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Abstract

In this paper, we have investipated the global behaviour of the STRS epidemic model under the assumption that
some portion of immunes are infective as proposed by 1L, Aron and the immomity s Lost at o constant rate, We have
shown that existcneoe of local stability propertics gudrantecs their global stability.
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1. Introduction

Aron (1988) has proposed and investigated the
dynumical behaviour of boosted immunity in a
simple SIRS epidemic model with vital dynamics.
The whole population is divided into three classes:
5 representing the susceptible class, T represent-
ing the infective class and X representing the
recovered and immune class, Immunity is oot
permancnt. The immunc class cnters the suscep-
tible class after a specific time, and the cycle
SIRS is completed. Aron in his paper has worked
out the criteria for ewstence and local stability
character of the zero and nonzero eguilibrinam.
Howewver, the problem of global stability has been
a1 open queston in that paper. In this paper the

problem has been tackled using Lirpumow direct
method, DBendixon-Dolac  eriteria  and
Bendixon-Dulae criterion as a special case, un-
der the assumption that the duration of immunrity
is independent of exposure to infection.

2. The mathemaltical model

We assume the fractions of the populations
that are susceptibles, infectives and immunes are
denoted by 5, T and R, respectivelv. Susceptibles
become infeoted by mass action contact between
susceptibles and infectives. The mass action term
incorporates o coctficient of mixing 8, the pro-
portion of infected who are imfective f, and the
proporton of immunes who are infective  f7,
where ' < f Infective individuals in class [T re-
cwer a1l oa rale o to enter the immune class,
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Jmmune individuals become susceptible agam at
a constant rate y. Deaths occur at a rate u,
unaffected by age or disease siatus, Life ex-
pectancy is them 1/u. Deaths are balanced by
hirths into the susceptible cluss s0 that the popuo-
lation size remaing constant.

With the assumptions the model mechanism is
then of the lvm

ds
Fra —B{fI+fR)S+yR+pu-us
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P L i B LT (1)

4R f K
o -l te)
where §+ I+ R=1.0=sf =fand0sf=1,
Aron (1988) has worked out the basic repro-
ductive rate R, which is given by
% '.I
RUHE‘HT 1) +81g )
(q+al(ytu)
and shown that if &, <1, the zero equilibrium is
locally asymptotically stable and there is no other
equilibrium. On the other hand, it R, > 1, there
exits two cyuilibrium points: (i) the zero equilib-
rium which is locally unstable and (i1} the nonzero
gquilibrium which is locally stable as shown by
Aron (1988). In the following scction we shall
prove the global dynamics of the above men-
tioned cases.

3. Global stability

Theorem [. ff R, <1, the existence of local
stabifity implies its global srabifity.

Proof. We define the positive definite function
Ve (y+u)l+BFR (3)
The time derivative along solution of Eq. 1 is

dv

7 =HBfly+ )+ BFa-{a+u)(y+p)}
(= RY(y+ 1B+ 'R)

={(y+u)[I{g+u)(Ry—-1)

—B(1+R)( fI +f'R))
fas By =< 1)

Hence the theoram.

Now, if Ry 1, the zero equilibrium is locally
unstable as mentioned in Section 2. In the next
theorem. we shall show that there can not be any
closed orbit around this equilibrium by using
Bendixon-Dulac criterion.

Theovem 2. There wilf be no clased trafectory v
the feasibility region

A={1=0,R=0,I+R=1}

Prouf, |et
h{1.R) =1 (4)

Otwiously M LR)=0, if >0 and R>{. We
denote

kTR = B(FI+ FRY(1 -1 ~R) = (g +p )
ky(1.R}y =gl - (y+p)R

S .:.(;;}f:} . a(;ﬁj
Then

B(LRYk(LR) =B fI+f'RY(1—1 - R}
—{q+p)f

A{LRY(1LR) =gl — (y+p)R

and

A{k k) =@f—2Bf1—BfR—(q+u)

—(y+u) {3)

From Eq. 5 it 15 clear that when /=1, R=1),
then Alk,.k,) <0 or when

F=0, R=1then &{k, k) <0
Hence the Bendixon’s negative criferion does oot

hold. Thus there can not be any closed trajectory
in the feasibility region

A={f=z0, R=0T+R=1}]
Hence the theorem.

Thus we note that lacal instability of the zero
cguilibrivm implies its global instability also.

If Ry>1, the nonzere equilibriom is locally
asymptolically stable as mentioned in Section 2.
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In the following theorem we shall show that the
nunzera equilibrium is globally asymplotically sta-
ble by vsing Bendixon-Dulac criterion a5 a spe-
cial case.

Theorem 3. The model svstem { has no periccdic
solutions, homoclinie Ioopy and  oriented  phase
polvgons inside the invarigne region H.

Proof. We consider the feasibility region
H={520,1>0,R=0,5+I+ReR;:
S-T+R=1}

and we define H,=H — {1,0,0}.

Our proof i based on the following result,
which includes the well-known Dulac criterion as
a special case (see Busenberg and van den
[rriessche, 1Y), theorem 4.1, p. 268).

Let

2(8. LRy ={gS.LRY, g,(S.1,R), g5(5,1,R}}

b a vector ticld which is piecewisc smooth on
compact subsets contained in the interior of A
amd which salisfics the conditions g-# =10 and
{curl g)-(1,1.1)< 0 on H,=H - §H, where 6H
15 the boundary of I and FUf,f,.f3) is a Lips-
chitz continuous ficld on H,. Then the differen-
tial equation system d¥/de=f,, df/dr=f,,
dR/dt = f; has no periodic solutions, homoclinic
loops, or oriented phasc polygon in .

Let f,, f; and f, denote the right hand side of
system | respectively and wse the relation § 1 1 +
R =1 to rewrite these in the equivalent forms:

ffs. ) =-{fi+f(1-85-1)}s

(1= =F)+u-~ps
FlS.RY=-B{f(1 =S —1) = ['R}S
ARSIy =8{fI+f(1-5-D}S-(g+p}
fo{LRY=B{fA+f'RY1-T-R)—(q+u)!
S §.RY)-q(1-5-R)—(y tp}R
FlLRy=q/ —(y+u)R

Let g ={g, £, 2.} be a vector field, where
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Clearly, g+ F =0on H,, since the alternate forms
of fi. fp and f; are cquivalent on A,

A few computations vield the expression
{eurl g}-(1,1.1)

2Bf" - Bf(S+I+R)

li'l

LAk vte

SR §'R O SY ’
since S +HT1+KR=1

Remerlc: Since the region A is invariant and
for R, = 1, the zero equilibrium is unstable, by
Poincaré—Bendixon theorem and Theorem 3
above, the existence of local asymptotic stability
al this model system ensures its global asymptotic
stability,

4. Conclusion

Thus if R, <1, the zero equilibrivm -which is
the only eguilibrium =is globally asymptotically
stuble, ie., the disease does not persist, whatever
be the initial numbers of infectives in the popula-
tiods.
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On the other hand, if 8, > 1, the zero equilib-
rium is globally unstable and the nenzero cquilib-
rium is plobally asymptotically stable, Le., the
discase 15 endemic in the global sensc.

Biologically, the above result implies that if the
basic reproductive rate is below a threshold value,
the disease cannot sprezd and dies out, for any
initial size of the infectives in the population. On
the other hand, 1if the basic reproductive rate -is
above that threshold value the disease will cer-
tainly spread and will attend a stable nonzero

value called the endemic equilibrivm, whatever
small the size of infectives the population may
initially have.
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