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PATTERN PROPERTIES AND SPECTRAL INEQUALITIES
IN MAX ALGEBRA *

R. B. BAPAT, DAVID P. STANFORD:, AND P. VAN DEN DRIESSCHE

Abstract. The max algebra consists of the set of real numbers, along with negative infinity,
equipped with two binary operations, maximization and addition. This algebra is useful in describing
certain conventionally nonlinear systems in a linear fashion. Properties of eigenvalues and eigenvectors
over the max algebra that depend solely on the pattern of finite and infinite entries in the matrix
are studied. Inequalities for the maximal eigenvalue of a matrix over the max algebra, motivated by
those for the Perron root of a nonnegative matrix, are proved.
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1. Introduction. The algebraic system called "max algebra" has been used
to describe, in a linear fashion, phenomena that are nonlinear in the conventional
algebra. Examples include transportation networks, machine scheduling, and parallel
computation. A system in which one component must wait for results from other
components (a "discrete event dynamic system") can be modeled in max algebra.
See [13, Chap. 1] for a detailed description of such systems. As described there, the
question of regularizing a system, that is, of initiating a system in such a way that all
components begin cycles at the same time, is answered by solving the eigenproblem
in max algebra.

An early exposition of max algebra is the monograph of Cuninghame-Green [13].
Related works are Carr( [7, Chap.a] and Gondran and Minoux [19], that discuss
more general "path algebras" and describe Gaussian and related solutions of linear
systems over path algebras. Currently, work on max algebra systems is progressing in
many directions; see [1], [6], [11], [18], [24]. Over the max algebra, eigenproblems for
irreducible matrices were studied in [13] and for reducible matrices in [8] and [18].

The max algebra consists of the set 15= R U {-cx}, where R is the set of real
numbers, equipped with two binary operations, addition and multiplication, denoted
by ( and (R), respectively. The operations are defined as follows:

a @ b max(a, b), the maximum of a and b

and
a(R)b=a+b.
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Clearly, -c and 0 serve as identity elements for the operations (R) and (R), respec-
tively. We denote x @ (R) Xn by

or by - xi when the range of summation of the index i is clear from the context.
We deal with vectors and matrices over the max algebra. Basic operations on

matrices are defined in the natural way. Thus, if A [aij], B [bij] are m n
matrices over M, then A @ B is the m n matrix with (i, j)-entry aij @ bij. If k E ,
then k (R) A is the matrix [k (R) aj] [k + aij]. If A is m n and B is n p, then A (R) B
is the m p matrix with (i,j)-entry.

n

k--1

It is easily verified that matrix multiplication is associative and that it distributes over
matrix addition.

The transpose of the matrix A is denoted by AT. The n n matrix with each
diagonal entry zero and each off-diagonal entry -cx) is the identity matrix over the
max algebra. If we permute the rows (and/or columns) of the identity matrix, then
we obtain a permutation matrix over the max algebra. If A, B are m n matrices over
M, then A _> B means that aii _> biy for all i, j. Similarly, A > B means that aii > bij
for all i, j. A column or row vector x over M is said to be finite if each component xi
of the vector is finite. A vector is called partly infinite if it has a finite component as
well as an infinite component. A matrix or vector with each component -oc is called
infinite and we denote it by -cx as well; this should not cause any confusion.

The exponential function provides a natural one-to-one map from M onto the
nonnegative reals. Under this correspondence, matrices over max algebra correspond
to nonnegative matrices over the reals, and much of our work is motivated by the
theory of nonnegative matrices. Techniques of proof for max algebra sometimes reflect
those for conventional algebra. In particular, the directed graph of a matrix, which
provides much information in the study of nonnegative matrices, plays an even more
central role in matrices over max algebra; see the definition of (A) below.

Let A be an n n matrix over . We associate a directed graph (digraph)G(A)
with A as follows. The vertices of G(A) are 1, 2,..., n. There is an edge from vertex i
to vertex j, denoted by (i, j), if ai is finite and in that case we say that aij is the weight
of the edge (i, j). We use standard terminology from the theory of digraphs. Thus a
path of length in a digraph is a sequence of edges (il, i2), (i2, i3),..., (it, it+), also
denoted by il --+ i2 --* - it -- it+; here the vertices are not necessarily distinct.
The weight of a path is the sum of the weights of the edges in the path. The average
weight of the path il - i2 -, --. it --* it+l is defined as

aili: - ai2i3 - aizQ+l

A circuit - of length is a closed path i i2 ---+ it i, where il,..., it
are distinct. A circuit of length one is a loop. We denote the set of circuits in G(A),
or in A, by (A). If T E (A) then the average weight of T is called the mean of the
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circuit -, denoted by MA(T). We define the maximal circuit mean of A, denoted by
#(A), as

#(d)= max MA(7")
(A)

if C(A) # , and we set #(A) - otherwise. A circuit T e C(A) is called a critical
circuit if MA(’r) #(A). The set of all critical circuits in A is denoted by (A).
The critical graph of A is a digraph with vertices 1, 2,..., n, defined as follows. For
i,j E {1, 2,..., n}, edge (i, j) is in the critical graph of A if and only if it belongs to
a critical circuit in (A).

A digraph is strongly connected if there exists a path from any vertex to any
other vertex. We say that the matrix A is irreducible if G(A) is strongly connected.
If A is not irreducible then we say that it is reducible. If A is an n n matrix over M
then clearly A is irreducible if and only if [eaiJ] is a nonnegative, irreducible matrix
in the usual sense (see, e.g., [4]). We also remark that A is reducible if and only if
either A is 1 1 containing -x) or there exists a permutation matrix Q1 over the max
algebra such that

Q1 (R) A(R) QT A21 A22
where A and A22 are square matrices of order at least one. For A reducible and not
1 1 containing -c, there exist q >_ 2 and a permutation matrix Q over the max
algebra such that

(1.1) Q(R)A(R)QT

All --(:x

A2 A2 c

Aql Aq2 A q

where each Aii is either square and irreducible or is 1 1 containing -c. This is the
Frobenius normal form of A.

In 2 we give the basic definitions and state results for eigenvalues and eigenvec-
tots of general square matrices over the max algebra. Proofs of these results can be
found in the literature. In applications to discrete event dynamic systems such as ma-
chine scheduling or parallel computing, it may be useful to obtain information about
eigenvalues and eigenvectors given only partial information concerning the entries of
the matrix. In particular, it may be known which components of the system must
wait for input from which other components, while the waiting times are unknown. It
will then be known where the finite entries of the matrix of interest occur, but their
magnitudes will be unknown; that is, only the "pattern" of the matrix will be speci-
fied. In 3 we obtain results concerning eigenvalues and eigenvectors that depend only
on the pattern of the given matrix. In 4 we present new inequalities concerning the
maximal circuit mean of a matrix over the max algebra. Most of these are motivated
by known corresponding inequalities for the spectral radius of a nonnegative matrix.

2. Eigenvalues and eigenvectors. Let A be an n n matrix over , then
E ? is an eigenvalue of A if there exists a vector x : -c such that

A(R)x=A(R)x.

In this case, x is an eigenvector of A corresponding to the eigenvalue A. Furthermore,
we call (A,x) an eigenpair of A. Note that (A,x) is an eigenpair of A if and only if
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x -oc and maxj(aij -F xj) i -F xi, i 1, 2,..., n. For example, if

2 4

then

A@ =4@ 0

thus 4 is an eigenvalue of A. It can be checked that 4 is the only eigenvalue of A. Note
that AT has both 3 and 4 as eigenvalues.

If Q is a permutation matrix over the max algebra and A E M then (A, x) is an
eigenpair of A if and only if (A, Q @ x) is an eigenpair of Q @ A @ QT. In particular,
A and Q @ A @ QT have the same eigenvalues. In view of these observations we often
find it convenient to deal with the Frobenius normal form of A in (1.1) instead of the
matrix A itself. Note that G(A) and G(Q @ A @ QT) are identical except for labeling
of the vertices.

We need the following basic spectral results, which can be found in [1], [8], [10],
[12]-[14], [18]. Detailed proofs are also given in [3]. The first result deals with the
occurrence of-oc as an eigenvalue, the other results deal with tt(A) as an eigenvalue,
with A irreducible in the third result.

THEOREM 2.1. Let A be an n x n matrix over M. Then,
(i) -oc is an eigenvalue of A if and only if A has an infinite column, and
(ii) -oc is the only eigenvalue of A if and only if O(A) dR.
THEOREM 2.2. Let A be an n n matrix over Ii$. Then #(A) is an eigenvalue of

A. Moreover, if (,k, x) is an eigenpair with x finite, then #(A).
THEOREM 2.3. Let A be an n n irreducible matrix over Ii$. Then,
(i) #(A) is the only eigenvalue of A, and every eigenvector of A is finite,
(ii) A has a unique eigenvector (up to scalar multiple over the max algebra) if and

only if the critical graph of A is strongly connected.
Now suppose that A is reducible and is in Frobenius normal form (1.1). For

k 1, 2,..., q, let Vk denote the set of indices of rows in A that intersect the diagonal
block Akk. The sets Vk are called the classes of A. If and are classes, we say
has access to F provided either j or there is a u E V and a v P such that
there is a path from u to v in G(A). Since each Ajj is either irreducible or [-oc], the
relation "has access to" is reflexive and transitive. If lt(Ajj) > tt(A) then we say
that class V dominates class Y. These definitions are used in the following result to
specify the eigenvalues of A, for proofs see [3], [8, Thm. 1], [18, Chap. 4, Coro. 2.2.5].

THEOREM 2.4. Let A be an n n matrix over If/l, which is in Frobenius normal
form (1.1), andlet ) !I$. Then ) is an eigenvalue of A if and only if there is an i
such that #(Aii) ) and no class which dominates has access to

3. Pattern properties in max algebra. In this section we investigate spectral
properties that depend only on the placement of finite and infinite entries in the matrix,
and not on the magnitudes of the finite entries. Such properties are called "pattern
properties" of the matrix.

A (square) pattern is an n x n array P [pj] of symbols chosen from {,,
If A is an n n matrix over Ill, we write A P provided

aij R if pij ,, aj -c if pij

Following [21], a pattern P is said to allow a particular property if there is a matrix
A E P which has the property. P is said to require the property if every matrix A P
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has the property. We determine which patterns allow, and which patterns require,
various spectral properties in the max algebra.

The digraph G(P) of an n n pattern P has vertices {1, 2,..., n}, and an edge
from i to j if and only if pij .. We denote the set of circuits in G(P) by (P). The
concept of reducibility of a square matrix, introduced in 2, extends in an obvious
way to patterns. Pattern P is irreducible if and only if G(P) is strongly connected. It
follows that P is reducible if and only if P is 1 1 containing -cx, or if by an identical
permutation of rows and columns P can be brought to the form

where Pll and P22 are square with order at least one. We will also deal with
the Frobenius normal form of the pattern, defined analogously to that of a matrix;
see (1.1).

We first discuss properties of the eigenvalues of a matrix determined by its pattern.
LEMMA 3.1. Let P be a pattern. The following are equivalent.

(i) P requires a finite eigenvalue.
(ii) P allows a finite eigenvalue.
(iii) C(P) is not empty.
Proof. The proof follows easily from Theorems 2.1 and 2.2. Vl

LEMMA 3.2. Let P be a pattern. The following are equivalent.
(i) P requires-cx) as an eigenvalue.
(ii) P allows-c as an eigenvalue.
(iii) P has an infinite column.
Proof. The proof follows immediately from Theorem 2.1. fl
The following corollary is an immediate consequence of Lemmas 3.1 and 3.2.
COROLLARY 3.3. Let P be a pattern.
(i) P requires that-c be the only eigenvalue if and only if P allows the same

property, and this occurs if and only if {(P) is empty.
(ii) P requires that all eigenvalues be finite if and only if P allows the same

property, and this occurs if and only if P has no infinite column.
THEOREM 3.4. Let P be a pattern.
(i) P requires a unique and finite eigeuvalue if and only if P has no infinite

column and the Frobenius normal form ofP has exactly one irreducible diagonal block.
(ii) P allows a unique and finite eigenvalue if and only ifP has no infinite column.
Proof. (i). We may assume without loss of generality that P is in Frobenius

normal form. Suppose P requires a unique and finite eigenvalue. By Lemma 3.2, P
has no infinite column. If P had a 1 1 diagonal block [-oc] in the lower right corner,
P would have an infinite column. Hence the lower right diagonal block is irreducible.
If P had another irreducible diagonal block, a matrix A E P could be constructed with
the lower right diagonal block having eigenvalue 0 and another irreducible diagonal
block having a positive eigenvalue. It follows from Theorem 2.4 that A would have
two eigenvalues, one 0 and one positive, violating the fact that P requires a unique
eigenvalue.

Now suppose that P has no infinite column and exactly one irreducible block,
which then must be Pqq, the lower right block. Let A E P. By Theorem 2.1, -oc is
not an eigenvalue of A. By Theorem 2.2, A has an eigenvalue which, by Theorem 2.4,
is #(Aii) for some diagonal block Aii in A. Since Aqq is the only irreducible diagonal
block in A, #(Aqq) > --(X) is the only eigenvalue of A.
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(ii) If P allows a unique and finite eigenvalue, then P does not require -oc as an
eigenvalue, so by Lemma 3.2 P has no infinite column. Conversely, if P has no infinite
column, then the matrix A E P which has 0 in all the positions has the unique and
finite eigenvalue 0.

We now turn to pattern properties concerning the eigenvectors of a matrix. We
obtain necessary and sufficient conditions on a pattern that it allow (or require) all (or
some) eigenvectors to be finite (or partly infinite). Some of the results parallel those
concerning partly zero eigenvectors in the conventional algebra presented in [23]. We
remark that in the context of a discrete event dynamical system, the existence of a
finite eigenvector implies that the system can be regularized. Note that the eigenpairs
of the matrix (pattern) with each entry -oc are of the form (-c, x) with x -c.
We exclude that pattern from consideration in the following.

THEOREM 3.5. Let P be a pattern with at least one ,. Then P requires that all
eigenvectors be partly infinite if and only if P has an infinite row.

Proof. First suppose P has no infinite row. Let A E P be obtained by replacing
all ,’s with O’s. Then the vector of all O’s is a finite eigenvector of A corresponding to
the eigenvalue 0. Hence P does not require that all eigenvectors be partly infinite.

Now suppose that row i of P is infinite, but that A P has a finite eigenvector
x corresponding to eigenvalue A. Then entry of A (R) x is -c, so (R) xi is -cx. Since
xi is finite, A -c. Now if ajk is finite, then entry j of A (R) x is finite, whereas entry
j of A (R) x -c. Hence A -cx, so P -c, a contradiction. Therefore if P has
an infinite row, then P requires that all eigenvectors be partly infinite.

COROLLARY 3.6. Let P be a pattern with at least one ,. Then P allows a finite
eigenvector if and only if P has no infinite row.

THEOREM 3.7. Let P be a pattern with at least one ,. The following are equiva-
lent.

(i) P is irreducible.
(ii) P requires that all eigenvectors be finite.

(iii) P allows all eigenvectors to be finite.
Proof. (i) = (ii). If A P then A is irreducible, so by Theorem 2.3, all eigenvec-

tors of A are finite. Therefore (i) =v (ii).
(ii) = (iii) is trivial.
(iii) (i). Suppose that P is reducible, so that without loss of generality we

PII --(:K) Let A [;i A22 P be partitioned as P is. Letmay assume P [P.l P22

x(2) be an eigenvector of A22 corresponding to #(A22), and let x [x-(2] Then
A (R) x #(A22)(R) x, so x is an eigenvector of A which is partly infinite. Hence P does
not allow all eigenvectors to be finite. Therefore (iii) (i).

COROLLARY 3.8. Let P be a pattern with at least one ,. The following are equiv-
alent.

(i) P is reducible.
(ii) P allows a partly infinite eigenvector.
(iii) P requires a partly infinite eigenvector.

Proof. The equivalence of (i) through (iii) in Theorem 3.7 implies the corol-
lary. [:]

THEOREM 3.9. Let P be a pattern with at least one ,. Then P requires a finite
eigenvector if and only if P has no infinite row and the Frobenius normal form of P
has exactly one irreducible diagonal block.

Proof. We may assume without loss of generality that P is in Frobenius normal
form. Suppose P requires a finite eigenvector. By Theorem 3.5, P has no infinite
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row. Therefore the upper left diagonal block Pll in P is irreducible. Suppose there
is a k > 1 such that Pkk is irreducible. We will construct a matrix A E P with all
eigenvectors partly infinite, contradicting the hypothesis on P. To do this, let

UI [P P pqT1]T and U2=

q2 q3

and Pkk is one of the diagonal blocks in U2. Since Pk is

irreducible, Pkk has a circuit. Select a circuit in Pkk and set all its entries equal to
1. Set the other entries in U2 to 0 to create a matrix A2 E U2. Set all entries in
and UI to0to complete A- ]11 -A2 e P with tt(Al) 0 and #(A) #(A2) 1.

Suppose A has a finite eigenvector x [(.)] partitioned to conform to the partition
of A above. Since x is finite, the corresponding eigenvalue must be #(A) by Theorem
2.2. But then A (R) x(1) 1 (R) x(1), which is impossible because the only eigenvalue
of AI is 0. Hence A cannot have a finite eigenvector and the desired contradiction is
reached.

Now suppose P has no infinite row and has exactly one irreducible diagonal block,
which must then be Pll. If P P, that is if P is irreducible, then P requires all
eigenvectors finite and we are through. Otherwise, let q >_ 2 be the number of diagonal
blocks in P. Let A P be partitioned as P is. We construct a finite eigenvector of
A inductively as follows. Since AI is irreducible, All has a finite eigenvector x(1)
corresponding to its eigenvalue #(All). Let x2 A21 (x(1)-(All), and for 2 _< < q,
let Xi-bl [Ai+l,lAi+l,2...Ai+l,i] (R) [Xl)X2 ...Xi]T #(All), a finite member of
It then follows that x [x)x2... xq]T is a finite eigenvector of A corresponding to
#(All), so P requires a finite eigenvector.

COROLLARY 3.10. Let P be a pattern with at least one ,. Then P allows all
eigenvectors to be partly infinite if and only if P has an infinite row or the Frobenius
normal form of P has two irreducible diagonal blocks.

Proof. Upon observing that a pattern with no infinite row must have a Frobe-
nius normal form with the upper left diagonal block irreducible, the corollary follows
immediately from Theorem 3.9.

THEOREM 3.11. Let P be a pattern. Then P allows a unique and finite eigen-
vector if and only if P is irreducible.

Proof. Assume P is irreducible. Let aij 0 whenever pij *. Then A has a
unique and finite eigenvector by Theorem 2.3. Assume P is reducible, then P requires
a partly infinite eigenvector by Corollary 3.8. Thus P does not allow a unique and
finite eigenvector.

THEOREM 3.12. Let P be a pattern. Then P requires a unique and finite eigen-
vector if and only if P is irreducible and the directed graph G G(P) does not contain
two vertex-disjoint circuits.

Proof. Assume P is irreducible and G does not have two vertex-disjoint circuits.
Let A P. Then by Theorem 2.3, A has a unique eigenvalue which is #(A), each
eigenvector of A is finite, and A has a unique eigenvector if and only if the critical
graph of A is strongly connected. Now C is a subgraph of G and is a union of
circuits. Since G does not have two vertex-disjoint circuits, does not have two
vertex-disjoint circuits. If and j are vertices in , then lies on a circuit G and
j lies on a circuit Cj. If j there are paths from to j and from j to i in
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from j to in G. Hence is strongly connected and the eigenvector of A is unique
up to scalar multiples in the max algebra. Therefore P requires a unique and finite
eigenvector.

Now assume P requires a unique and finite eigenvector. If P were reducible, then
by Corollary 3.8 P would allow a partly infinite eigenvector. Hence P is irreducible.
Suppose G has two vertex-disjoint circuits. Then we may select two vertex disjoint
circuits in G and construct a matrix A P which has i in the positions belonging to
either of the two circuits and 0 and -x elsewhere. Then the circuit means are 1 on
each of the two circuits and less than 1 on each other circuit, so the critical graph of
A is the union of the two disjoint circuits and is not strongly connected. Hence the
eigenvector of A is not unique, contradicting the assumption on P. Hence G does not
have two vertex-disjoint circuits.

4. Inequalities. Many of the results in this section are motivated by known
inequalities for the spectral radius (or the Perron root) p(B) of a nonnegative matrix
B. Thus, Lemma 4.1 and Corollary 4.2 are analogs of well-known bounds for the Perron
root; see, for example, [4, p. 28] and [25, p. 31]. Theorem 4.3 is the max algebra
version of a result due to Birkhoff and Varga [5]. The parallels between inequalities
for #(A), where A is a matrix over f and p(B), where B is a nonnegative matrix, are

quite striking and remain to be fully explored. Theorem 4.9 is yet another result in this
direction. Let A be an n n matrix over M and let B be the Hadamard exponential
of A, i.e., bij eaj for all i,j. Then e(A) is the maximal circuit geometric mean of
the nonnegative matrix B. We remark that the maximal circuit geometric mean of a
nonnegative matrix has been considered in the literature; see, e.g., [15], [17], [22].

The following lemma is stated and proved in [18, Chap. 4, Lemmas 1.3.8, 1.3.9].
LEMMA 4.1. Let A be an n n matrix over Ibf and E lYl. Then #(A) >_ ?, if

and only if there exists a vector z -oc such that A (R) z >_ (R) z. Furthermore, if A
is irreducible, then #(A)

_
, if and only if there exists a vector z ? -c such that

A(R)z<_(R)z.
COROLLARY 4.2. Let A be an n n matrix over 115. Then

min max aij

_
#(A)

_
max aij.

j

Proof. Let mini maxj aij and let 0 denote the vector with each component
zero. Then A (R) 0 >_ (R) 0. It follows from Lemma 4.1 that #(A) _> . It is easy to see
that for any a C(A), MA(a) <_ maxi,j aij, and hence #(A)

_
maxi,j aij, giving the

second inequality. [3

Let A be an n n matrix over . By Theorem 2.2, #(A) is an eigenvalue of
A and there is a vector x : -cx such that A (R) x it(A)(R) x. We refer to x as a
right eigenvector of A corresponding to it(A). Since it(A) it(AT), there is a vector
y : -c as a left eigenvector of A corresponding to it(A). We note that (by Theorem
2.3) if A is irreducible, then x and y are finite and it(A) is the only eigenvalue of A.

THEOREM 4.3. Let A be an n n irreducible matrix over . Then the following
assertions hold.

(i) it(A) maxx>_ minu>_(yT (R) A (R) x yT (R) x).
(ii) it(A) minu>_ maxx>_(yT (R) A (R) x yT (R) x).
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Proof. For any finite vectors x, y, we have

yT (R) A (R) x ma.x(aij + Yi + xj

ma.x(aij + xj xi + Yi + xi)

>_ min m.ax(aij + xj xi) T yT (R) x.
3

Therefore,

(4.1) yT (R) A (R) x yT (R) X

_
min m.ax(aij + xy xi).

3

Suppose
minm.ax(aiy + xy xi) m.ax(akj + xy Xk).

Let z be the vector with Zk --Xk, with the remaining components chosen finite and
so that zT (R) x 0 and satisfying

m.ax(ai + zi + xi) _< m.ax(ak + Zk + Xj),
3 2

i 1,2,...,n.

When we set y z, equality holds in (4.1) and hence we have shown that for any
finite x,

min (yT (R) A (R) x yT (R) x)
y>

exists. Thus by (4.1)

min (yT (R) A (R) x yT (R) x) min max(hij + xy xi).
y>--oo 3

Let S [aiy + xj -xi]. Then It(A) It(S) and by Corollary 4.2

min m.ax(aij + xj xi) <_ It(S).
g

Therefore, we conclude that

(4.2) It(A)_> sup min (yT(R)A(R)x_yT(R)x).
x> oo y> cx)

When we set x to be a right eigenvector of A, we see that for any finite y, yT
A (R) x yT (R) X It(A). Thus, (i) follows from (4.2). The proof of (ii) is similar.

We next give an easy inequality, and then characterize the case of equality.
LEMMA 4.4. Let X, Y be n x n matrices over M such that X >_ Y. Then It(X)

Proof. The result is obvious if (Y) , since in that case, It(Y) -cx. So
suppose C(Y) . For any a

It(Y) My(a) <_ Mx(a) <_ It(X)

and the proof is complete.
Observe that Lemma 4.4 shows that if Z is a principal submatrix of X, then
>
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To discuss the case of equality in Lemma 4.4, we now introduce some notation.
Suppose a is the circuit (il i2 ik); in this notation we assume il to be the least
integer among il, i2,. ik and this convention makes the representation of the circuit
uniquely determined. If X is an n )< n matrix and if a (il i2 ik) E (X),
then we define X(a) as the vector

[Xili2 Xi2i3 Xikil]T.

LEMMA 4.5. Let X, Y be n n matrices over Il$ such that X >_ Y and suppose
#(Y) is finite. Then the following conditions are equivalent.

(i) #(X) #(Y).
(ii) There exists a (X)N _.(Y) such that Ux(a) My(a).
(iii) There exists a (X) such that ix (a) My (a).
(iv)

_
(Y) C (X) and for all a (Y),_X(a) Y(a).

(v) C(Y) C (X) and there exists a C(Y) such that X(a) Y(a).
Proof. First observe that since #(Y) is finite, and X _> Y, #(X) is finite and

C(Y), C(X) are nonempty.
(i) = (ii). Let a C(Y). Then

(4.3) #(Y) My(a) <_ Mx(a) <_ #(X)

and since #(X) #(Y), equality holds throughout in (4.3). It follows that a

(X) q (Y) and Mx(a) My(a).
(iii) => (i). Let a e C(X) such that Mx(a) My(a). Then #(X) Mx(a)

My(a) <_ it(Y) < it(X), and hence it(X)= it(Y).
(i) ==> (iv). Let a e (Y). As in the proof of (i) ==> (ii), equality holds throughout

in (4.3). It follows that a (X) and Mx(a) My(a). Since X> Y, we have
X(a) > Y(a). If X(a) Y(a), then it will follow, after taking the sum of the entries
in X(a), Y(a), that Mx(a) > My(a), which is a contradiction. Thus X(a) Y(a).

It is easy to see that (ii) => (iii), (iv) => (v), and (v) => (i). That completes the
proof.

THEOREM 4.6. Let X1,..., Xm be n n matrices and let X Y.e Xi. Then

(4.4) it(X)

Furthermore, equality holds in (4.4) if and only if one of the following conditions is

satisfied.
(i) it(X)=
(ii) it(X) is finite and there exists a e V(X) and k e {1,2,...,m} such that

Xk(a) >_ Xi(a), 1, 2,..., m.
Proof. If it(X) -oc, then it(Xi) -oc, i 1, 2,..., m and both sides in (4.4)

are -oc. So we assume that it(X) is finite. Since X >_ Xi, i 1, 2,..., m, by Lemma
4.4, we have it(X) _> it(Xi), i= 1, 2,..., m and hence (4.4) holds.

If equality holds in (4.4) then there exists k {1, 2,..., m} such that it(_X)
it(Xk). Thus it(Xk) is finite. By Lemma 4.5 (see (i) := (v)), there exists
such that X(a) Xk(a). It follows that Xk(a) >_ Xi(a), i= 1,2,..., m.

Conversely, if (ii) holds, then X(a) Xk(a). Thus it(Xk) is finite. Set Y
Xa and use implication (iii) (i) of Lemma 4.5 to conclude that equality holds in
(4.a).
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A square matrix D is a diagonal matrix over the max algebra if dij -oc for
all i 7 j. A well-known result due to Cohen [9] (see also [20, p. 364]) asserts that the
Perron root of a nonnegative matrix B is a convex function of the diagonal entries
of B. In this context the next result is somewhat surprising since it says that
considered as a function of the diagonal entries of A, is linear over the max algebra.

THEOREM 4.7. Let X be an n n matrix over ItS and let D1,..., Dm be n n
diagonal matrices over the max algebra. Then

Proof. Let Xj X (R) Dj, j 1, 2,..., m. Then X (R) eDj -eXj. If #(X
eDj) -oc, then (4.5) is true by Theorem 4.6. So let tt(X (R) ’eDj) be finite. If

there exists a e C(X (9 y’eDj) of length more than one, then a e C(X @ Dj) j

1, 2,..., m and (4.5) is proved, in view of (ii) = (i) of Lemma 4.5. So suppose that
every circuit in (X @ -Dj) is of length one, and let a be one such. Clearly, there
exists k e {1,2,...,m} such that Dk(a) >_ Dj(a), and hence Xk(a) > Xi(a),i
1, 2,..., m. Thus (ii), .Theorem 4.6 is satisfied, and (4.5) holds.

Let C # -oc be an n x n matrix over M and

12(C) { (i, j) cij max ckl }
Construct a (0, 1) matrix ( [5i] by setting 5iy 1 if (i, j) e (C) and iy 0
otherwise. Let En=l -tn= t, and for i, j 1, 2,..., n, let

1
n

1
n

Csj.a(C) : t and /j (C) _,
t-1 8--’1

With this notation, we have the following result, which is the max algebra analog of
[2, Thm. 3].

LEMMA 4.8. Let A be an n n matrix over M, with A # -c, let u, v, w, z be
vectors over M with w and z finite, and let C [ai (R) z (R) wj]. Then

VT (R)A(R)u-zT (R)A(R)w >_
n n

.,(C)(v, +
i--1 j=l

Proof. For any i, j, we have

aij (R) vi (R) uj aij (R) zi (R) wj vi zi nt- uj wj.

If (i, j) e ft(C), then aij (R) zi (R) wy zT (R) A (R) w. Apply (4.6) to each (i, j) e ft(C)
and add the resulting equations to get

(4.7) E aij(R)vi(R)uJ--7(zT(R)A(R)w)= E (vi--zi)+
(i,)n(c) (d)a(c) (i,j)ft(C)

Now

(i,j)f(c) i=1 j--1 i=1
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and similarly
n

(i,j)Ea(C) j=l

Since (/,j)ea(c) a/j (R) v (R) uj <_ 7(vT (R) A (R) u) the result follows from (4.7) after
a trivial simplification.

Let B be an n x n nonnegative, irreducible matrix. Then it is known, see [16],
that

fTBg >_ p(B)fTg,

where f and g are right and left Perron eigenvectors of B, respectively. We now obtain
a max algebra analog of this result. In the special case of an irreducible matrix A
with G(A) having a unique critical circuit, a proof based on Lemma 4.8 is contained
in [3]. For the more general result, we give an alternative proof that was suggested by
an anonymous referee.

THEOREM 4.9. Let A be an n x n matrix over ? and let x and y be right and
left eigenvectors, respectively, of A corresponding to the eigenvalue #(A). Let u, v be
n-vectors over tYl such that u (R)

#(A) (R) yT (R) x. In particular, XT (R) A (R) y >_ #(A) (R) yT (R) x.

Proof. The result is trivial if #(A) -oc. Assume then that #(A) is finite, and
so there is a critical circuit in G(A). Let F {i: x/is finite} and let H be the digraph
with vertex set F and edge set E {(i, j): i,j E F and a/j + xj -xi it(A)}. Thus,
from the right eigenequation,

m.ax(a/j + xj) it(A) + xi,

every vertex in H has outdegree at least one in H. Furthermore, for each i E F, there
is a path from to a circuit T/ in H, which must be a critical circuit in G(A). The left
eigenequation gives

aij -nt- y <_ it(A) + yj,

for each (i, j) E. Hence x + y <_ xy -t- yj for each (i, j) E. Thus if T is a circuit
of length IT in H, there is a number k such that xi + y k for all vertices i lying
along the circuit T. Also if F, then xi + yi <_ k <_ maxer k, where F denotes
the set of all circuits in H, thus F C_ I(A). We have

vT (R) A (R) u ma.x(vi + aij + u) m.ax(xi + y ui + aiy + uy)

_> max{ max (x/ + Yi + aij ui + uj }rer

{1 }> max (xi zt- Yi -t- aij u + uj)r -1 (,j)e

{1 }maX.er (xi + yi + ai) .(A) + max k.
(i,j)e

rer

it(A) + max(x/+ yi) it(A) (R) yT (R) x.
iF

The second inequality in the theorem follows by setting v x, u y. rl
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