(A) = � logfdet(A)g (D-optimality criterion).

(2) �(A) = trace(A�1) (A-optimality criterion).

(3) �(A) = trace(A�p) (Kiefer's �p optimality criterion with p being a �xed

positive integer).

An important property of each of these functions is that it is continuous, strictly

convex and remains bounded below as A varies over any convex and bounded

subset of the space of d � d positive de�nite matrices (see e.g. Kiefer (1974)).

Suppose now that 
 is a compact metric space, and I(�; x) is a continuous func-

tion of both of its arguments. Following Kiefer (1959, 1961) and Kiefer and

Wolfowitz (1959), let the design space D(
) be de�ned as the collection of all

possible probability measures on 
. We will assume that for every � 2 �, there

exists a � 2 D(
) such that the matrix
R


I(�; x)�(dx) is positive de�nite. Next

we de�ne a locally �-optimal design (see also Cherno� (1953)) �� 2 D(
) at � as

�

�Z



I(�; x)��(dx)

�
= min

�2D(
)
�

�Z



I(�; x)�(dx)

�
;

where � is as de�ned in (1) or (2) or (3) at the beginning of this section. Then, in

view of the compactness of the metric space 
 and the continuity of I(�; x), such

a locally �-optimal ��, which depends on �, will always exist though it may not

be unique. However, the locally �-optimal Fisher information
R


I(�; x)��(dx)

will be a uniquely de�ned positive de�nite matrix in view of the strict convex-

ity of �. Therefore, it is meaningful to look for adaptive procedures generating

the design sequence X1; : : : ;Xn in such a way that the average Fisher informa-

tion n�1
Pn

r=1 I(�;Xr) converges weakly to
R


I(�; x)��(dx) as n tends to in�nity.

From now on we will assume that the following condition holds.

Condition 3.1. 
 is a compact metric space, and I(�; x) has the form I(�; x) =

fV (�; x)gfV (�; x)gT for all � 2 � and x 2 
, where V (�; x) is a continuous Rd

valued function of both of its arguments.
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Observe that this condition will be trivially satis�ed for typical experiment

spaces used in practice (e.g. when 
 is a �nite set or a compact set in an Euclidean

space or some kind of a mixture of the two). Also, for Fisher information matrices

associated with frequently occurring nonlinear models (e.g. standard nonlinear

regression models, generalized linear models), it is easy to see that this condition

holds (see also some of the remarks in Chaudhuri and Mykland (1993, p: 640)). In

Section 3.1 that follows, we will explore the asymptotic performance of adaptive

schemes for �-optimal sequential designs, which generalize the D-optimal design

considered by Chaudhuri and Mykland (1993). We will establish some desirable

asymptotic properties of the generated design sequence under suitable regularity

conditions.

3.1. Adaptive schemes for regular optimal design criteria

We now concentrate on experiments, where the value of n is determined

by the available resources, and is known to the experimenter at the beginning.

We will carry out n1 of these n trials at the initial stage when either very lit-

tle or almost no information on the parameter of interest is available. Let us

denote the �rst n1 design points by X1; : : : ;Xn1 , which are to be chosen in a

static (i.e. non-dynamic or non-adaptive) fashion. In the absence of any prior

knowledge about the parameter �, these initial design points can be selected sys-

tematically to make them evenly distributed in 
. Alternatively, the uniform

probability distribution on 
 can be used to generate n1 i.i.d random points

in 
. In some situations, reliable and adequate prior informations on � may

be available. In those cases, numerous theoretical and empirical results avail-

able in the literature (see e.g. Atkinson and Hunter (1968), Box (1968, 1970),

Rasch (1990), Ford, Torsney and Wu (1992), Haines (1993)) on locally optimal

designs for nonlinear experiments can provide useful guidelines for selecting the

initial design points incorporating such prior informations. Next, for each i such

that n1 < i � n, the ith design point Xi is to be chosen in a dynamic fash-

ion using the adaptive sequential procedure that minimizes the quadratic form

fV (��i ; Xi)g
Tr�

n
(i� 1)�1

Pi�1
r=1 I(�

�

i ; Xr)
o
fV (��i ;Xi)g. Here ��i is an estimate

of � based on data available up to the current stage (i.e. the observa-

tions (Y1;X1); : : : ; (Yi�1;Xi�1) obtained at the (i � 1)th trial and before), and

r� denotes the derivative matrix of � as de�ned and discussed in Wu and

Wynn (1978, pp: 1274-1275). For illuminating discussions on some related al-

gorithms for sequential generation of design points for special as well as general

optimality criteria, the reader is referred to Wynn (1970, 1972), Fedorov (1972),

Atwood (1973, 1976), Tsay (1976), Pazman (1986), Kitsos (1989), Robertazzi

and Schwartz (1989), etc.. Clearly, the selection rule for Xi, where n1 < i � n,

is myopic in nature as it looks only one step into the future beyond present
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(note that since we are selecting only one design point at any particular stage of

selection, the implementation of the algorithm becomes quite convenient). Nev-

ertheless, the following result, which generalizes an earlier D-optimality result in

Chaudhuri and Mykland (1993, Theorem 3.5), establishes a set of simple su�-

cient conditions that ensure asymptotic �-optimality of such a myopic scheme.

A proof of this result, which utilizes some key technical results developed in Wu

and Wynn (1978) in the course of their exploration of the convergence properties

of general step-length algorithms for regular optimal design criteria, will be given

in the Appendix.

Result 3.2. Assume that Condition 3.1 holds, and the initial static experiment

is chosen in such a way that n1 tends to in�nity, n1=n tends to zero, and the

smallest eigenvalue of the matrix n�11
Pn1

r=1 I(�;Xr) remains bounded away from

zero as n goes to in�nity. Further, assume that the estimates ��i 's (n1 < i � n)

used in the adaptive sequential stage of the experiment satisfy the following

consistency and stability conditions. (a) maxn1<i�n Prfj�
�

i � �j > �g tends to

zero as n tends to in�nity for any � > 0.

(b) The sum
Pn�1

i=n1+1

����ni�1Pi
r=1 I(�

�

i+1; Xr)
o
� �

n
i�1

Pi
r=1 I(�

�

i ;Xr)
o��� re-

mains bounded in probability as n tends to in�nity.

Then, if the design points Xi's with n1 < i � n are chosen following the scheme

described above, the average Fisher information n�1
Pn

r=1 I(�;Xr) converges in

probability to the locally �-optimal (at �, the true value of the unknown param-

eter) Fisher information
R


I(�; x)��(dx) as n tends to in�nity.

It will be appropriate to note here that in view of some of the remarks in

Chaudhuri and Mykland (1993, p: 543), it is not di�cult to choose the initial

design sequence properly so that the conditions mentioned at the beginning of

the statement of Result 3.2 will be satis�ed. Also, it is possible to show that

there exist estimates ��i 's (n1 < i � n) satisfying the required conditions (a) and

(b) if we follow the principal ideas behind some of the explicit constructions given

by Chaudhuri and Mykland (1993, p: 543), who restricted their attention to D-

optimal designs and used some similar conditions. For an insight into some of

the consequences and implications of these two technical conditions, the reader

is referred to Chaudhuri and Mykland (1993, Section 3). An important issue

that remains unresolved at this moment is the e�ect of the choices of the initial

static experiment and the parameter estimates ��i 's on the �nite sample accuracy

of the maximum likelihood estimate �̂n. The authors are currently looking into

certain martingale expansions related to the log-likelihood and its derivatives

in an attempt to explore beyond the asymptotics that is achievable through a

martingale central limit theorem. It is hoped that such expansions will provide

deeper insights into the problem leading towards more explicit guidelines for

choosing the initial static experiment and a more e�ective construction of the



432 PROBAL CHAUDHURI AND PER A. MYKLAND

estimates ��i 's.

Recently McLeish and Tosh (1990) have reported an extensive simulation

study on some speci�c sequential designs in bioassay. To investigate the �nite

sample performance of our adaptive sequential designs, we ran some simulations

with the two parameter simple linear logistic regression model (i.e. Pr(Y =

1jX) = exp(�0 + �1X)f1 + exp(�0 + �1X)g�1). The real valued covariate X

was allowed to vary in the unit interval [0; 1]. It is possible to show in this

case (see e.g Minkin (1987)) that the D-optimal design is uniform and supported

on a two point subset of [0; 1]. This two point subset varies depending on the

parameter vector � = (�0; �1). Speci�cally, when � = (0:0; 0:0), the optimal

design is the uniform distribution on f0:0; 1:0g, while for � = (3:0; 5:0), it is

uniform on f0:0; 0:41g. We decided to take n = 55 and the size of the initial

static design was chosen to be n1 = 15 with �rst 15 design points evenly placed

in the interval [0; 1]. After that for n1 < i � n, the design points Xi's were

determined one by one using the adaptive D-optimality criterion as described

at the beginning of this Section 3.1. We chose ��i = the maximum likelihood

estimate based on (Y1; X1); : : : ; (Yj ; Xj) if j < i � j+10 for j = 15; 25; 35; 45. In

other words, the estimate was updated after the 15th, the 25th, the 35th and the

45th trials. In the case � = (0:0; 0:0), the values of the sequentially selected design

points X16 through X55 were observed to alternate between 0.0 and 1.0, while for

� = (3:0; 5:0) they were alternating between 0.0 and 0.41. Even with several other

choices of �, we always observed the sequentially chosen values of X16 through

X55 oscillating between two supporting points of the true optimal design. Even

though the maximum likelihood estimates computed at various stages happened

to be somewhat away from the true parameters due to sampling variations caused

by the randomness in the data, the adaptive sequential procedure did not miss

the optimal design in any of the simulations that we ran.

3.2. Some technical issues and concluding remarks

Result 3.2 asserts the existence of asymptotically �-optimal designs that will

guarantee asymptotic normality as well as �rst order e�ciency of the maximum

likelihood estimate based on dependent data arising from adaptive and sequen-

tially designed nonlinear experiments. However, it does not give the freedom to

do it in an arbitrary way. All of the n1 static design points have to be at the

beginning of the experiment, and in the general case one may have to use a batch

sequential scheme rather than a fully sequential approach (see also some of the

remarks in Chaudhuri and Mykland (1993, Section 3, p: 543)). This raises the

question : whether it is possible to have fully adaptive and sequential schemes

that will lead to asymptotically �-optimal designs. A partial answer to this

question is provided by the following Result.
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Result 3.3. Assume that 
 is a compact metric space, I(�; x) is a continu-

ous function of both of its arguments, and there exists �0 2 D(
) such thatR


I(�; x)�0(dx) is positive de�nite for all � 2 �. With the exception of the static

design points Xk1 ; : : : ;Xkm ; : : : that are chosen following the idea described in

the remark immediately after Result 2.5, choose the design point Xi (i 6= km for

any m � 1) using the probability distribution ��i on 
. Here ��i denotes a locally

�-optimal design at ��i , and �
�

i 's form a sequence of consistent estimates of � such

that ��i is based on the data (Y1; X1); : : : ; (Yi�1;Xi�1) obtained up to the (i�1)th

trial. Then the average Fisher information n�1
Pn

r=1 I(�;Xr) converges in prob-

ability to the locally �-optimal (at �, the true value of the unknown parameter)

Fisher information
R


I(�; x)��(dx) as n tends to in�nity.

Note that in view of Result 2.5 and the remark following it, ��i can be taken

to be the maximum likelihood estimate based on data up to the (i � 1)th trial.

However, it is not at all clear how good or useful is the procedure outlined in

Result 3.3. In practice, it may be di�cult to determine ��i (i.e. a locally �-

optimal design at ��i ) explicitly, and generating a random element from 
 using

the probability measure ��i may be even harder. We therefore recommend the

scheme described in Result 3.2 whenever possible. Nevertheless, it has substantial

theoretical interest that an asymptotically �-optimal adaptive sequential design

as described in Result 3.3 can be established under such minimal conditions. Note

that for Result 3.3, we only need the continuity of the information matrix I(�; x),

and no special structure (like the one assumed in Condition 3.1) is necessary. In

particular, this result is applicable to many heteroscedastic regression models,

where the conditional distribution of the response given the regressor is assumed

to be normal with a variance that depends on the mean in a nonlinear way. Result

3.3 does make one wonder if it is possible to �nd more convenient, fully adaptive

and sequential designs that will ensure �rst order e�ciency of the maximum

likelihood estimate of a parameter in a smooth and regular nonlinear model.

Finally, we would like to close this section by pointing out that the sequence

of non-adaptive design points Xk1 ; : : : ; Xkm ; : : : are introduced here to ensure

consistency of the maximum likelihood estimate. While this is a convenient

strategy that can be used to achieve consistency in a very general set up, one

should be able to avoid it if necessary, and use more natural and easier methods

in speci�c situations. Note that in view of the fact that m�1=(1��)km tends to

one as m tends to in�nity, the sequence Xk1 ; : : : ; Xkm ; : : : does not a�ect the �rst

order asymptotic properties of the n1=2-consistent maximum likelihood estimate

�̂n.
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Appendix : The Proofs

Proof of Result 2.5. Let us introduce an increasing sequence of �-�elds

Fni's with 1 � i � n such that Fni is generated by Y1; : : : ; Yi (in other words,

�(Y1; : : : ; Yi) = Fni). Then it follows from Condition 2.2 that f
Pi

r=1G(Yr; �;Xr);

Fnig1�i�n is a square integrable martingale. Further, we must have

E

�����
nX

r=1

G(Yr; �;Xr)

�����
2

= E

(
nX

r=1

jG(Yr; �;Xr)j
2

)
= O(n) as n �!1;

so that
nX

r=1

G(Yr; �;Xr) = OP (n
1=2) as n �!1: (A:1)

Next observe that f
Pi

r=1[H(Yr; �;Xr) + I(�;Xr)];Fnig1�i�n is another square

integrable martingale, and therefore a similar argument as above implies that

nX
r=1

[H(Yr; �;Xr) + I(�;Xr)] = OP (n
1=2) as n �!1: (A:2)

For any � > 0, let N�(�) denote the neighborhood with � as the center and the ra-

dius �. It is now easy to see using Condition 2.4 and the condition assumed on �n
in the statement of the result that if we choose �n = n��, where � < � < (1=2)��,

the smallest eigenvalue of the Hessian matrix of n��1
Pn

r=1 logff(Yrj�
0;Xr)g will

remain negative and bounded away from zero in probability as n tends to in�nity

for all �0 2 N�n(�). In other words, we will have the following,

lim
n!1

Pr

(
nX

r=1

logff(Yrj�
0;Xr)g is concave for �

0 2 N�n(�)

)
= 1: (A:3)

Consider next the following third order Taylor expansion of the log-likelihood

around the true parameter �,

nX
r=1

logff(Yrj�
0;Xr)g =

nX
r=1

logff(Yrj�;Xr)g+ (�0 � �)T
(

nX
r=1

G(Yr; �;Xr)

)

+ (�0��)T
(

nX
r=1

H(Yr; �;Xr)

)
(�0��)+Rn(�

0; �0): (A:4)
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Here, in view of Condition 2.4, the remainder term in (A.4) will satisfy

sup
�0:j�0

��j��n

jRn(�
0; �)j = OP (n�

3
n) as n �!1: (A:5)

Results (A.1) through (A.5) now imply that the probability of the event that the

likelihood equation has a root in the interior of N�n(�) will tend to one as n tends

to in�nity. This completes the proof.

Proof of Result 2.6. Applying Result 2.5, let �̂n be a weakly consistent solution

of the likelihood equation. Consider the following �rst order Taylor expansion of

n�1
Pn

r=1G(Yr; �̂n;Xr) around the true parameter �.

0 =n�1
nX

r=1

G(Yr; �̂n;Xr) = n�1
nX

r=1

G(Yr; �;Xr)

+

(
n�1

nX
r=1

H(Yr; �;Xr) + �n(�)

)
(�̂n � �); (A:6)

where �n(�) is a d�d randommatrix such that j�n(�)j tends to zero in probability

as n tends to in�nity in view of Condition 2.4 and the weak consistency of �̂n.

Further, in view of Conditions 2.2 and 2.3, the design condition in the statement

of the result and the martingale central limit result stated in Corollary 3.1 in Hall

and Heyde (1980, pp: 58-59), we conclude that n�1=2
Pn

r=1G(Yr; �;Xr) converges

weakly to a d-dimensional normal random vector with zero mean and A as the

dispersion matrix. Note that Corollary 3.1 in Hall and Heyde (1980, pp: 58-

59) is stated for real valued martingales, and we need to argue here via the

well known Cram�er-Wold device. The conditional Lindeberg condition that is

needed for applying this Corollary is satis�ed because of the moment restriction

imposed in Condition 2.2. Also, the condition on the conditional variance process

assumed in that corollary can be easily veri�ed using Condition 2.3 and the design

condition assumed in the statement of the result. Finally, using (A.2) we get that

n�1
Pn

r=1H(Yr; �;Xr) must converge in probability to the non-random positive

de�nite matrix A. The proof is now complete using (A.6).

Proof of Result 2.7. The weak consistency of �̂n implies that for any � > 0,

the probability of the event f �̂n 2 N�(�) g will tend to one as n tends to in�nity.

The continuity of the Fisher information matrix in both of its arguments ensures

its uniform continuity as the two arguments vary in compact subsets contained

in their respective domains. In particular, we must have

max
1�r�n

���I(�̂n;Xr)� I(�;Xr)
��� P
�! 0 as n �!1: (A:7)
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The weak convergence of the estimated average information n�1
Pn

r=1 I(�̂n; Xr) to

A and subsequent assertions in the statement of the result now follow immediately

from (A.7) and Result 2.6.

Proof of Result 3.2. We begin by introducing some notations. Suppose that

the design points Xi's are generated following the strategy described before the

statement of the result. For any �0 2 � and 1 � m � n, let us write Jm(�
0) =

m�1
Pm

r=1 I(�
0;Xr), and set J� =

R


I(�; x)��(dx), where � is the true parameter

and �� is a locally �-optimal design at �. Also, following Wu and Wynn (1978),

we de�ne

r�(M1;M2) = lim
�!0+

@�

@�
f(1� �)M1 + �M2g

and

r2�(M1;M2) = lim
�!0+

@2�

@�2
f(1� �)M1 + �M2g ;

where M1 and M2 are positive de�nite matrices. Since each of the functions

de�ned in (1), (2) and (3) at the beginning of Section 3 are nicely di�erentiable,

we will have r�(M1;M2) = tracefr�(M1)(M2 �M1)g. Here for M = (mij),

the derivative r�(M) of � evaluated at M is de�ned as r�(M) =
�
@�(M)

@mij

�
. A

second order Taylor expansion now yields the following for n1 � i < n,

�fJi+1(�
�

i+1)g

=�fJi(�
�

i+1)g+ (i+ 1)�1r�fJi(�
�

i+1); I(�
�

i+1;Xi+1)g

+ 2�1(i+ 1)�2r2�f(1� �i)Ji(�
�

i+1) + �iI(�
�

i+1; Xi+1); I(�
�

i+1;Xi+1)g; (A:8)

where 0 � �i � (i + 1)�1. Next, it follows from some crucial observations in

Wu and Wynn (1978, Section 3) and the conditions assumed in the statement

of the result that �fJi(�
�

i+1)g remains bounded (uniformly in i) in probability

as n tends to in�nity and i varies between n1 and n � 1. Now, �x � > 0 and

suppose that �fJi(�
�

i+1)g > �(J�) + � for all i with n1 � i < n. Then, using

the convexity of � and the method of construction of Xi+1, we get (see also the

arguments used in connection with (2.2) in Wu and Wynn (1978))

0 < � <�fJi(�
�

i+1)g � �(J�)

� �r�fJi(�
�

i+1); J
�g � �r�fJi(�

�

i+1); I(�
�

i+1;Xi+1)g: (A:9)

On the other hand, the assumptions in the statement of the result ensure that

the r2� term (i.e. the third term on the right) in (A.8) remains bounded (again

uniformly in i) in probability as n tends to in�nity and i varies between n1 and

n � 1. Therefore, using the condition that n1 tends to in�nity as n tends to

in�nity and (A.9), we have

lim
n!1

min
n1�i<n

Pr
�
�fJi+1(�

�

i+1)g � �fJi(�
�

i+1)g � (i+ 1)�1(�=2)
�
= 1: (A:10)
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Note at this point that
Pn�1

i=n1
(i + 1)�1 tends to in�nity as n goes to in�nity in

view of the condition n1=n tends to zero as n tends to in�nity. Condition (b)

assumed in the statement of the result now implies the following,

lim
n!1

Pr [ There exists i such that n1 < i < n

and �fJi(�
�

i+1)g � �(J�) + �] = 1: (A:11)

Further, it follows from (A.8) that

lim
n!1

min
n1�i<n

Pr [�fJi+1(�
�

i+1)g � �fJi(�
�

i+1)g+ �] = 1: (A:12)

One can conclude from (A.8) and the arguments used in connection with (A.9)

and (A.10) (see also the arguments used in connection with (2.5) in Wu and

Wynn (1978)) that

lim
n!1

min
n1�i<n

Pr [�fJi+1(�
�

i+1)g � �fJi(�
�

i+1)g

whenever �fJi(�
�

i+1)g > �(J�) + �] = 1: (A:13)

Finally, (A.11), (A.12), (A.13) and Condition (a) in the statement of the result

yield

lim
n!1

Pr [�fJn(�)g � �(J�) + 4�] = 1:

This completes the proof in view of the continuity and strict convexity of �.

Proof of Result 3.3. For n � 1, de�ne the set of positive integers Sn as

Sn = fr : 1 � r � n and r 6= km for any m � 1g. Then, in view of the way

the sequence of positive integers km's is constructed, n
�1f#(Sn)g must tend to

one as n tends to in�nity. Recall now that � is a continuous and strictly convex

function. It is easy to show using the continuity of I(�; x), the compactness of


, the weak consistency of the sequence of estimates ��i 's and straight forward

modi�cations of some of the arguments in the proof of Lemma A.2 in Chaudhuri

and Mykland (1993) that

f#(Sn)g
�1

X
r2Sn

Z



I(�; x)��r (dx)
P
�!

Z



I(�; x)��(dx) as n �!1: (A:14)

Observe also that
�P

r2St
[I(�;Xr)�

R


I(�; x)��r (dx)];Ft

	
t2Sn

is a square inte-

grable martingale, where Ft is the �-�eld generated by (Y1;X1); : : : ; (Yt;Xt) (in

other words �f(Y1;X1); : : : ; (Yt;Xt)g = Ft). Hence, we must have

f#(Sn)g
�1

X
r2Sn

[I(�;Xr)�

Z



I(�; x)��r (dx)]
P
�! 0 as n �!1: (A:15)

The desired result is now immediate from (A.14) and (A.15).



438 PROBAL CHAUDHURI AND PER A. MYKLAND

References

Abdelbasit, K. M. and Plackett, R. L. (1983). Experimental design for binary data. J. Amer.

Statist. Assoc. 78, 90-98.

Atkinson, A. C. and Hunter, W. G. (1968). The design of experiments for parameter estimation.

Technometrics 10, 271-289.

Atwood, C. L. (1973). Sequences converging to D-optimal designs of experiments. Ann. Statist.

1, 342-352.

Atwood, C. L. (1976). Convergent design sequences, for su�ciently regular optimality criteria.

Ann. Statist. 4, 1124-1138.

Bates, D. M. and Watts, D. G. (1988). Nonlinear Regression : Analysis and Its Applications.

John Wiley, New York.

Bickel, P. J. (1978). Using residuals robustly I : tests for heteroscedasticity, nonlinearity. Ann.

Statist. 6, 266-291.

Box, G. E. P. and Hill, W. J. (1974). Correcting inhomogeneity of variance with power trans-

formation weighting. Technometrics 16, 385-389.

Box, G. E. P. and Hunter, W. G. (1965). Sequential design of experiments for nonlinear models.

In Proceedings of the IBM Scienti�c Computing Symposium on Statistics, 113-137, October

21-23, 1963.

Box, M. J. (1968). The occurrence of replications in optimal designs of experiments to estimate

parameters in non-linear models. J. Roy. Statist. Soc. Ser.B 30, 290-302.

Box, M. J. (1970). Some experiences with a nonlinear experimental design criterion. Techno-

metrics 12, 569-589.

Carroll, R. J. and Ruppert, D. (1988). Transformation and Weighting in Regression. Chapman

and Hall, London.

Chaudhuri, P. and Mykland, P. A. (1993). Nonlinear experiments : Optimal design and infer-

ence based on likelihood. J. Amer. Statist. Assoc. 88, 538-546.

Cherno�, H. (1953). Locally optimal designs for estimating parameters. Ann. Math. Statist.

24, 586-602.

Cherno�, H. (1975). Approaches in sequential design of experiments. In A Survey of Statistical

Design and Linear Models (Edited by J. N. Srivastava), 67-90, North Holland, New York.

Cochran, W. G. (1973). Experiments for nonlinear functions (R. A. Fisher Memorial Lecture).

J. Amer. Statist. Assoc. 68, 771-781.

Cox, D. R. and Snell, E. J. (1989). Analysis of Binary Data. Chapman and Hall, London.

Efron, B. (1975). De�ning the curvature of a statistical problem (with applications to second

order e�ciency). Ann. Statist. 3, 1189-1242.

Efron, B. (1978). The geometry of exponential families. Ann. Statist. 6, 362-376.

Fedorov, V. V. (1972). Theory of Optimal Experiments. Academic Press, New York.

Ford, I. and Silvey, S. D. (1980). A sequentially constructed design for estimating a nonlinear

parametric function. Biometrika 67, 381-388.

Ford, I., Torsney, B. and Wu, C. F. J. (1992). The use of a canonical form in the construction of

locally optimal designs for non-linear problems. J. Roy. Statist. Soc. Ser.B 54, 569-583.

Ford, I., Titterington, D. M. and Kitsos, C. P. (1989). Recent advances in nonlinear experi-

mental design. Technometrics 31, 49-60.

Ford, I., Titterington, D. M. and Wu, C. F. J. (1985). Inference and sequential design.

Biometrika 72, 545-551.

Gallant, A. R. (1987). Nonlinear Statistical Models. John Wiley, New York.



DESIGNING NONLINEAR EXPERIMENTS 439

Haines, L. M. (1993). Optimal design for nonlinear regression models. Comm. Statist. Theory

Methods 22, 1613-1627.

Hall, P. G. and Heyde, C. C. (1980). Martingale Limit Theory and Its Application. Academic

Press, New York.

Jenrich, R. I. (1969). Asymptotic properties of non-linear least squares estimators. Ann. Math.

Statist. 40, 633-643.

Jobson, J. D. and Fuller, W. A. (1980). Least squares estimation when the covariance matrix

and parameter vector are functionally related. J. Amer. Statist. Assoc. 75, 176-181.

Johnson, R. A. (1970). Asymptotic expansions associated with posterior distributions. Ann.

Math. Statist. 41, 851-864.

Johnson, R. A. and Ladalla, J. N. (1979). The large sample behavior of posterior distribu-

tions when sampling from multiparameter exponential family models, and allied results.

Sankhy�a, Ser.B 41, 196-215.

Kiefer, J. (1959). Optimum experimental designs (with discussion). J. Roy. Statist. Soc. Ser.B

21, 272-319.

Kiefer, J. (1961). Optimum designs in regression problems, II. Ann. Math. Statist. 32, 298-325.

Kiefer, J. (1974). General equivalence theory for optimum designs (approximate theory). Ann.

Statist. 2, 849-879.

Kiefer, J. and Wolfowitz, J. (1959). Optimum designs in regression problems. Ann. Math.

Statist. 30, 271-294.

Kitsos, C. P. (1989). Fully-sequential procedures in nonlinear design problems. Comput.

Statist. Data Anal. 8, 13-19.

Le Cam, L. (1986). Asymptotic Methods in Statistical Decision Theory. Springer Verlag, New

York.

Lehmann, E. L. (1983). Theory of Point Estimation. John Wiley, New York.

McCormick, W. P., Mallik, A. K. and Reeves, J. H. (1988). Strong consistency of the MLE for

sequential design problems. Statist. Probab. Lett. 6, 441-446.

McCullagh, P. and Nelder, J. (1989). Generalized Linear Models. Chapman and Hall, London.

McLeish, D. L. and Tosh, D. (1990). Sequential designs in bioassay. Biometrics 46, 103-116.

Minkin, S. (1987). Optimal designs for binary data. J. Amer. Statist. Assoc. 82, 1098-1103.

Myers, R. H., Khuri, A. I. and Carter, W. H. (1989). Response surface methodology : 1966-1988.

Technometrics 31, 137-157.

Pazman, A. (1986). Foundations of Optimum Experimental Design. D. Reidel, Boston.

Powsner, L. (1935). The e�ects of temperature on the durations of the developmental stages of

Drosophila Melanogaster. Physiological Zoology 8, 474-520.

Prakasa Rao, B. L. S. (1987). Asymptotic Theory of Statistical Inference. John Wiley, New

York.

Rasch, D. (1990). Optimum experimental design in nonlinear regression. Comm. Statist.

Theory Methods 19, 4789-4806.

Robertazzi, T. G. and Schwartz, S. C. (1989). An accelerated sequential algorithm for producing

D-optimal designs. SIAM J. Sci. Statist. Comput. 10, 341-358.

Seber, G. A. F. and Wild, C. J. (1989). Nonlinear Regression. John Wiley, New York.

Silvey, S. D. (1980). Optimal Design. Chapman and Hall, London.

Sweeting, T. J. (1980). Uniform asymptotic normality of the maximum likelihood estimator.

Ann. Statist. 8, 1375-1381.



440 PROBAL CHAUDHURI AND PER A. MYKLAND

Sweeting, T. J. (1983). On estimator e�ciency in stochastic processes. Stochastic Process.

Appl. 15, 93-98.

Treloar, M. A. (1974). E�ects of Puromycin on Galactosyltransferase of Golgi Membranes.

Unpublished Master's Thesis. University of Toronto.

Tsay, J. Y. (1976). On the sequential construction of D-optimal designs. J. Amer. Statist.

Assoc. 71, 671-674.

Woodroofe, M. (1989). Very weak expansions for sequentially designed experiments: Linear

models. Ann. Statist. 17, 1087-1102.

Wu, C. F. J. (1981). Asymptotic theory of nonlinear least squares estimation. Ann. Statist. 9,

501-513.

Wu, C. F. J. (1985). Asymptotic inference from sequential design in a nonlinear situation.

Biometrika 72, 553-558.

Wu, C. F. J. and Wynn, H. P. (1978). The convergence of general step-length algorithms for

regular optimum design criteria. Ann. Statist. 6, 1273-1285.

Wynn, H. P. (1970). The sequential generation of D-optimum experimental designs. Ann.

Math. Statist. 41, 1655-1664.

Wynn, H. P. (1972). Results in the theory and construction of D-optimum experimental designs.

J. Roy. Statist. Soc. Ser.B 34, 133-147.

Indian Statistical Institute, Calcutte, India.

Department of Statistics, University of Chicago, IL 60637, U.S.A.

(Received December 1993; accepted March 1995)


