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COMPARISONS OF THE BLENDED WEIGHT HELLINGER 
DISTANCE BASED GOODNESS-OF-FIT TEST STATISTICS* 

By donc; wan shin1 

University of Suwon 
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University of Texms at Austin 

and 

SAHADEBSARKAR 
Oklahoma State University 

SUMMARY. The class of goodness-of-fit tests based on the blende weight Hellinger distance 

(BWHD) is a rich subfamily of the family of disparity tests introduced by Basu & Sarkar (1994a). 

In small samples, for most members of the BWH?) family, the limiting chi-square null distribution 

can produce significance levels that are very different from the desired nominal levels. In this paper 

we derive three alternative approximations of their exact distributions, leading to more accurate 

significance levels. Numerical results are presented for the symmetric null hypothesis for different 

multinomial sample sizes with various cell numbers. Exact power comparisons under specific al 

ternatives to the symmetric null hypothesis show that the well-known Pearson's chi-square have 

smaller power than some other members of the BWHD family. 

1. Introduction 

Pearson's chi-square (Pearson, 1900) is the most commonly used test statistic 

for testing goodness of fit. There are other alternative tests like the log likelihood 

ratio, the Neyman modified chi-square, the Freeman-Tukey statistic and the 

modified likelihood ratio. Cressie and Read (1984) and Read and Cressie (1988) 
introduced the class of tests known as the family of power divergence statistics 
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{Ix : ? G 3R} which contain all the above statistics as members. This family is 

shown to be a subclass of a more general class of goodness-of-fit test statistics 

by Basu and Sarkar (1994a), hereafter referred to as B&S. These test statis 

tics, called the disparity tests, use the minimum disparity parameter estimators 

(Lindsay 1994, Basu and Sarkar 1994b, 1994c) when the null hypothesis of in 

terest is composite. B&S have shown that, like the power divergence statistics, 
there exists another very rich subfamily of disparity tests called the blended 

weight Hellinger distance family {BWHDQ,a ? *R}. 
Let X = 

(Xi,...,Ajt) denote the random vector of frequencies having a 

multinomial distribution with sample size n, number of categories k and the 

probability vector ir = 
(7T],... ,7Tjt) with ^fL]^, 

= 1. Consider the simple null 

hypothesis 

H():7T 
= 7ro ...(1.1) 

where 7r0 
= 

(7r01,... ,7r0jt) with 7r0l- > 0 for each i and 
S^flo* 

= 1. Let p 
= 

(PiiP2* iPk) 
= 

(A^i/n,..., Xfe/n). Then, the BWHDQ tests for (1.1) are 

defined by 

^^ftfe^-.tl^^^-^^}'. 
...(1.2) 

B&S have shown that under the null hypothesis (1.1), 2nBWHDn has an 

asymptotic xLi distribution. The BWHD0, BWHD\ and BWHDl/2 tests cor 

respond to the Pearson's chi-square, the Neyman's chi-square and the Freeman 

Tukey chi-square tests respectively. The power divergence statistic 72/3 of 

Cressie and Read (1984) provides an excellent alternative to the standard Pear 
son's chi-square and the log likelihood ratio statistic. B&S have shown that the 

BWHDi/g statistic also does the same. 

The small sample properties of the BWHDQ test statistics are examined in 

this paper for testing the simple null hypothesis (1.1). In Section 2 we have 

derived three approximations of the exact null distributions of the BWHDQ 
tests that depend on the index parameter a. We examine in Section 3 the ap 

plicability of these approximating distributions by measuring the inaccuracy of 
the critical regions that result from these approximations when used in small 

samples. The inaccuracy in using the %2 approximation in different multino 
mial distributions for the Pearson's chi-square and log likelihood ratio tests was 

studied by Yarnold (1970), OdorofT (1970) and Larntz (1978). Read (1984a) has 
discussed similar small sample properties of the power divergence goodness-of 
fit statistics. Finally, in Section 4, we present some exact power comparisons 

for various BWHDQ tests. 

As in Read (1984a), all our numerical results for the BWHDQ tests are 

obtained under the equiprobable null hypothesis, also called the symmetric hy 
pothesis, defined by 

H0:ir = 
7r; 

= 
(l/fcfl/AJ...,l/*) ...(1.3) 
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Recommendations are made on the use of the approximations to obtain critical 

regions for different members of the BWHDn family of tests for different values 
of sample sizes and category numbers. We have also computed exact powers of 

the BWHDa tests for various a values under several specific alternatives to the 

symmetric null hypothesis. The exact power calculations show that the power 

of the commonly used Pearson's chi-square test can be improved by choosing 
other members from the BWHDa family. 

2. Approximations of the exact null distributions 

In this section we consider the limiting x2 and three other approximations 
of the exact distribution Fg of the BWHDn tests under the null hypothesis 

(1.1). Let Fx2(.) denote the \l distribution function with v degrees of freedom. 
Theorem 3.1 of B&S implies that if A: is fixed, for each value of the family 
parameter a, 

Pr{2nBWHDn < t) 
= 

FE(t) 
= 

Fxi ( (t) 4- o(l) as n -^ oo ... (2.1) 

for all t. Because the limiting chi-square distribution 
Fx2 (t) does not depend 

on a, it can be used to compute the rejection regions for the BWHDQ tests. 

The asymptotic result (2.1) does not, however, give any insight into how the 
rate of convergence to 

Fxi 
varies with a. 

The first approximation is based on first and second moment corrections of 

the xl-i limit. It is given by 

Fc{t) 
= 

FxU{dn^[l-cQ\) ...(2.2) 

where 

ca = 
(k 

- 
1)[1 

- 
d]?2) 4- nlaa, da = 1 + [n(2(k 

- 
l))]~'ba 

with 

aa = 
-a(S 

- 3/c + 2) + (3/4)(3a2 4- a)(S 4- 1 - 2fc), 

k = 
(2 

- 2/c -k2 + S) 4- a2(30 
- 54/c - 9?;2 4- 33S) 4- a(-18 4- 24/c 4- 6/c2 - 12S), 

and 

S = 
_t17r?l1. ...(2.3) 

The ca and dQ terms define the asymptotic means and variances of the BWHDQ 
tests up to the order o(n l). We have derived (2.2) using equation (5.1) of 

B&S. Expectations of the terms involved in equation (5.1) of B&S are given in 

Appendix All of Read and Cressie (1988). The percentiles of Fc are easier to 

compute than the the other two approximations Fs and Fs considered below, 
error for Fc in approximating the right tail of Ft: is generally the lowest. 
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Following Read (1984b) we obtain the second closer approximation of F#(t) 
by extracting the ?-dependent second order components from the o(l) term in 

(2.1) : 

Es(t) = 
Fx2 

[3(35 
(,)+?(2(1-*)F*.(?)+ 

jk2 
? O M _i_ ~,( 07C_l 1 Qi.2 {2(1 

2k) + a(-27S + 18Jfc2 + 18fc 9) 
W(18S 

- 27k2 + 9)] Fx2 (t) + [-6(25 
- k2 - 2k + 1) x; 

+a(57S 
- 36A;2 - 54A; + 33) + ?2(-63S 4- 54k2 + b4k - 45)]F 2 (t) 

+ [(-6a + 9a2 + 1)(5S 
- 3A;2 - 6k + 

4)]Fx?+j(*)! 

'Na(t) 
- 

nW2Va(tj\ [ell\2*ny?-WQ-V2\ 
...(2.4) 

where S is defined in (2.3), Na(t) 
= number of multinomial X vectors such that 

2nBWHD(^;n0)<t, 

v*(t) 
Vr{(A; + l)/2};V 1 

1 + i[a(-95 + \8k - 9) + a2(185-27A;2 + 9)] 
' 

,r{(A + l)/2}y 
^ 

( 24n(* + l) 
and Q = 

ri*=17r0l. In the Appendix we give the derivation of Fs(t) for any 

general disparity test 2npa where 

Pa(p, T0) = 
Y] G(_L 

- 
l)n?>> ...(2.5) 

and G is a thrice differentiable function with G^\ the third derivative of G, 
continuous at 0 and G^(0) finite. The approximation for the BWHDa family 
given in expression (2.4) is then obtained as a special case when one uses G(b) 
given by 

G(6) 
"ii -?)]} 

' 
,.(2.6) 

>(? + l)V2 + (l 
The derivation in the Appendix also show that Fs is not a probability distri 
bution function and because it contains NQ(t) it is not continuous. However, 
for all practical purposes, Fs can be treated as a distribution function. Com 

putation of Fs is complicated like that of F# but it provides the best overall 

approximation over the entire range of Fe> 

The third approximation of Fs(t) is obtained under the assumption that 
k 

? oo as n ?* oo such that k~ln ?* a for 0 < a < oo fixed. In this case 

the blended weight Hellinger distance tests have a limiting normal distribution. 
The normal limit F^(t) is derived under the specific null hypothesis (1.3) by 
applying Theorem 2.4 of Cressie and Read (1984) due to Hoist (1972) with 

/."(*) 
= Kt) -1] 

a(fe)i/2 -f(l-a) 
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It is given by 

FE(t) 
= 

FN(t) + o(l) asn-oc, ...(2.7) 

where F^(t) 
= 

Pr{N(0,1) < an](t 
? 

//n)}, iV(0,1) denotes a standard normal 

random variable. 

f (Y/a)-l \ 
2 

\ v La(y/fl) ' + 0 - a) ̂-?Cc^y/J 
?W-1 

a(y/a)V2_|-(i-a)J 

and F is a Poisson (a) random variable. Using Monte carlo techniques, Koehler 

and Larntz (1980) have investigated applicability of normal approximations for 

the Pearson's chi-square and the log likehood ratio tests when sample sizes and 

cell numbers are moderate. 

3. Small sample comparison of the approximations 

Comparison of the approximation errors associated with the four approxi 

mations 
Fx2 , Fc, Fs and F# in small samples are done using two criteria. The 

first criterion is different from that considered by Read (1984a, Section 2.2) for 

Ix statistics. Our first method measures more directly the approximation er 

ror in estimating the right tail of the true distribution Fg. The small sample 

computations presented in this section were done for all combinations of (n, k) 
for n = 10,15,20 and k = 2,3,5. We summarize these results in Section 4.3, 

although for brevity we graphically present the findings only for the case n == 20 

and k = 5. 

3.1. The significance levels obtained with F#, Fx2 ,Fc,Fs andF^. We 

compute 100(1 
? 

7)-th percentiles of F/r,Fx2 , Fc, Fs and F/v for 7 = 0.10 

and 0.01. For a fixed i,i = 
^?^CV^iV, let ?r, denote the corresponding 

percentile of the z-th distribution function FtJ defined by 

t7fi 
= 

mhi{t : Pr(U < t) > 1 - 7}, 
... (3.1) 

where U is a random variable with the distribution function F,. These are 

illustrated in Figures 1 and 2 for a [?1, l],n 
= 20 and k = 5. The method 

described in Section 2.1 of Read (1984a) is used to compute F#. Computation 
of Fs is also done by considering all possible multinomial vectors as in the case 

of F#. The ?7?c' and _7f# percentile points are easily computed as 

t~t,c 
= cQ 4- 

d]?2tlx2^ 
and t^N 

= 
pn 4- <XnZ7, 

were z7 is the 100(1 
? 

7)-th percentile of the Ar(0,1) distribution. In Figures 
1 and 2 the percentiles of Fv2 , F/.;, F^, Fs and F/v are denoted by CV-CHI, 
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CV-E, CV-C, CV-S and CV-N respectively. The unbroken lines represent the 

90% and 99% x\ critical values 7.78 and 13.28 respectively. The figures reveal 

that the percentile points of Fs and Fs approximate those of Ft: very well for 

all the values ? considered here at the 10% level. At the 1% level also these 

approximations are much better than the x? approximation. The normal ap 

proximation F]\ is poor at the 10% level, but is better at the 1% level. 

i 

O 

\\ * \ 

\\ \ 

CV-CHI 
- 

CV-E 
- 

CV-C 
- 

CV-S 
- 

CV-N 

\ \ \ 
\. \ \\ 

\ \\ 

?^ 

? / 
I / 
I / 
; / 
I / 

/ : 
? / / '' // / // 

/ // 

// / /'' / i? / 
/' y 

' / / 

-1.0 -0.5 0.0 0.5 1.0 

alpha 

Figure 1. True him! itppinxinmte < ritun, values tor the equiprobable 
null hypothesis at the 10% nominnl level (n 20, k - 

5). In the 

graph CV-CHI, CV-K, CV-C, CV-S and CV-N denote the critical 

values corresponding to F ? ,Fp,F(\Fs and F/v respectively ** i 

3.2 Maximum approximation error. The choice of nominal level 7 deter 

mines the results under the first method of error measurement. For a fixed 

(n, k) a) combination a second criterion used by Read (1984a, Section 2.3) mea 

sures the worst error made across an entire approximating distribution in es 

timating the exact distribution FE. It is called the maximum approximation 
error, and is defined by 

Mt = max I Ft^nBWHD^-^D) F&nBWHD^-^D) (3.2) 

for a fix(xl a and i = 
x2kvC\S, N, where BWHDQ(-, ),7rJ are defined in (1.2), 

(1.3) respectively and x represents the observed value of the multinomial random 
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vector X. The sign associated with the maximum difference M, is also recorded 

and the results are shown in Figure 3 for a in [-1.0,1.0] and for n = 20 and 

k = 5. For a away from zero the errors tend to increase more rapidly than for 
a close to zero. In Figure 3, the A_t, i = 

x{^,C,S,N, are denoted by MCHI, 

MC, MS and MN respectively. It appears that Fs is the best approximation 

according to this criterion, Fc being the close second. 

?BH 

8H 

o J 

-1.0 

i? 

-0.5 0.0 0.5 1.0 

alpha 

Figure 2. True and approximate critical values for the equiprobable null 

hypothesis at the 1% nominal level (n 20, k ^ 
5). In the graph 

CV-CHI, CV-E, CV-C, CV-S and CV-N denote the critical values 

corresponding to F 2 , /_;, Fc, Fs and Fs respectively 

4. ftXACT POWER COMPARISONS 

In the last section we discussed how one can obtain very good approximations 
of the exact critical regions for members of the BWHDa statistics. In this 

section we present small sample powers of the BWHDQ tests for testing (1.3) 
against 

(1+?')/A 1 = *, 

where ?1 < ? < k ? 1 is fixed. We have computed exact powers for three 

alternative hypotheses defined by ? = 1.5 (alt 1), 0.5 (alt 2) and -0.9 (alt 3). 

H! : 7T, = i 
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Read (1984a) considered these alternative hypotheses and he discussed their 

importance and interpretation. Because the attainable discrete levels for the 

CM 
? 

LU 
E 3 
E 

CM 
? 

? 

alpha 

Figure 3. Maximum approximation errors for the equiprobable null 

hypothesis (n 
- 20, A: - 

5). In the graph MCHI, MC, MS and MN 

denote the maximum aproximation errors for 
Fx% 

, Fc, Fs 

and F\ respectively 

exact kiWHDc tests vary with?, to make the power functions of BW H Dn 
tests comparable across n values we have considered the randomized tests of 

same size 0.05. Power values for n = 20 and k = 5 and for different a values 

are presented in Table 1. 
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Table 1. EXACT POWER FUNCTION FOR THE BWHDQ 
RANDOMIZED SIZE .05 TESTS (n 

= 20, it - 5) 

_S 
a 1.5 0.5 -0.9 

1.00 0.2574 0.0785 0.5893 

0.70 0.2574 0.0785 0.5893 

0.50 0.3361 0.0800 0.5875 

0.30 0.6088 0.1066 0.4589 

0.10 0.6815 0.1190 0.3214 

0.00 0.6997 0.1228 0.2720 

-0.10 0.7124 0.1250 0.2310 

-0.30 0.7306 0.1278 0.1895 

-0.50 0.7430 0.1291 0.1606 

-0.70 0.7488 0.1296 0.1491 

-1.00 0.7498 0.1295 0.1451 

From Table 1 we see that the power increases as a decreases for hypotheses 
alt 1 and alt 2, whereas for hypothesis alt 3 the power increases as a increases. 

This means the power of the Pearson's chi-square (BWHDq) statistic can be 

improved upon by considering another suitable member from the BWHDQ for 

all the three alternatives considered. Note that the direction of increase in power 
for the BWHDq tests over a is the opposite of that for the power divergence 
tests ?x over A (Read 1984a, Table 1). 

Appendix 
Derivation of Fs(t) for a General Disparity Test 2npG 

Assume that (1.1) is true? We also assume that the fourth derivative of 

G exists; this assumption is used in expanding 2npc:(p,7ro) in a fourth order 

Taylor series. Let 
Wj 

= 
nll2(pj 

? 
7r0j) 

for j 
= 

1,2,...,/. and let r = k 
? 

1. 

Then, the normalized vector W = 
(W\,..., Wr) takes values in the lattice 

/_ = 

jw 

= 
(i_i,... ,wr) 

: w = 
nll2(n~lm- 7r0) and m G M\ 

where 7r0 
= 

(floi.,.. *, flor) and M ? 
{m 

= 
(mi,...,mr) 

: 
mjj 

= 
l,...,r 

are nonnegative integers satisfying SJ=:1m? 
< n}. Using a general asymptotic 

probability result for lattice random variables of Yarnold (1972), Read (1984b) 
derived the asymptotic expansion of the limiting distribution of the Ix statistic 

under the null hypothesis (1.1). Read's result for Ix statistics contains that 

of Yarnold (1972) for the Pearson's chi-square (I1) and that of Siotani and 

Fujikoshi (1980) for the log likelihood ratio (Io) as special cases. We generalize 
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Read's result to the more general class of disparity test statistics 2npG. We use 

Read's (1984b) method in exploiting Theorem 2 of Yarnold (1972), which gives 
a useful expression for the probability of lattice random variables belonging to 

an extended convex set B. Definition of an extended convex set is given in Read 

(1984b, Definition 2.1). Let 

BG(t) 
= 

{w 
= 

(u>i,... ,wr) : 2npG(n~\m,mk);7T0) <t} ...(A.l) 

where 

wk 
= ? 

]^=1w?,m 
= n1//2w + 7171*0,771* 

= 
nll2Wk 4-n7r0Jt. 

Expanding 2npG(p1TTo) (as a function of pt around ttq?) in a fourth order Taylor 
series we get the following. 

Theorem A.l. The asymptotic expansion for the distribution function 

Fe(?) of the 2npG(p,^o) is given by 

FE(t) = 
Jf + J2G + .7? + 0(n-3/2), ... (A.2) 

where Jf,J2 and Jg* are defined by J1? J2, and J3 respectively in Theorem 

2.1 of Read (1984b) with B= BG(t) defined in (A.l). Furthermore, 

m 
= 

^..W + 
5^ {2(1 -S)FxlJt)+ 

[3(7, + 6fl2 + 6(%i + d?g4 
- 

3d??]Fxj+i (*)+ 3) 
[-651 

- 
653 

- 
6(i33i 

- 
2d3<74 

- 
2d23g4 + 

3d4g3\FxlJt)+ 

\(2d3 + 4 + 
\)g4}FxlJt)} 

where 

d3 = 
G<3>(0), d4 = 

GW(0), ...(A4) 

to = 
(S 

- 
k%g2 

= 
(S 

- 
k),g3 

= 
(S-2k+ \),g4 

= 
(5S -3fc2 -6k+ 4) 

and S is as defined in (2.8). An approximation of J2 to the first order is 

given by 

J? = 
JATG(t) -nlk-V'2Vc(t)} {e-l/2(27rn)-(fc-1)/2Q-1/2} 

where NG(t) 
= number of multinomial X vectors such that 2npG(^-}iro) < 

t, and 

Y(t) ( (7rt)(*~1)/2 Wfl l 't?*-3**)] 
VG{t)-[r{(k+l)/2))Q \1+ 24n(k + l) /' 

withQ^Ii^noi. 
?7 

Note that if the distribution of 2npG(p)iro) was continuous, the term Jf 
could have been obtained by the multivar?ate Edgeworth approximation. The 
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discontinuous nature of the 2np_;(p, 7To) statistic is accounted for by the term 

J2'. Theorem 2.1 of Read (1984b) implies that Jf 
= 

Q(n'x). since the members 

of the family of 2npG(p,7To) tests are asymptotically equivalent (B&S, Theo 
rem 3.1) we have n(J? 

- 
J%cs) 

= 
o(l) as n -+ 00 where Jfcs denotes the 

corresponding term for the Pearson chi-square distribution expansion. All the 

G-dependent terms in Jf are, therefore, 0(n~??2). In light of the expansion in 

(A.2), ./f can be viewed as independent of G. Because the evaluation of J|* is 

complex (see e.g. Yarnold (1972) for J3), as was done by Read (1984b) in the 

case of power divergence goodness-of-fit statistics, we may ignore the term J-f 
in (4). As a closer approximation that Fx2 (t) of F#(i) up to the order n_1, we 

may use 

Fs(t) = J? + J?. ...(A5) 

In equation (2.4) we presented the simplified form of Fs(t) defined in (A.5) above 

for the BWHDa subfamily of disparity tests with d? = ?3a, d\ 
? 

3a(l -f 3a). 
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