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Abstract 

In this article, we construct a mapping 

.J : D[O, ~ ) x  D[O, ~)-- ,  D[O, ~ )  

such that if (X,) is a semimartingale on a probability space (f2, i f ,  P) with respect to a filtration 
(~ )  and if (ft) is an r.c.l.1. ( ~ )  adapted process, then 

,~¢(f.(~o), X.((o)) = f/_ dX(tn) a,s. 

This is of significance when using stochastic integrals in statistical inference problems. Similar 
results on solutions to SDEs are also given. 

Keywords: Brownian motion; Semimartingale; Stochastic integral 

1. Introduction 

The aim of this article is to draw the attention of researchers dealing with applica- 

tions of stochastic integration, particularly those working in the area of inference 

for continuous time stochastic processes, to an aspect of stochastic integration 

that has not received sufficient attention even in recent texts on the subject - the 
fact that for a large class of integrands, the stochastic integral can be defined 

pathwise .  Invariably, in problems of inference for continuous time stochastic 
processes, the solution involves stochastic integrals with respect to the observation 

path. Either the statistic under consideration involves the integral or the likelihood 
function involves it. For  example, for the estimation problem for the parameter  0 in 
the model 

Yt = h(O, Ys) ds + W t ,  O <<. t <~ T,  
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where (Wt) is the standard Brownian motion and h is a known smooth function, the 
likelihood function (w.r.t. the Wiener measure) L(O, Y.)  is given by 

L(O, Y. ) =exp h(O, Y~) d Y~ - -~ h2(O, Y~) ds . 

Thus for inference via the maximum likelihood method to be meaningful, it should be 
possible to evaluate the stochastic integral S~h(O, Ys) dY~ for a given observation path 
Y. Traditionally, it had been emphasised that one cannot talk of a stochastic integral 
for a given path. However, this can be done for a large class of integrands, as we will 
see below. This result is due to Bichteler (1981) and a simple proof for the case of 
continuous semimartingale integrands was given in Karandikar (1981). A simple 
proof for the general result along with new results on pathwise construction of 
solution to SDE were given in Karandikar (1989, 1991). The result on pathwise 
integration can be stated in the following form. We can construct a mapping 

J :  DFO, oo) x D[O, oo)--* D[O, oo) 

such that if (Xt) is a semimartingale on a probability space (f2, ~-, P) with respect to 
a filtration (~ )  and if (Zt) is an r.c.l.l. ( ~ )  adapted process, then 

J(Z.(co), X.(co)) = f l  Z_  dX(co) a.s. 

Here and in the sequel, X.(co) denotes the co-path t ~ X,(co) of the process X. This 
would show also that the stochastic integral neither depends on the underlying 
filtration nor on the underlying probability measure in any essential way. This can be 
extremely useful when dealing, for example, with Markov processes which involve 
a family of probability measures indexed by the initial condition. Furthermore, in 
problems related to the Girsanov theorem mappings such as J play an important role 
(see Karandikar, 1983c). 

Here we first present a simple proof of the pathwise integration formula for the case 
of Brownian motion integrals. A proof in the general case using minimum technical 
background follows. We then recast this result by constructing the mapping J men- 
tioned earlier. Then we state similar results on the quadratic variation process of 
a semimartingale and on solution to SDEs. 

2. Main result 

Throughout the article, we fix a complete probability space (f2, ~-, P) and a filtra- 
tion (~ )  satisfying the usual conditions. 

Our first result is the following theorem. 

Theorem 1. Let ( W J  be a Brownian motion adapted to the filtration ( ~ )  such that 
Wt - W~ is independent of ~ s f o r  all 0 <~ s <~ t < oo. Let f be an r.c.l.1, adapted process 
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and for n >>. 1, let {zT: i ~> O} be defined by Z~o = 0 and for  i >1 0 

n n. ~,+1 = inf{t/> r,.  I f ( ' )  -f~r( ') l  1> 2-"}. 

Let (Y~) be defined as follows. For r~ <<. t < z~+x, k >1 O, 

k - 1  

Y? = ~, f~.(W~.+, - W,~) + f , : (W,  -- W~:). 
i = 0  

Then, for  all T < oe, 

;/ sup Y,"-  dW --,0 a.s. (1) 
O<~t<~T 

t n Proof. Note that Yt" = Sof dW, where 

f," = f ~ ,  for ~?, ~< t < z~,+l 

and hence by the choice of {zT} we have 

If," - f~ l  ~< 2-"  

Using the standard estimate 

~ g d W  2 4IF f o  I: sup ~< 92dt (2) 
O <~ t <~ T 

one gets 

lZ O~<t~<SUPT Y,"-flfdW 2 ~<4T.2-zn. (3) 

Let 

U n  = O<~t<<.TSUp Y," - f l f d W  . 

Then (3) implies that EU,  <~ 2x/-T2-"  and hence it follows that 

E2V.=YEv. 
n tl 

n 

< 0 0 .  

As a consequence, one has 

~ U  n < o o  a . s .  

n 

which gives the required conclusion (1). [] 

We will now prove a similar result for integrals w.r.t, semimartingales. We will need 
some elementary facts on martingales, semimartingales and predictable processes, 
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which we recall here. These can be found in Jacod (1979), Metivier (1982) and Protter 
(1990). 

For a locally square integrable martingale M, (M, M )  denotes the predictable 
quadratic variation process. If ak are stopping times increasing to ~ such that 
(Mt^~,) is a square integrable martingale then E(M, M)~ k < oo. For a predictable 
process f such that 

l f 2 d ( M , M ) < o o  Vt <oo,  

N = S f d M  is defined, is a local martingale and 

(N,  N ) t  = f l f  2 d(M, M) .  

As a consequence, for any stopping time a one has 

~ sup dM ~ 411: 2 d < M , M )  (4) 
0~<t~<~ 

Here the only fact we need about predictable processes is that for any r.c.l.l, adapted 
process Z, the process Z_ which is defined as the left limit of the process Z at each 
time point is predictable. 

A semimartingale is an (r.c.l.1.) process X which can be written as X = M + A, 
where M is a local martingale and A is a process whose paths are of bounded variation 
on bounded intervals. A deep result on the structure of jumps of a martingale implies 
that in the above decomposition we can take M to be locally square integrable 
martingale. 

Thus if X is a semimartingale with the above decomposition and Z is an r.c.l.1. 
adapted process, the integral SZ_ dX is defined as 

fZ_OX=fZ_dM+fZ_OA. 
We are now in a position to prove the following theorem. 

Theorem 2. Let X be a semimartingale and let Z be an r.c.l.l, adapted process. For 

n I> 1, let {zT: i ~> 0} be defined by Z~o = 0 and for i >~ 0, 

n n .  zi+l = inf{t/> zi. I Z d ' ) -  Z,~(-)[/> 2-n}. 

Let (YF) be defined as follows. For z~ < t <. Z~+l, k i> 0, 

k - 1  

Y :  = Z o X o  + Y~ z~r(x~r.~ - x , r )  + z , ~ ( x ,  - x~ ) .  
i = O  

Then 

fo sup Y ? -  Z _ d X  ~ 0  a.s. (5) 
O <~ t <~ T 
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Proof. Note that Yt = S~o Z~- dX, where 

Z t = Z ~ ,  z~,<t~<z~,+l 

for k/> 1 and Z~ = Zo. Hence by the choice of {zT} we have 

sup l Z ~ -  Z,_ I ~< 2-". 
t 

Let X = M + A be a decomposition of the semimartingale X where M is a locally 
square integrable martingale and A is a process whose paths are of bounded variation 
on bounded intervals. Define stopping times ak increasing to m such that 
Ck = E (M,  M)ok < oo. Then using (4) one has 

;o ;o E sup Z n d M  - Z _  ~< 2-2"Ck (6) 

and, as in the earlier result, we can conclude that 

fl ;o sup Z n dM - Z_ --* 0 a.s. (7) 
O ~ t ~ O k  

for all k >/1. Since ak increases to ~ ,  we get 

J ;o sup Z ~ d M -  Z_ dM --.0 a.s. (8) 
O<~t<~T , 0  

for all T < oo. As for the dA integral, uniform convergence of Z,  to Z_ yields 

sup Z ~ d A -  Z _ d A  ~ 0 .  (9) 
O <~ t <~ T . 

Together, (8) and (9) yield the result. [] 

The conclusion in Theorem 2 above can be stated equivalently as follows. Write 
D = D [0, oo). A generic point of D will be denoted by p. Define mappings ~ and 
J from D x D into D as follows: 

Fix p, ~/~ D. For  n ~> 1, let {an i/> 1 } be defined by a~ = 0 and for i >~ 0 

a7+1 = inf{t >t aT" I p ( t ) -  p(a?)l ~> 2-"}, 

in(P, r/) s D is then defined as follows: For  a~ ~< t < a~,÷ 1, k >~ 0, 

k - 1  

J , (p ,  r/)(t) = p(0)r/(0) + ~ p ( a T ) ( ~ ( a T + l )  - ,7(a7)) + p ( a ~ ) ( n ( t )  - ~(aD).  
i = 0  

Then define J as 

~(p, t/) = lim J .  (p, r/) 

if the limit exists in the topology of uniform convergence on compact subsets of 
[0, oo), otherwise define J ( p ,  r/) - 0. With this notation, the result in Theorem 2 can 
be recast as the following theorem. 
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Theorem 3. Let (Xt) be a semimartinffale and let Z be an r.c.l.1, adapted process (on the 
same space). Then 

dX)(o ) a . s .  

We now give a similar formula for the quadratic variation [X, X ]  of a semimartin- 
gale X. For  p e D let (aT) be as defined above. Let ~ r  e D be defined by 

~-'.(p)(t) = ~ (p(aT+ 1 ̂  t) -- p(a7 ^ 0) 2 
i = 0  

and let 3-(p) = lira ~3-.(p) if the limit exists in the topology of uniform convergence on 
compact subsets of [0, oo), otherwise define ~-(p) - 0. Then for any semimartingale 

(Xt), one has 

J(X.(o~)) = [X,X](co) a.s. 

This can easily be deduced from the previous result. It is of interest to note that for 
a continuous martingale X, this construction of quadratic variation was given in 
Karandikar (1983a) and the proof did not use stochastic integration. It used only 
Doob's maximal inequality. Thus, it can be used as a starting point for developing the 
theory of stochastic integration w.r.t, continuous martingales and continuous 
semimartingales (see Karandikar, 1983b). 

We conclude this article by giving a formula for the solution of a SDE driven by 
a semimartingale. This shows that a suitable modification of the Euler-Peano approx- 

imation converges a.s. 
The SDE (or more appropriately, stochastic integral equation) considered as 

fo Z, = H, + a(Z),_ dXs, (10) 

where X is an R a valued semimartingale, H is a given adapted r.c.l.1. R d valued process 

and 

a:  D([0, ~) ,  R d) ~ D([0, oo), L(d, d)), 

where L(d, d) is the space of d x d matrices. When a(p)(s) =f(s ,  p(s)) (and Ht - Zo) 
Eq. (10) can be written in the more familiar form 

dZ, = f ( t - ,  Z,_ ) dX,. 

We assume that the functional a satisfies the following Lipschitz condition: For  
each T < ~ there exists a finite constant CT such that 

Ila(p~)(t) - a(p2)(t)ll <. CT sup [Ipx(s) -- p2(s)ll (11) 
O<<.s<~t 

for all pt ,  P2 ~ D([0, oo), ~d) and for all 0 ~< t ~< T. Here II'll denotes the Euclidian 
norm on B~ d and on L(d, d). 



W e  

D([0, oo), Rd). Let {ui: i >~ 1} and ~i~ D([O, O0), ~d) be defined inductively by 

U o = 0  and 4 ° = t / o  

and having defined u j, ¢J for j ~< i, let 

ui+l  = inf{t > ui: II t/(t) - r/(u~) + a(¢i)(ui)(p(t) - p(ui))ll  >>- 2 -~. 

or Ila(¢i)(t) - a(~i)(ui) l l  >1 2 -~} 

and 
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now define mappings Sn : D([0, oo), R d) --} D([0, oo), Rd). Fix n/> 1, p, r/ 

(12) 

( i + l ( t ) = { ¢ i ( t )  for t < u i + l ,  

~i(ui)  + rl(ui+ l)  - rl(ui) + a (~ i ) (u i ) (p (u i+  l)  - p (u i ) )  for t >t ui+ l. 

Thus, ~i+ 1 is a function that has jumps at ul, . . . ,  ui÷ 1 and is constant on the intervals 

[0, u~) . . . . .  [ui, uj÷ ~), . . . ,  [ui, ui+ ~), [u;+ l, oo). 

Piece together these paths ~,  i = 1, 2, ... to define a function Stn(r/, p) 6 D as follows. 
Let Stn(r/, p)(0) -- r/(0) and, for u~ < t ~< u~+~, let 

St~(rl, p) ( t )  = ~i(ui)  + rh -- flu, + a ( ~ i ) ( p ( t )  --  p(ui)) .  

We now define 

St (~/, p) = lim St~ (t/, p), 

whenever the limit exists in the topology of uniform convergence on compact subsets 
of [0, oo). Then one has the following. 

Let (Xt) be a semimartingale and let (H,) be an r.c.l.1, adapted process (on the same 
probability space). Then 

z,(~o) = St(H.(~o), X . (~ ) ) ( t )  

is the (unique) solution to the equation 

Io Zt  = Ht  + a ( Z ) s -  dX~ .  

In fact one has a much stronger result. If we denote the approximating sequence by 

Z7 (co) = St~ (H.(co), X.(co)) (t), 

then Z ~ converges in the Emery topology (on the space of semimartingales) to Z. For 
the proof of this result as well as details on Emery topology, we refer the reader to 
Karandikar (1991). 
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