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Abstract: We report optimality aspects of row-column designs for 7 treatments, 7

rows, and 7 columns with three treatment replications within the class of designs with

row-column, row-treatment, and column-treatment incidence matrices generated by

binary circulants. In particular, we �nd a 3-way BIBD which doubles the e�ciencies of

the Agrawal (1966a,b) design for all three factors, and which is optimal w.r.t. Kiefer's

�p-criteria within this class of designs. Also it turns out to be universally optimal

within a large subclass of designs.
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1. Introduction

Agrawal (1966a,b) provided a series of 3-way BIBDs for the parameters R =

C = � = 4�+3 a prime power, and r = 2�+1, (i.e, row-column designs with the

same completely symmetric C-matrices for all of the three factors, treatments,

rows, and columns; see Hedayat and Raghavarao (1975)). Shah and Sinha (1990)

investigated optimality aspects of these designs. For the Agrawal design with 7

levels for each factor (i.e., � = 1) they came up with a competitor which fares

better than the former one with respect to all three factors.

This paper is a follow-up of the Shah & Sinha paper and may be regarded

as a rejoinder to the same for the speci�c Agrawal setup with � = 1. While we

were examining the prospect of optimality of Shah-Sinha designs, many interest-

ing features of this problem surfaced and we propose to present them here. In

particular, we discovered another set of 3-way BIBDs for which every member

doubles the e�ciency of the Agrawal design for all three factors. These designs

also fare better than the one found by Shah and Sinha (1990) w.r.t. many op-

timality criteria: The designs presented here are universally optimal within the

subclass of binary circulant designs such that at least one of the incidence ma-

trices yields a BIBD structure, and, more interestingly, they are optimal in the

sense of Kiefer's �p-criteria (see e.g. Kiefer (1975)) for all p � 0 within the set of

all binary designs for three treatment replications and incidence matrices gener-

ated by arbitrary circulants. We refer to Shah and Sinha (1989) for a discussion
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on optimality criteria along with available results on row-column designs.

2. Preliminaries

We consider in the Agrawal setup, with � = 1, optimality aspects of row-

column designs with corresponding incidence matrices Nrc; Nrt; and Nct for row-

column, row-treatment, and column-treatment, respectively, generated by binary

circulants. In this setup, Agrawal (1966a,b) constructed a 3-way BIBD (hence-

forth denoted by dA) with all three incidence matrices generated by the same

circulant,

NA

rc
= NA

rt
= NA

ct
= ((0 1 1 0 1 0 0)) ;

and C-matrices for treatment, row, and column e�ects given by

CA

t
= CA

r
= CA

c
= ((6 � 1 � 1 � 1 � 1 � 1 � 1)) =7 :

A possible layout of dA, given here for convenience, is as follows.

dA '

2
66666666664

� 2 4 � 1 � �

� � 3 5 � 2 �

� � � 4 6 � 3

4 � � � 5 7 �

� 5 � � � 6 1

2 � 6 � � � 7

1 3 � 7 � � �

3
77777777775
:

In an attempt to investigate optimality aspects of Agrawal's design, Shah

and Sinha (1990) analyzed the trace of the C-matrix for varietal comparisons,

and came up with a competitor (to be denoted by dSS), which has row-column

and row-treatment pattern NSS

rc
= NSS

rt
= ((0 1 1 0 1 0 0)) as above, while the

column-treatment pattern is changed to NSS

ct
= ((1 0 1 0 0 1 0)). The resulting

C-matrix for treatments is found to be the circulant

CSS

t
= ((10 0 � 2 � 3 � 3 � 2 0)) =7 ;

which strongly dominates CA

t
. Moreover, Shah and Sinha also observed that dSS

strongly dominates dA for row and column comparisons as well. (Here, strong

dominance refers to the Loewner partial ordering for the associated C-matrices;

discussions on the role of that ordering in the context of design optimality can

be found in the book of Pukelsheim (1993), for example.)

We decided to examine by an exhaustive computer search the class of all de-

signs with row-column, row-treatment, and column-treatment incidence matrices
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generated by circulants composed of the numbers 0 and 1 with repetitions 4 and

3, respectively. This gives 35 possibilities for each incidence matrix, but only 5

of them are distinct. Actually, without any loss, we can assign �xed combina-

tions of 5 � 5 combinations to two of the three factor combinations; for �nding

feasible designs, however, we have to examine all 35 possibilities for the third

factor combination, (see below). This results into 875 combinations of incidence

matrices Nrc; Nrt and Nct to be checked.

3. Optimality Results

We found that out of the 875 only 80 combinations provide feasible designs.

Actually, any feasible combination d ' (Nrc; Nrt; Nct) represents the 49 designs

f (P iNrc; P
jNrt; P

j�iNct) : 0 � i; j � 6 g ;

where P is the circulant ((0 1 0 0 0 0 0)). For, feasibility of d implies feasibility

of both designs

(PNrc; PNrt; Nct) and (Nrc; PNrt; PNct) :

We de�ne two designs d ' (Nrc; Nrt; Nct) and ~d ' ( eNrc; eNrt; eNct) to be equivalent

if there exist integers 0 � i; j � 6 such that

eNrc = P iNrc ; eNrt = P jNrt ; and eNct = P j�iNct :

Note that the C-matrices for treatments, rows, and columns of d are given by

Ct = 3�1[(9I�NtrNrt)� (3Ntc�NtrNrc)(9I�NcrNrc)
�(3Nct�NcrNrt)] ;

Cr = 3�1[(9I�NrtNtr)� (3Nrc�NrtNtc)(9I�NctNtc)
�(3Ncr�NctNtr)] ; and

Cc = 3�1[(9I�NcrNrc)� (3Nct�NcrNrt)(9I�NtrNrt)
�(3Ntc�NtrNrc)] :

From these representations (and observing that PN = NP for all circular

matrices N) it is easily seen that for equivalent designs the respective C-matrices

for treatment, row, and column e�ects coincide. Note that two of the three

incidence matrices of designs from the same equivalence class vary independently

over the set of all possible incidence matrices.

The 80 feasible combinations we found can be broadly classi�ed according to

the corresponding C-matrices for treatments, rows, and columns. When viewing

those C-matrices as equivalent which are obtained by interchanging certain rows

and columns from a given one, then only the following 11 di�erent C-matrices

are obtained.
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Table 1. C-matrices associated with feasible row-column designs.

i 7Ci

1 ((12:634 � 4:268 � 2:561 0:512 0:512 � 2:561 � 4:268))

2 ((12 � 2 � 2 � 2 � 2 � 2 � 2))

3 ((11:268 � 5:976 � 1:537 1:878 1:878 � 1:537 � 5:976))

4 ((10:585 � 2:902 � 2:220 � 0:171 � 0:171 � 2:220 � 2:902))

5 ((10: � 2 � 3 0 � 0 � 3 � 2))

6 ((8:537 � 3:073 � 3:244 � 2:049 2:049 � 3:244 � 3:073))

7 ((8:195 � 2:390 1:366 � 3:073 � 3:073 1:366 � 2:390))

8 ((8 � 4 � 2 0 0 � 2 � 4))

9 ((7:512 � 3:415 0:683 � 1:024 � 1:024 0:683 � 3:415))

10 ((6:828 0:341 � 1:195 � 2:561 � 2:561 � 1:195 0:341))

11 ((6 � 1 � 1 � 1 � 1 � 1 � 1))

The combinations of C-matrices for the three factors coming along with

feasible designs are listed below. Here we use the notation (i; j; k) to indicate

that for some feasible design the corresponding triplet of C-matrices (Ct; Cr; Cc)

is either equal to (Ci; Cj ; Ck) or to a permutation of the latter. For example,

each of the combinations (Ct; Cr; Cc) = (C3; C6; C6); (Ct; Cr; Cc) = (C6; C3; C6);

and (Ct; Cr; Cc) = (C6; C6; C3) was obtained three times, yielding the frequency

9 for the triplet (3,6,6) in the table. We remark that each of the 11 matrices

Ci; 1 � i � 11, from above appeared as the C-matrix for each of the factors.

Table 2. Combinations of C-matrices associated with feasible designs.

type C-matrices frequencies

I (1,1,1) 3

II (2,2,2) 2

III (3,6,6) 9

IV (4,5,5) 18

V (7,8,9) 36

VI (10,10,10) 6

VII (11,11,11) 6

The designs dA and dSS are of type VII and type IV, respectively. Note that

there are actually 49� 6 designs of Agrawal, and 49� 18 designs of Shah-Sinha

type.

The designs of type I might be of particular interest, since the associated C-

matrices possess the largest trace. The corresponding designs are generated by

equal, non-BIBD row-column, row-treatment, and column-treatment incidence
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matrices, i.e.,

Nrc = Nrt = Nct = ((1 1 1 0 0 0 0)) ;

Nrc = Nrt = Nct = ((1 1 0 0 1 0 0)) ; and

Nrc = Nrt = Nct = ((1 0 1 0 1 0 0)) :

Table 2 shows that there are 98 3-way BIBD's of type II (located in two

equivalence classes) having C2 = ((12 � 2 � 2 � 2 � 2 � 2 � 2)) =7 as common

C-matrix for all three factors, which is twice the common C-matrix of Agrawal's

3-way BIBD. Two particular designs d` ' (N `

rc
; N `

rt
; N `

ct
); ` = 1; 2; representing

the two associated equivalence classes are given by

N 1

rc
= ((1 1 0 1 0 0 0)) ; N 1

rt
= ((1 1 0 0 0 1 0)) ; N 1

ct
= ((1 0 0 0 1 1 0)) ;

and

N 2

rc
= ((1 1 0 0 0 1 0)) ; N 2

rt
= ((1 1 0 1 0 0 0)) ; N 2

ct
= ((1 0 1 1 0 0 0)) :

Possible layouts of d1 and d2 are as follows.

d1 '

2
6666666664

1 6 � 2 � � �

� 2 7 � 3 � �

� � 3 1 � 4 �

� � � 4 2 � 5

6 � � � 5 3 �

� 7 � � � 6 4

5 � 1 � � � 7

3
7777777775
; d2 '

2
6666666664

1 4 � � � 2 �

� 2 5 � � � 3

4 � 3 6 � � �

� 5 � 4 7 � �

� � 6 � 5 1 �

� � � 7 � 6 2

3 � � � 1 � 7

3
7777777775
:

Recall that the complete class of designs of type II is given by

f d ' (P iN `

rc
; P jN `

rt
; P j�iN `

ct
) : ` = 1; 2; 0 � i; j � 6 g :

Since C2 is completely symmetric, we obtain by inspecting the traces of Ci; 1 �

i � 11; that all designs of type II are universally optimal for all three factors

among all designs except those of type I. It may be noted that the designs of

type I are based on non-BIBD structures of incidence matrices for all the three

factor combinations.

Because trace(C1) > trace(C2) the designs of type II fail to be Schur optimal

within the set of all designs; actually, among all designs there does not exist

a Schur optimal one. However, the positive eigenvalues of C1 are 19:787=7 (2),

16:904=7 (2), 7:528=7 (2) (the numbers in parenthesis denote the multiplicities),

and the constant positive eigenvalue of C2 is 2. Now straightforward analysis

shows that for p � 0 the �p-value of C2 is smaller than that of C1, and therefore
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all designs of type II are optimal among all designs w.r.t. Kiefer's �p-criteria for

all p � 0. These include the well known D-, A-, and E-criteria.
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