ON SOME ASYMPTOTIC PROPERTIES OF U STATISTICS
AND ONE-SIDED ESTIMATES

By ARUP BoOSE aND BaTan [DASCUPTA
Indian Stetiztical Institute

Lot {X;, 1< ¢ < n} be independent and identically distributed random
variables. For a gymmetric function & of re argwnents, with 8 = ER(X;, .. .,
X}, we propose estimators §, of # that have the property that 8, — 7 al-
most surely (a.s.) and &y, > @ a.g for all large n. This extends the resulta
af Gilat and Hill, who proved this result for § = ER(X). The prools here
ara based on an almost sure repregentation that we eatablish for §F statia-
ticg. As a eonsequence of this representation, we obluin the Marcinkiewicz-
Zygmund strong law of large numbers for U atatistics and for 2 special dass
of L statistics.

1. Introduction. Let X, X7, Xy, ... beasequence ofindependent and iden-
tically distributed (iid} observationa from a distribution with finite mean j.. The
usual estimate X, = n='y:* | X; has the property that X, — u a.s. and it flue-
tuates around p. However, in many practical situationa it may be desirable to
have an estimate g, of p that is conservative in the sense that p, — 2 as
and p, > p as for all large a. We will then say j, converges to i from above
and write jun, —+y g a8 (g, —_ u is defined in a similar manner). A candidate
estimator for the convergence from above is one that puts more weight to the
higher order statistica. Consider then the following estimator

3

= 1 n+l i
(1.1} X, = Z (.f; T Gpn +F)*Y[rh

i=1

where Xy < - < X, iz the order statistics of X;,... . X, and & > 2 is an
appropriate constant. The following theorem was proved in (Gilat and Hill {1992)
{hereafter referred to as GH).

THECREM 1.1 [Gilat and Hill {1992}], IfEIX [1*7 = oo for some v = 0, then
forany o, 2 < o < min{2+v/(1++),5/2), X; —, pa.s

The proof in GH is based on the following facts:

1. HE|XP*TY < oc for some 0 < v < 1, then X, — « = o{n="/1*7)) a g, This
iz known as the Marcinkiewice—Zyrmund atrong law of large numbers; see,
for example, Chow and Teicher {1378),
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2. If B|X| < oc, then

(1.2) hi 2 Y iXy = E(max(Xy, X)) as.
=1

n—m g2
i

(This s Theorem 1.1 of GH with & = 1.}
Ohserve that X, may be expressed as

e ) R e
(1.3 X=Xt oo 31X X
L=l
and hence may also be identified as a U statiatic, with varying kernel, of
order 2.

We prove an almost sure representation theorem for [J statistics (sco
Theorem 2.1}, and use it to establish the Marcinkiewicz—Zyemund strong law
of large numhbers for UV statistics (see Remark 2.1) and a special class of L statis-
tics (see Remark 2.2), Thiz may be used to give a different proof of Theorem 1.1,
It may also be used to obtain the almost sure rate of convergence in Theorem
1.1 of GH {see Bemark 2.2}, In fact, representation (1.3) also suggests a8 way of
extending the reaults of GH to the following situnation.

Suppose we wish to estimate ¢ = ER(X,, .. X5), where A 13 a symmetric
funetion of ita argumenta. For inatanee, when # ia the population variance, we
let m = 2 and A{xq,x:) = (x;  %20¢/2. We will use the notation U7, (g) to denote
the 7 statistics based on X7, ... X, corresponding to the symmetrized version
of the kernel function g. Consider the funetion

Dz, oo wand = Xy, - m) = Al a1, -

Define the egtimator
{1.4) O = Unih) + &, U, (D),

where a1, i8 an appropriate sequence of positive conatants converging to zero.
We shall show that 8, . # a.s (sce Theorem 2.2)

It im interesting to note that the amaller the value of 2., the leaser iz the hias
of the estimator. Wo will allow a wider choice of ¢, than allowed by GH. In fact,
ag the proofs will show, our choice of a,, is rather tight,

We use a similar idea for the problem of quantile estimation. For a suitably
constructed empirical distribution function G, woe show that G,(x) +_ Fix)
a.8., where F ia the cumulative distribution function of A(Xy,...,X.). The pth
guantile of 3, is shown to be an upper cstimate of the pth quantile of F (see
Theorem 2.3), -

In a subsequent paper, we will report finer asyvmptotic properties of our
edtimators,
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2, Main results.

2.1. An almost sure representation for U stafistics. If U,(k) 18 a IJ statistic
with kerniel & and EA? < oo, then it is known that

(2.1) 7, = U, + Ry,

where Efn is the usual projection of I, and R, = oln~logn)®) a.a. for all
4 = 1/2; see, for example, Serfling [(1880), page 189]. We establish a similar
representation under the weaker assumption E|h|1*7 < oc for some ~+ = 0. This
regult i3 of independent interest. It will be used to obtain the Marcinkiewicz—
Zyemund strong law of large numbers (to be abbreviated as MZSLLN} for I7
statiatics and for a special class of L atatistics. To state our result on L7 statistics,
we will adopt the notations of Serfling (1980). Also, € will dencote a generic
positive constant throughout the paper.

TuEoREM 2.1, Suppose U, is the U atatistic based on the symmetric kernel
howhere ER{ Xy, .. X' < 0o for some 0 < v < 1. Then

(2.2) Uy~ 8=U, ~8+Rga+ -+ R,

where

2.3 R, =o{n= "1+ log nV A+ log log 1)) a.s.

for any & = 1/{1 + ). Further,if forsomec =1, {;=---={,_1 =0, then

O, —6=Rgp=-=Re_1,=0 as.

Proor. Define as in Serfling [(1980), page 177]
(2.4) hi(e) = Bh(x, Xy, ..., Xn) — 0
and T, — 8 = (m /)T h1(X)). Note that

U,—8=U,—8+R,,

where
Hl =] m
myin
2 ()0) w-xn
= i=e

is also a IV statistic with kernel

Hxt,oon @) = hley, . 2 = Y Rylx)— 8

i=1
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and for each j=2,... m,
Sm:: E: gdj;:“'rxhl r121L
1£i<-n<h<n

is a martingale and Eg;(x,, ... %1, X;} = 0. See Beriling |{1980), page 178] for
the definition of the g/'s.
We first establish (2.3) for f = 2. Define

Ay = 23+ Jog ny VY 1og log n) =",
It iz enough to show that for any = = 0,
P(2un%|8y] = £ 10.) = 0.
Since A, iz nondecreasing for large n, it suffices to show that

a o
ZP{B#}= ZP(}.EEH max .ﬂ_2|32n| = E) < o0,
k=1 k=1

O el

For anvn = 2,

| |1+".' PR | 14
E|Sy|"t =B 3 gz{m.,xh}i =E|3 N @(X,. X,)
1§ <Tig <l iz=8f=1
i n 1+
=E ) Dy
Lig=12

where Dy(in) = iz '11g.2{X£1 X0, 2 < iy < n,is amartingale difference sequence.

By Burkholder's inequality, the above cxpectation is bounded by
| n (L+~)/8 o
> Ditiz) = CY E\Dyli) 7,
fy=2

fy=2
Now observe that for every fixed i, g2(X;, . X, ), 1 <{1 < i3 — 1,15 a martingale
difference. Thus, using the same argument again,

CE

n oip—1

(2.5) ESum'*"<CdY > E

fw=8i1=1

g X, X,) |1 < Cn?

since Ef|1* " < so implies Elgs|1*7 < oo
Using (2.5} and the maximal inequality for the martingale Sy,

(k) o
> P(B) = ZP(@M sup S| = 62%)
k=1 k=1 '

o8 < B

o
€ O3 O (%) (202
k=1
oo

< CY E Hog k) M7 o o,
he1 :
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gince § > 1/(1 + -} Thia completes the proof for j = 2,
A similar argument shows that

E|S;, MY < Cnl.

Using the martingale property again, we have the required order for ;. The
second part of the theorem is trivial, O :

Erwark 2.1, Note that (If, — 0} is a mean of iid random variables with
zero mean and finite {1 + v)}th absolute moment. Thus from Theorem 2.1 it
follows that:

i) If0 < v < land ¢ > 0, then U, — 8 = o(n=*/1+7) a5, This may be
termed as the MZSLLN for U7 statistics.

M) 0o~y land == 1 =0, & =0 forsomec > 1, then

U, — 8 =o(n "1 N log n)/1* log log n)’] as.

for any & = 11 + ).
(i} If v = 1 and ¢; > 0, then using the LIL for iid random variables, one
may obtain

U, —#=0(n"Yloglogn)?) as.

REMARK 2.2, GH have shown that if £|X| < o, then for any nonnegative
integer &,

k1l

R+l
i
i=1

L.k} = X — E(max(Xy,... X)) =M, as,

where Xjy; = -+ = X, are the order statistics of X1, ... X, See also Helmers
{1877y and van Zwet (1980}

Note that for each k. L (%} iz an L atatiatie and F,(0) is simply the zample
mean, Given the MZSLLN for the sample mean, it is natural to ask if a similar
result may be proved for L, (k).

(a) Remark 2.1 may be used to show thatif E|X|!*7 < oo, forsome 0 < ~ < 1,
then

(2.6} L (k) Mk:o[n'“”rﬂ*’f}} a8

This may be proved as follows. First let & = 1. Consider the kernel Az, xy) =
max(x;,xy) and the corresponding {7 statistic UU.(A). From Remark 2.1 it
follows that

(2.7} Uih) — Mz =o{n~/'1*7)  as,
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On the other hand,
Uu) = (3) 7Y maxtXe X
l<i<i<n
-1
G T %
laicjisn
-1
) T mw-v
l=j=n
n Ly

and henee (2.6} follows from the usual MZSLLN for sample mean and (2.7}, For
general k, it may be shown by algebraic calculations that

L‘n{k} = Un{hj + Rn:

where flxy,....x;) = max(xy,....x) and R, involves linear combinations of
L,(s), 1 = s <k — 1, with coefficients of smaller order. Hence by induction, the
result follows for all .

{b) when -~ = 0, the above arguments can be used, along with the strong law
of large numbers for U statistics (see Serfling (1880}, Theorem A, page 180] to
show that I, (&) — M, = 0(1} a.8. This is precisely Theorem 1.1 of GH.

2.2 One sided convergence.  Recall the estimate
B = Iylh} + a, U, (D),

Define A = EJR(X1,.. .. X0} —#X, 1. .. . Xon)| and note that A > 0 whenever
F, the distribution of k( X, ... ,Xy), iz nondegenerate.
THEOREM 2.2, Suppose ER(X,,... . Xo)|1*7 < oc forsome 0y = 1,
(i) If + < 1, then t, —. 8 a.s. provided lim infa,n*/11+¥ = 0,
(i) Ifv = 1, then 0, —. £ a.8. provided liminfa,n'*(log log n)~/? = .

REMARK 2.3. Note that taking m = 1 and k(x) = x, we essentially get the
estimator X, of GH with a, = n~"*~ 2, where o is as in Thecrem 1.1, Theorem
9.2 is a stronger assertion than GH for any 0 < + = L.

Proos. When F is degenerate, there i nothing to prove. When F is not
degenerate, write '

B — 8= Unlh) — 6 + 0, (UnlD) — A) + an A
From Remark 2.1, when + < 1,
(R} —G=o{n~ ") ag
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and hy the strong law of large numbhers for LT atatistics,
U —A=o0(l} as

and hence (1) follews from the condition on the sequence a,,.
When v = 1, uging the LIL for IF atatistics,

|L kY — ) = O{n‘uz{lug log %) as.

Thus again the result follows by using the given condition one,. 0

REMARK 2.4, When ¢ = -+ = ¢;_1 = 0 the range of values for a, may be
extended by using Remark 2,1,

REvaRK 2.5, It may be noted that there are other estimators that will
achieve positive convergence. In general, any estimator of the form

= Uplhl+ an By,

where E, iz auch that E, — F = o(1) a.a. for some F > 0, will converge from above

to #. Some possible choices are [7,(D*) for a kernel D* such that E(I¥) = 0, X, ,f
when E(X) £ 0, U,{|#|) and so forth. The choice U, (D} that we have used has
the advantage that it has the same order of moments as U7, (k), provides a IJ
atatistica representation for #, and also has the appeal that it is a dispersion
index. Even though vur later asymptotic results will be stated and proved for the
ostimator 8, = Uy (h)+a, U (D), it will be clear from the proofs that many of these
results remain valid for &, with 12 replaced by any other zuitable kernel D7,

The optimality of 7, (k} as an estimate of 4 is well known. It will be an
interesting problem to chtain guidelines for the choice of the perturbation that
is added to it to obtain convergence from above, Our choice U7,(7) may play a
gignificant role in this respect.

2.3. Estimation of guantiles. Let F be the distribution of A(X;, ..., X,
where £ is a symmetric kernel, and let F, be the empirical distribution funetion
that puts equal mass at each W;, the N = ([ ) values of A(X; ... X, ).

Define

(2.8) G =F, —aF(1-F)
Ohserve that
Y ;
1 - 1. 25
{29} Grt(:i‘:]= HZIHVI-U] :x}[l—aﬂ(l+ﬁ.— F)‘|
j=

where Wy, < Wig = .- < Wiy are the ordered values of the Wi's, 1 <{ < N,
Note that &, is an empirical distribution function that gives more weight to
the higher order statistics and less to the lower ones. It may be noted that the
estimator (7, resembles the estimator given in (12) of GH when m = 1.
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In the following lemma we derive a probabilistic bound on the Eolmogorov—
Smirov statiatic I, for the empirical distribution of a UV statistic. This bound,
which will be used in the proof of Theorem 2.3 on the upper convergence of quan-
tiles, ia slightly weaker than the best possible bound known for the empirical
distribution of iid ohservations.

LEMma 21, LetF, bethe empirical distribution function of a U statistic with
kernel A(xy, ... 200 Define Dy, = sup, | Falx} — Flx)|, where F is the distribution
finction of A(xy, ..., xn ) Then

(2.10) P(D, =t} = Oyt Lexp(—Cyni?)

for some constants C and Cy.

Proor. For any integer s, let x, 3 = ¢lk/s), where i) = inf{x: Fix) = u}
and define

DE:“’ = lrj:lf-ﬁnmﬂx {an{xs,_k} E F(.xs,_k}l; |Fn{xu,k_.} = F{Ialk—;ll}

= max max{cy, . g Fesat
1<k<s

as in Billingsley [(1991), page 276].
Then D, < D, , + 1/s. Choosing & = [2/¢] + 1, we have

(2.11) PD, =)< P[D, n 2t 1fs) < P(D, , = £/2).
For each =, the terms o, , » and &, ; » are U atatisties with a kernel that is
hounded by 1.

Using Theorem A of Serfling [{1930), page 201], for each ¢,
(2.12) Plevg o3 = £} = 2&1p(—2[nfm|t2).
TJsing Bonferroni's inequality and relations (2.11) and (2.12),

P(D, = 4) = 4([2/¢] + 1) exp( ~2[n/m]#).
This proves the lemma. U

For any p, let
& = inf{x: Fix) = p}
be the pth quantile of ¥ and let
:f;." = inf{x: G,lx} = p}
bc the pth quantile of . Alao let
W (x) =2 — @px(l — x), 0=zx=1, and p,=uYp
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We prove the following theorem.

TUEOREM 2.3. Lef a, be such that lim inf a,n1%(log log n) V2 = cc. Then;
(i) lim, sup, |Golz) — Fix)| = 0 a.s.

(ii) Golx) —_ Fix) a.s for every x.
{idi} 5;." -+ Ep a5 for all 0 < p = 1. Further, if for all sufficiently large n,

anp(l —p) = [Bm,ht}ugn 1/3(lag n}l2,

then £, & a.s forall 0 <p <1,
tiv} Mean of G, — mean of Fa.s

Proor. The first part (i) follows from the obgervation that |G, — Fu|| = aa
and the Glivenko—Cantelli theorem for U statistics, which says that |F,, - F|| -
0as

(ii) Note that
Gn — F = {1 —a,)Fy — F)+a,(F - F¥) —a,F(1 - F).

For each fized x the firat term is oln,) a.s. from the LIL for 7 statistics. The
second term is obviously olw, ). Hence (il) follows.

(iii} By using the Borel-Cantelli lemma, it easily follows from Lemma 2.1
that almost surely,

(2.18) ID,| < Con~Y*(log n)-2,

where C; may be chosen to be any number greater than (3m /4)Y/2; see the proof
of Lemma 2.1. Note that G, = 4, (F,,) and for every n, y,{x)is strictly increasing
in x.
Using Lemma (iii) of Serfling [(1980), page 3], first observe that
GNPy =& = & EF (N p)) 2 F i (p)

(2.14)
i#f F{F5 (6, '(0))) = P

Using the bound (2.13) on I, and Lemma (ii) of Serfling [(1980), page 3], we get

F(F M (i p)) = Fa(F, (67 (0)) ) — Com™ M (log m)'/2
= W p) — Con~Y4(log m)'/2,

n

(2.15)

Solving the quadratic equation ¢, (x) = p, one gets
(2.16) wy X(p)=p +ap(l - p)+Ofak).

Using the condition on a,, the result follows from (2.14)-(2.186).
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{(iv} Note that

N
E,(¥)=U,h) - 5 3" (N;—l —.f) Wi

Thus

N,
a, N+l .
B, (V) - Unlh)| < 55> | —5— —;llwml

j=1

_N
- L3
< Cﬁ;; Wi nl = Ca,Us(|h)).

Obzerve that e, -+ 0 and thus using the SLLN for U7 statistics, (iv) followas.
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