Consistent estimation of density-weighted average derivative by orthogonal series method

B.L.S. Prakasa Rao ${ }^{1}$
Indian statistical institute, 203 Barrackpore Trunk Road, Calcutta 700 035, India

Received August 1993; revised January 1994

Abstract

The problem of estimation of density-weighted average derivative is of interest in econometric problems, especially in the context of estimation of coefficients in index models. Here we propose a consistent estimator based on the orthogonal series method. Earlier work on this problem dealt with kernel method of estimation.

Keywords: Nonparametric estimation of density-weighted average derivative; Orthogonal series method; Consistency

1. Introduction

In a series of papers, Stoker (1986, 1989), Powell et al. (1989) and Hardle and Stoker (1989) proposed the problem of estimation of the density-weighted average derivative of a regression function.

Let (X_{i}, Y_{i}), $1 \leqslant i \leqslant n$ be i.i.d. bivariate random vectors distributed as (X, Y). Suppose $E(Y \mid X)=g(X)$ exists and X is distributed with density f. The density-weighted average derivative is defined as

$$
\delta=E\left[f(X) \frac{\mathrm{d} g}{\mathrm{~d} X}\right]
$$

assuming that $g(\cdot)$ is differentiable.
Stoker (1986) and Powell et al. (1989) explain the motivation behind the estimation of density-weighted average derivative. For instance, weighted average derivatives are of practical interest as they are proportional to coefficients in index models. If the model indicates that $g(x)=\alpha+\beta x$, then

$$
\frac{\mathrm{d} g}{\mathrm{~d} x}=\beta
$$

[^0]and $\delta=\beta E[f(X)]$. In general, if $g(x)=F(\alpha+\beta x)$, then
$$
\frac{\mathrm{d} g}{\mathrm{~d} x}=F^{\prime}(\alpha+\beta x) \beta
$$
and $\delta=E\left[F^{\prime}(\alpha+\beta X) f(X)\right] \beta$.
Kernel method of estimation has been proposed and its properties are investigated in Powell et al. (1989). Here we propose an alternate method for estimation of δ by the method of orthogonal series. The method of orthogonal series for the estimation of density and the regression function has been extensively discussed in Prakasa Rao (1983).

Note that

$$
\begin{aligned}
\delta & =E\left[f(X) \frac{\mathrm{d} g}{\mathrm{~d} X}\right]=\int_{-\infty}^{\infty} f^{2}(x) \frac{\mathrm{d} g}{\mathrm{~d} x} \mathrm{~d} x \\
& =\left[g(x) f^{2}(x)\right]_{-\infty}^{\infty}-2 \int_{-\infty}^{\infty} f(x) \frac{\mathrm{d} f}{\mathrm{~d} x} g(x) \mathrm{d} x
\end{aligned}
$$

integrating by parts.
We assume that the density $f(x)$ and the regression function $g(x)$ satisfy the following conditions:
(A1) $\lim _{x \rightarrow \pm \infty} g(x) f^{2}(x)=0$;
(A2) the density function f has an orthogonal series expansion
(i) $f(x)=\sum_{l=1}^{\infty} a_{l} e_{l}(x)$,
with respect to an orthonormal basis $\left\{e_{l}(x)\right\}$; the function $f(x)$ and the elements of the basis $\left\{e_{l}(x)\right\}$ are differentiable such that
(ii) $E\left|\sum_{l=1}^{q(N)} a_{l} e_{l}^{\prime}(X)-f^{\prime}(X)\right|^{2} \rightarrow 0 \quad$ as $N \rightarrow \infty$
whenever $q(N) \rightarrow \infty$; and
(iii) $\sup _{l}\left|e_{l}(x)\right|<\infty$ and $\sup _{l}\left|e_{l}^{\prime}(x)\right|<\infty$.

Assumption (A1) implies that

$$
\begin{align*}
\delta \equiv E\left[f(X) \frac{\mathrm{d} g}{\mathrm{~d} X}\right] & =-2 E\left[g(X) \frac{\mathrm{d} f}{\mathrm{~d} X}\right] \\
& =-2 E\left[Y \frac{\mathrm{~d} f}{\mathrm{~d} X}\right] \tag{1.1}
\end{align*}
$$

since $g(X)=E[Y \mid X]$. Hereafter we write $f^{\prime}(x)$ for $\mathrm{d} f / \mathrm{d} x$ and in general prime denotes differentiation.

2. Consistency of the estimator

Given a sample of independent and identically distributed observations (X_{i}, Y_{i}), $1 \leqslant i \leqslant n$, a natural estimator of δ is

$$
\begin{equation*}
\hat{\delta}_{N}=\left.\frac{-2}{N} \sum_{i=1}^{N} Y_{i} \frac{\mathrm{~d} \hat{f}_{N i}}{\mathrm{~d} X}\right|_{X=X_{i}} \tag{2.1}
\end{equation*}
$$

from (1.1). Here $\hat{f_{N i}}$ is an estimator of f based on the sample (X_{j}, Y_{j}), $1 \leqslant j \leqslant N$. It is convenient to choose $\hat{f}_{N i}$ based on $\left(X_{j}, Y_{j}\right), 1 \leqslant j \leqslant N, j \neq i$ and we will do the same in the sequel. An orthogonal series estimator of f is

$$
\hat{f}_{N}(x)=\sum_{l=1}^{q(N)} \hat{a}_{l N}^{(i)} e_{l}(x)
$$

where

$$
\hat{a}_{l N}^{(i)}=\frac{1}{N-1} \sum_{\substack{j=1 \\ j \neq i}}^{N} e_{l}\left(X_{j}\right)
$$

and $q(N) \rightarrow \infty$ as $N \rightarrow \infty$ to be chosen at a later stage. Then

$$
\begin{equation*}
\hat{\delta}_{N}=\frac{-2}{N} \sum_{i=1}^{N} Y_{i}\left[\sum_{i=1}^{q(N)} \hat{a}_{l N}^{(i)} e_{l}^{\prime}\left(X_{i}\right)\right] \tag{2.2}
\end{equation*}
$$

Let $X_{N}^{(i)}$ denote the vector ($X_{1}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{N}$). Hence,

$$
\begin{align*}
\hat{\delta}_{N} & =-\frac{2}{N} \sum_{i=1}^{N} \sum_{l=1}^{q(N)} Y_{i} e_{l}^{\prime}\left(X_{i}\right) a_{l N}^{(i)} \\
& =-\frac{2}{N} \sum_{l=1}^{q(N)} \sum_{i=1}^{N} \psi_{l}\left(X_{i}, Y_{i}\right) \eta_{l}\left(X_{N}^{(i)}\right), \tag{2.3}
\end{align*}
$$

where

$$
\begin{equation*}
\psi_{l}\left(X_{i}, Y_{i}\right)=Y_{i} e_{l}^{\prime}\left(X_{i}\right) \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta_{l}\left(\boldsymbol{X}_{N}^{(i)}\right)=\hat{a}_{l N}^{(i)} \tag{2.5}
\end{equation*}
$$

Note that $\eta_{l}\left(X_{N}^{(i)}\right)$ does not depend on the observation X_{i} by construction. Therefore,

$$
\begin{align*}
E\left[\hat{\delta}_{N}\right] & =-\frac{2}{N} \sum_{l=1}^{q(N)} \sum_{i=1}^{N} E\left\{\psi_{l}\left(X_{i}, Y_{i}\right)\right\} E\left\{\eta_{l}\left(X_{N}^{(i)}\right)\right\} \\
& =-2 \sum_{l=1}^{q(N)} E\left[\psi_{l}\left(X_{1}, Y_{1}\right)\right] E\left[e_{l}\left(X_{1}\right)\right] \\
& \left.=-2 \sum_{l=1}^{q(N)} a_{l} E\left[Y e_{l}^{\prime}(X)\right] \quad \text { since } E\left[e_{l}\left(X_{1}\right)\right]=a_{l}\right) \\
& =-2 E\left[Y \sum_{l=1}^{q(N)} a_{l} e_{l}^{\prime}(X)\right] \tag{2.6}
\end{align*}
$$

and

$$
\begin{equation*}
E\left(\hat{\delta}_{N}\right) \rightarrow-2 E\left[Y \frac{\mathrm{~d} f}{\mathrm{~d} X}\right]=\delta \quad \text { as } N \rightarrow \infty \tag{2.7}
\end{equation*}
$$

under the assumptions (A2) (ii) and $E Y^{2}<\infty$. Note that

$$
\begin{equation*}
\operatorname{Var}\left[\hat{\delta}_{N}\right]=\frac{4}{N^{2}} \sum_{l=1}^{q(N)} \sum_{m=1}^{q(N)} \sum_{i=1}^{N} \sum_{j=1}^{N} \operatorname{Cov}\left[\psi_{l}\left(X_{i}, Y_{i}\right) \eta_{l}\left(X_{N}^{(i)}\right), \psi_{m}\left(X_{j}, Y_{j}\right) \eta_{m}\left(X_{N}^{(j)}\right)\right] \tag{2.8}
\end{equation*}
$$

Case (i): $i \neq j$. Let us compute

$$
\begin{align*}
\operatorname{cov}\left[\psi_{l}\left(X_{i}, Y_{i}\right) \eta_{l}\left(\boldsymbol{X}_{N}^{(i)}\right), \psi_{m}\left(X_{j}, Y_{j}\right) \eta_{m}\left(\boldsymbol{X}_{N}^{(j)}\right)\right]= & E\left[\psi_{l}\left(X_{i}, Y_{i}\right) \psi_{m}\left(X_{j}, Y_{j}\right) \eta_{l}\left(\boldsymbol{X}_{N}^{(i)}\right) \eta_{m}\left(\boldsymbol{X}_{N}^{(j)}\right)\right] \\
& -E\left[\psi_{l}\left(X_{i}, Y_{i}\right) \eta_{l}\left(\boldsymbol{X}_{N}^{(i)}\right)\right] E\left[\psi_{m}\left(X_{j}, Y_{j}\right) \eta_{m}\left(\boldsymbol{X}_{N}^{(j)}\right)\right] \tag{2.9}
\end{align*}
$$

Observe that

$$
\begin{align*}
E\left[\psi_{l}\left(X_{i}, Y_{i}\right) \eta_{l}\left(\boldsymbol{X}_{N}^{(i)}\right)\right] & =E\left[\psi_{l}\left(X_{1}, Y_{1}\right) \eta_{l}\left(\boldsymbol{X}_{N}^{(1)}\right)\right] \\
& =E\left[Y_{1} e_{l}^{\prime}\left(X_{1}\right)\right] E\left[\eta_{l}\left(X_{N}^{(1)}\right)\right] \\
& =E\left[a_{l} Y_{1} e_{l}^{\prime}\left(X_{1}\right)\right] . \tag{2.10}
\end{align*}
$$

Let

$$
\begin{align*}
I_{1} & =E\left[\psi_{l}\left(X_{1}, Y_{1}\right) \psi_{m}\left(X_{2}, Y_{2}\right) \eta_{l}\left(X_{N}^{(1)}\right) \eta_{m}\left(X_{N}^{(2)}\right)\right] \\
& =E\left\{\psi_{l}\left(X_{1}, Y_{1}\right) \psi_{m}\left(X_{2}, Y_{2}\right) E\left[\eta_{l}\left(X_{N}^{(1)}\right) \eta_{m}\left(X_{N}^{(2)}\right) \mid\left(X_{i}, Y_{i}\right), i=1,2\right]\right\} \\
& =E\left\{\psi_{l}\left(X_{1}, Y_{1}\right) \psi_{m}\left(X_{2}, Y_{2}\right) \frac{1}{(N-1)^{2}} E\left[\left(\sum_{\substack{j=1 \\
j \neq 1}}^{N} e_{i}\left(X_{j}\right)\right)\left(\sum_{\substack{K=1 \\
K \neq 2}}^{N} e_{m}\left(X_{i}\right)\right) \mid\left(X_{i}, Y_{i}\right), i=1,2\right]\right\} . \tag{2.11}
\end{align*}
$$

Note that

$$
\begin{align*}
{\left[e_{l}\left(X_{2}\right)+\sum_{j=3}^{N} e_{l}\left(X_{j}\right)\right]\left[e_{m}\left(X_{1}\right)+\sum_{k=3}^{N} e_{m}\left(X_{k}\right)\right]=} & e_{l}\left(X_{2}\right) e_{m}\left(X_{1}\right)+e_{m}\left(X_{1}\right) \sum_{j=3}^{N} e_{l}\left(X_{j}\right)+e_{l}\left(X_{2}\right) \sum_{k=3}^{N} e_{m}\left(X_{k}\right) \\
& +\left\{\sum_{j=3}^{N} e_{l}\left(X_{j}\right)\right\}\left\{\sum_{k=3}^{N} e_{m}\left(X_{k}\right)\right\} \tag{2.12}
\end{align*}
$$

Hence,

$$
\begin{aligned}
E\{ & \left.\left(\sum_{\substack{j=1 \\
j \neq 1}}^{N} e_{l}\left(X_{j}\right)\right)\left(\sum_{\substack{k=1 \\
k \neq 2}}^{N} e_{m}\left(X_{k}\right)\right) \mid\left(X_{i}, Y_{i}\right), i=1,2\right\} \\
= & e_{l}\left(X_{2}\right) e_{m}\left(X_{1}\right)+e_{m}\left(X_{j}\right)(N-2) a_{l}+e_{l}\left(X_{2}\right)(N-2) a_{m}+\sum_{j, k=3}^{N} E\left[e_{l}\left(X_{j}\right) e_{m}\left(X_{k}\right)\right] \\
= & e_{l}\left(X_{2}\right) e_{m}\left(X_{1}\right)+e_{m}\left(X_{1}\right)(N-2) a_{l}+e_{l}\left(X_{2}\right)(N-2) a_{m}+\sum_{j=3}^{N} E\left[e_{l}\left(X_{j}\right) e_{m}\left(X_{j}\right)\right] \\
& \quad+\sum_{j \neq k}^{N} E\left[e_{l}\left(X_{j}\right)\right] E\left[e_{m}\left(X_{k}\right)\right]
\end{aligned}
$$

$$
\begin{align*}
= & e_{l}\left(X_{2}\right) e_{m}\left(X_{1}\right)+e_{m}\left(X_{1}\right)(N-2) a_{l} \\
& +e_{l}\left(X_{2}\right)(N-2) a_{m}+(N-2) E\left[e_{l}\left(X_{j}\right) e_{m}\left(X_{j}\right)\right] \\
& +(N-2)(N-3) a_{l} a_{m} \\
\equiv & I_{2} \quad \text { (say). } \tag{2.13}
\end{align*}
$$

Hence,

$$
\begin{align*}
(N-1)^{2} I_{1}= & E\left[\psi_{l}\left(X_{1}, Y_{1}\right) \psi_{m}\left(X_{2}, Y_{2}\right) I_{2}\right] \\
= & E\left[\psi_{l}\left(X_{1}, Y_{1}\right) \psi_{m}\left(X_{2}, Y_{2}\right) e_{l}\left(X_{2}\right) e_{m}\left(X_{1}\right)\right] \\
& +E\left[\psi_{l}\left(X_{1}, Y_{1}\right) \psi_{m}\left(X_{2}, Y_{2}\right) e_{m}\left(X_{1}\right)\right](N-2) a_{l} \\
& +E\left[\psi_{l}\left(X_{1}, Y_{1}\right) \psi_{m}\left(X_{2}, Y_{2}\right) e_{l}\left(X_{2}\right)\right](N-2) a_{m} \\
& +E\left[\psi_{l}\left(X_{1}, Y_{1}\right) \psi_{m}\left(X_{2}, Y_{2}\right)\right](N-2) E\left[e_{l}\left(X_{j}\right) e_{m}\left(X_{j}\right)\right] \\
& +(N-2)(N-3) a_{l} a_{m} E\left[\psi_{l}\left(X_{1}, Y_{1}\right) \psi_{m}\left(X_{2}, Y_{2}\right)\right] \\
= & E\left[Y_{1} e_{l}^{\prime}\left(X_{1}\right) Y_{2} e_{m}^{\prime}\left(X_{2}\right) e_{l}\left(X_{2}\right) e_{m}\left(X_{1}\right)\right] \\
& +(N-2) a_{l} E\left[Y_{1} e_{l}^{\prime}\left(X_{1}\right) Y_{2} e_{m}^{\prime}\left(X_{2}\right) e_{m}\left(X_{1}\right)\right] \\
& +(N-2) a_{m} E\left[Y_{1} e_{l}^{\prime}\left(X_{1}\right) Y_{2} e_{m}^{\prime}\left(X_{2}\right) e_{l}\left(X_{2}\right)\right] \\
& +(N-2) E\left[Y_{1} e_{l}^{\prime}\left(X_{1}\right) Y_{2} e_{m}^{\prime}\left(X_{2}\right)\right] E\left[e_{l}\left(X_{1}\right) e_{m}\left(X_{1}\right)\right] \\
& +(N-2)(N-3) a_{l} a_{m} E\left[Y_{1} e_{l}^{\prime}\left(X_{1}\right)\right] E\left[Y_{2} e_{m}^{\prime}\left(X_{2}\right)\right] \tag{2.14}
\end{align*}
$$

Let

$$
\begin{align*}
& b_{m l}=E\left[Y_{1} e_{l}^{\prime}\left(X_{1}\right) e_{m}\left(X_{1}\right)\right], \gamma_{l m}=E\left[Y_{1}^{2} e_{l}\left(X_{1}\right) e_{m}^{\prime}\left(X_{1}\right)\right] \tag{2.15}\\
& c_{m}=E\left[Y_{1} e_{m}^{\prime}\left(X_{1}\right)\right] \tag{2.16}
\end{align*}
$$

and

$$
\begin{equation*}
d_{l m}=E\left[e_{l}\left(X_{1}\right) e_{m}\left(X_{1}\right)\right] \tag{2.17}
\end{equation*}
$$

Then

$$
\begin{align*}
(N-1)^{2} \operatorname{cov}\left[\psi_{l}\left(X_{i}, Y_{i}\right) \eta_{l}\left(X_{N}^{(i)}\right), \psi_{m}\left(X_{j}, Y_{j}\right) \eta_{m}\left(X_{N}^{(j)}\right)\right]= & b_{m l} b_{l m}+(N-2) a_{l} b_{m l} c_{m} \\
& +(N-2) a_{m} b_{l m} c_{l}+(N-2) c_{l} c_{m} d_{l m} \\
& +(N-2)(N-3) a_{l} a_{m} c_{l} c_{m}-a_{l} a_{m} c_{l} c_{m} \tag{2.18}
\end{align*}
$$

Case (ii): $i=j$. Then

$$
\begin{align*}
\operatorname{cov} & {\left[\psi_{l}\left(X_{1}, Y_{1}\right) \eta_{l}\left(\boldsymbol{X}_{N}^{(1)}\right), \psi_{m}\left(X_{1}, Y_{1}\right) \eta_{m}\left(\boldsymbol{X}_{N}^{(1)}\right]\right.} \\
= & E\left[\psi_{l}\left(X_{1}, Y_{1}\right) \psi_{m}\left(X_{1}, Y_{1}\right) \eta_{l}\left(\boldsymbol{X}_{N}^{(1)}\right) \eta_{m}\left(\boldsymbol{X}_{N}^{(1)}\right)\right] \\
& -E\left[\psi_{l}\left(X_{1}, Y_{1}\right) \eta_{l}\left(\boldsymbol{X}_{N}^{(1)}\right)\right] E\left[\psi_{m}\left(X_{1}, Y_{1}\right) \eta_{m}\left(\boldsymbol{X}_{N}^{(1)}\right]\right. \\
= & E\left[Y_{1} e_{l}^{\prime}\left(X_{1}\right) Y_{1} e_{m}^{\prime}\left(X_{1}\right) \eta_{l}\left(\boldsymbol{X}_{N}^{(1)}\right) \eta_{m}\left(\boldsymbol{X}_{N}^{(1)}\right)\right] \\
& -a_{l} a_{m} c_{l} c_{m} \\
= & E\left[Y_{1}^{2} e_{l}^{\prime}\left(X_{1}\right) e_{m}^{\prime}\left(X_{1}\right)\right] E\left[\eta_{l}\left(X_{N}^{(1)}\right) \eta_{m}\left(\boldsymbol{X}_{N}^{(1)}\right)\right]-a_{l} a_{m} c_{l} c_{m} \\
= & \gamma_{l m} E\left[\eta_{l}\left(\boldsymbol{X}_{N}^{(1)}\right) \eta_{m}\left(\boldsymbol{X}_{N}^{(1)}\right)\right]-a_{l} c_{l} a_{m} c_{m} . \tag{2.19}
\end{align*}
$$

Let us now compute

$$
\begin{align*}
(N-1)^{2} E\left[\eta_{l}\left(\boldsymbol{X}_{N}^{(1)}\right) \eta_{m}\left(\boldsymbol{X}_{N}^{(1)}\right)\right] & =E\left[\left\{\sum_{j=2}^{N} e_{l}\left(X_{j}\right)\right\}\left\{\sum_{k=2}^{N} e_{m}\left(X_{k}\right)\right\}\right] \\
& =\sum_{j=2}^{N} \sum_{k=2}^{N} E\left[e_{l}\left(X_{j}\right) e_{m}\left(X_{k}\right)\right] \\
& =(N-1) E\left[e_{l}\left(X_{1}\right) e_{m}\left(X_{1}\right)\right]+(N-1)(N-2) E\left[e_{l}\left(X_{1}\right) e_{m}\left(X_{2}\right)\right] \\
& =(N-1) d_{l m}+(N-1)(N-2) a_{l} a_{m} . \tag{2.20}
\end{align*}
$$

Hence,

$$
\begin{equation*}
\operatorname{cov}\left[\psi_{l}\left(X_{1}, Y_{1}\right) \eta_{l}\left(\boldsymbol{X}_{N}^{(1)}\right), \psi_{m}\left(X_{1}, Y_{1}\right) \eta_{m}\left(\boldsymbol{X}_{N}^{(1)}\right)\right]=\gamma_{l m}\left\{\frac{d_{l m}}{N-1}+\frac{N-2}{N-1} a_{l} a_{m}\right\}-a_{l} c_{l} a_{m} c_{m} \tag{2.21}
\end{equation*}
$$

Calculations made above in the cases (i) and (ii) lead to the formula

$$
\begin{align*}
\operatorname{var}\left[\hat{\delta}_{N}\right]= & \frac{4}{N^{2}} \sum_{l=1}^{q(N)} \sum_{m=1}^{q(N)}\left[\gamma_{l m}\left\{\frac{d_{l m}}{N-1}+\frac{N-2}{N-1} a_{l} a_{m}\right\}-a_{l} c_{l} a_{m} c_{m}\right] N \\
& +\frac{4}{N^{2}} \sum_{l=1}^{q(N)} \sum_{m=1}^{q(N)}\left\{\begin{array}{c}
\frac{b_{m l} b_{l m}}{(N-1)^{2}}+\frac{N-2}{(N-1)^{2}} a_{l} b_{m l} c_{m} \\
+\frac{N-2}{(N-1)^{2}} a_{m} b_{l m} c_{l} \\
+\frac{N-2}{(N-1)^{2}} c_{l} c_{m} d_{l m} \\
+\frac{(N-2)(N-3)}{(N-1)^{2}} a_{l} a_{m} c_{l} c_{m} \\
-a_{l} a_{m} c_{l} c_{m}
\end{array}\right\} N(N-1) \tag{2.22}
\end{align*}
$$

$$
\begin{align*}
= & \frac{4}{N(N-1)} \sum_{l=1}^{q(N)} \sum_{m=1}^{q(N)} \gamma_{l m} d_{l m}+\frac{4(N-2)}{N(N-1)} \sum_{l=1}^{q(N)} \sum_{m=1}^{q(N)} \gamma_{l m} a_{l} a_{m} \\
& -\frac{4}{N}\left(\sum_{l=1}^{q(N)} a_{l} c_{l}\right)^{2}+\frac{4 N(N-1)}{N^{2}(N-1)^{2}} \sum_{l=1}^{q(N)} \sum_{m=1}^{q(N)} b_{m l} b_{l m} \\
& +\frac{4 N(N-1)(N-2)}{N^{2}(N-1)^{2}} \sum_{l=1}^{q(N)} \sum_{m=1}^{q(N)} a_{l} b_{m l} c_{m}+\frac{4 N(N-1)(N-2)}{N^{2}(N-1)^{2}} \sum_{l=1}^{q(N)} \sum_{m=1}^{q(N)} a_{m} b_{l m} c_{m l} \\
& +\frac{4 N(N-1)(N-2)}{N^{2}(N-1)^{2}} \sum_{l=1}^{q(N)} \sum_{m=1}^{q(N)} c_{l} c_{m} d_{l m} \\
& +\frac{4 N(N-1)(N-2)(N-3)}{N^{2}(N-1)^{2}} \sum_{l=1}^{q(N)} \sum_{m=1}^{q(N)} a_{l} a_{m} c_{l} c_{m} \\
& -\frac{4 N(N-1)^{q}}{N^{2}} \sum_{l=1}^{q(N)} \sum_{m=1}^{q(N)} a_{l} a_{m} c_{l} c_{m} . \tag{2.23}
\end{align*}
$$

Note that

$$
\begin{equation*}
\sup _{l, m} v_{l m}<\infty, \quad \sup _{l, m} b_{m l}<\infty, \quad \sup _{l} a_{l}<\infty, \quad \sup _{l} c_{l}<\infty \tag{2.24}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup d_{l m}<\infty \tag{2.25}
\end{equation*}
$$

by assumption (A2)(iii). Observe that the coefficient of $\left(\sum_{l=1}^{q(N)} a_{l} c_{l}\right)^{2}$ in the expression for $\operatorname{var}\left(\hat{\delta}_{N}\right)$ is

$$
\begin{aligned}
-\frac{4}{N}+\frac{4(N-2)(N-3)}{N(N-1)}-\frac{4(N-1)}{N} & =\frac{4(6-4 N)}{N(N-1)} \\
& \simeq \frac{-16}{N}+0\left(\frac{1}{N}\right)
\end{aligned}
$$

Under the assumption (A3), it follows that

$$
\begin{equation*}
\operatorname{var}\left(\hat{\delta}_{N}\right) \simeq O\left(\frac{q^{2}(N)}{N^{2}}+\frac{q^{2}(N)}{N}\right) \tag{2.26}
\end{equation*}
$$

Theorem. Under assumptions (A1) and (A2), if $q(N) \rightarrow \infty$ such that

$$
\begin{equation*}
\frac{q^{2}(N)}{N} \rightarrow 0 \quad \text { as } N \rightarrow \infty \tag{2.27}
\end{equation*}
$$

and $E Y^{2}<\infty$, then

$$
\begin{equation*}
\hat{\delta}_{N} \xrightarrow{\mathrm{p}} \delta \text { as } N \rightarrow \infty . \tag{2.28}
\end{equation*}
$$

Proof. The result follows from the fact

$$
\operatorname{var}\left(\hat{\delta}_{N}\right) \rightarrow 0 \quad \text { and } \quad E\left(\hat{\delta}_{n}\right) \rightarrow \delta \quad \text { as } n \rightarrow \infty
$$

3. Remarks

Let us now discuss the limiting behaviour of

$$
\begin{equation*}
\left\{\hat{\delta_{N}}-E\left(\hat{\delta}_{N}\right)\right\} \tag{3.1}
\end{equation*}
$$

if any. Note that

$$
\begin{aligned}
\left\{\hat{\delta_{N}}-E\left(\hat{\delta}_{N}\right)\right\} & =-\frac{2}{N} \sum_{i=1}^{N}\left[\left.Y_{i} \frac{\partial \hat{f}_{N_{i}}}{\partial X}\right|_{x=x_{i}}-E\left(\left.Y_{i} \frac{\partial \hat{f_{N_{i}}}}{\partial X}\right|_{x=x_{i}}\right)\right] \\
& =-\frac{2}{N} \sum_{l=1}^{q(N)} \sum_{i=1}^{N}\left\{\psi_{l}\left(X_{i}, Y_{i}\right) \eta_{l}\left(X_{N}^{(i)}\right)-E\left(\psi_{l}\left(X_{i}, Y_{i}\right) \eta_{l}\left(X_{N}^{(i)}\right)\right)\right\} \\
& =-\frac{2}{N} \sum_{i=1}^{N}\left[\sum_{l=1}^{q(N)}\left\{\psi_{l}\left(X_{i}, Y_{i}\right) \eta_{l}\left(X_{N}^{(i)}\right)-E\left[\psi_{l}\left(X_{i}, Y_{i}\right) \eta_{l}\left(X_{N}^{(i)}\right)\right]\right\}\right] \\
& =-\frac{2}{N} \sum_{i=1}^{N} Z_{N i}
\end{aligned}
$$

where

$$
\begin{aligned}
Z_{N_{1}}= & {\left[\psi_{1}\left(X_{i}, Y_{i}\right) \eta_{1}\left(X_{N}^{(i)}\right)+\cdots+\psi_{q(N)}\left(X_{i}, Y_{i}\right) \eta_{q(N)}\left(X_{N}^{(i)}\right)\right] } \\
& -E\left\{\left[\psi_{1}\left(X_{i}, Y_{i}\right) \eta_{1}\left(X_{N}^{(i)}\right)+\cdots+\psi_{q(N)}\left(X_{i}, Y_{i}\right) \eta_{q(N)}\left(X_{N}^{(i)}\right)\right]\right) .
\end{aligned}
$$

Note that

$$
\left\{Z_{N i}, 1 \leqslant i \leqslant N\right\}
$$

are finitely interchangeable for each N. Furthermore $E\left(Z_{N i}\right)=0$.
From the structure of $\left\{Z_{N i}, 1 \leqslant i \leqslant N, N \geqslant 1\right\}$, it should be possible to study the asymptotic behaviour of the estimator $\hat{\delta}_{N}$. However, the limit theorems for exchangeable arrays presently available do not seem to be applicable in this context. The problem remains open.

References

Hardle, W. and T.M. Stoker (1989), Investigating smooth multiple regression by the method of average derivatives, J. Amer. Statist. Assoc. 84, 986-995.
Powell, U.L., J.H. Stock, T.M. Stoker (1989), Semiparametric estimation of index coefficients, Econometrica 57, 1403 -1430.
Prakasa Rao, B.L.S. (1983), Nonparametric Functional Estimation (Academic Press, Orlando).
Stoker T.M. (1986), Consistent estimation of scaled coefficients, Econometrica 54, 1461-1481.
Stoker, T.M. (1989), Tests of additive derivative constraints, Rev. Econom. Stud. 56, 535-552.

[^0]: ${ }^{1}$ Jawaharlal Nehru Centenary Chair, University of Hyderabad.

