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Abstract 

In neural networks, convergence in iterative learning is a common problem. For fast learning one should be able to 
control the rate of convergence. In the present paper, the single-layer perceptron model for two classes is considered where 
the rate of convergence is studied with several choices of the gain term in the updation rule. Experimental results on a 
number of two-class problems are reported. 
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1. Introduction 

For perceptron learning (Rosenblatt, 1959) in a 
linearly separable case for a two-class problem, the 
following rule is used to update the components w i 
of  the weight vector W on the basis of  the feature 
vector X: 

w i ( t +  1) = wi(t  ) + , f ( X ( t ) ,  W ( t ) )  (1)  

where 7/, called the gain term, is a small positive 
quantity, t is the number of  iterations and f is a 
function of X( t )  and W(t), the feature and weight 
vectors respectively at the tth iteration. W(t)  deter- 
mines the perceptron classifier at time t. 

Though, in a linearly separable case, W(t)  con- 
verges, it will not in general converge when the two 
classes are not linearly separable. In such cases, to 
achieve convergence, 7/is made dependent on t such 
that r/(t) decreases with increasing t under certain 
conditions. However, little is known about the rate of  
convergence of  W(t)  in such situations (Fukunaga, 
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1990). In this paper, we compare, on an empirical 
basis, the rates of  convergence for differen i choices 
of  ,/(t). For this, we simulate a number of  two-class 
problems using Gaussian distributions. It iis found 
that, for a faster rate of  convergence of  W(t), 71(t) in 
many situations should depend on the problem at 
hand in general and on how well W(t)  discriminates 
between the two classes, in particular. 

2. Background 

Let us consider a two-class problem in the p-di- 
mensional feature space where the classes !are indi- 
cated by 0 and 1. Suppose W =  (w 1, w~ . . . . .  w e, 
Wp+m) r is a ( p +  1)-dimensional vector, ~here  T 
indicates transpose. Let, for a feature vector X = 
(X 1, X 2 , - . . ,  Xp) T 

p + l  

0 if E wixi<O, 
i=1 

y = g ( X ,  W) = p+l  (2) 

1 if E wixi~O 
i=1 
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where Xp+l = - 1 -  Let (Xl(t), x2(/) . . . . .  Xp(t), 
d(t)) T, t = 1, 2 . . . .  be a sequence of observation 
vectors where xi(t) indicates the value of the ith 
feature at time t (i = 1, 2 . . . . .  p)  and d(t)= 0 or 1 
depending on whether X(t)=(Xl(t)  , x2(t) , . . .  , 
xp(t)) T comes from class 0 or class 1 respectively. 

Perceptron learning means getting hold of a weight 
vector W for which the y values match the d values 
in as many observations as possible (Hush and Home, 
1993). The perceptron algorithm that iteratively 
learns this W using the above sequence of observa- 
tion vectors updates the weight vector in the follow- 
ing way (Lippmann, 1987): 

W ( t + l ) = W ( t ) + r l [ d ( t ) - y ( t ) ] X ( t )  (3) 

where (3) is a particular form of (1) and y(t)= 
g(X(t), W(t)). 

Now, W(t) converges in linearly separable cases, 
but not in cases which are not linearly separable. 
However, W(t) will converge in all cases if ~/ de- 
creases with increasing t satisfying 

lim ~/(t) = 0, (4) 
t - - - ~  oo  

o o  

E ,7(t) = (5) 
t = l  

o ¢  

E r/2(t) < ~" (6) 
t= l  

The physical meaning of these conditions can be 
described in the following way. Condition (4) allows 
W(t) to settle down in the limit. Condition (5) 
guarantees that there is enough corrective action to 
avoid stopping short of the optimum W. Condition 
(6) ensures that the variance of the accumulated 
noise is finite so that the effect of noise can be 
corrected (Fukunaga, 1990). 

The conventional choice of , / ( t ) =  1/t  satisfies 
each of the conditions (4), (5) and (6). But this type 
of predetermined decrease of 7/(t) ignoring the prob- 
lem at hand, often leads to very slow convergence of 
W(t) (Duda and Hart, 1973). In this paper we study 
the nature of convergence of W(t) for a number of 
choices of ~7(t) satisfying (4), (5) and (6) in two-class 
problems with varying amounts of overlap between 
the classes. It has been found that , / ( t ) =  1/t  per- 
forms poorly in terms of the rate of convergence of 
w(t). 

3. Convergence of W(t) 

The following four choices of ~/(t) are considered 
in this paper: 

r/l(t ) = ( t ) - l ,  (7) 

,72(t) --- (t)  -051, (8) 

r h ( / )  = ( h ( t ) )  -1, (9) 

r /4(t  ) = ( h ( t ) )  -°'51 ( 1 0 )  

where h(t) = t × p ( t )  and p(t) = the probability of 
misclassification of the classifier obtained at time t. 
h(t) tends to give a higher value if the overlap 
between the two classes is larger. In other words, the 
change in W(t) is large when the class overlap is 
small. Thus, cases (9) and (10) depend on the classi- 
fication problem at hand while cases (7) and (8) do 
not. 

Here, we deal with synthetic data where the two 
classes follow Gaussian distributions with known 
parameters. For learning, a sequence of observation 
vectors is generated in the following way. At time t, 
first class 0 or 1 is randomly selected each with 
probability 0.5 and then a feature vector X(t) is 
randomly selected from the selected class. W(t) is 
updated with X(t) using Eq. (3). For the study of 
convergence of W(t), two quantities are computed - 
percentage of misclassification a(t) and a measure 
of disparity b(t) between W(t) and the weight vector 
corresponding to the Bayes classifier for the two-class 
problem under consideration. For computing the rate 
of misclassification, a testing set S of size 2n is 
generated a priori where n feature vectors are ran- 
domly selected from each of the two classes. Sup- 
pose nl(t) is the number of feature vectors in S 
coming from class 0 and satisfying )-'~/P_+I 1 w i ( t ) x  i ~ 0 
and n2(t) is the corresponding number of feature 
vectors coming from class 1 and satisfying 
~,iP+llwi(t)xi < O. (nl(t) + n2(t)) gives the number 
of misclassified feature vectors in S resulting from 
the classifier determined by W(t). a(t) is computed 
as 100(n 1 + n2) /2n.  The quantity a(t)/lO0 can be 
taken as an estimate of p(t). The values of b(t) are 
studied to see if W(t) asymptotically gives the same 
classifier as the Bayes classifier. 
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4. Simulation results Table 1 

Misclassification (%) 

We will simulate here two-class problems using (o-) Perceptron 
Gaussian distributions in two dimensions. Two cases 
are considered here depending on whether the Bayes 5 0.35 
classifier is linear or non-linear. In the first case, the 10 7.2 
two classes have the same covariance matrices while 15 15.6 
in the second case they have different covariance 20 5,95 
matrices. 25 10.95 

~1 ~z ~3 ~4 

Bayes 

! 

0.35 0.35 0.6 0.00 
0.6 4.05 0.4 0.25 

1.75 2.1 1.9 1.75 

6.15 6.6 6.35 6.0 

11.65 11 11.35 1L0 

4.1. Linear case 

The means of the two classes are /~1 = (20, 40) 7 
and /*2 = (80, 60) T and the common covariance ma- 
trix is 0- 2I. Here, p = 2. Five different values of tr, 
namely, 5, 10, 15, 20 and 25 are considered in the 
present case. Before learning starts, a testing set S 1 
of 2000 samples (1000 randomly selected from each 
of class 0 and class 1) is formed. From the popula- 
tion parameters, the Bayes classifier is computed as 
(wl*, w~, w 3)  where a feature vector (xa, x2) ~ is 
classified in class 0 if Wl* x 1 + w~ x 2 - w 3 < 0 and 
in class 1 otherwise. In the present example, wl* = 
0.015, w2* = 0.005, w3* = 1. 

It can be seen that, for updating W(t), it is not 
possible to estimate p(t) by computing a(t) for all t 
since it will drastically slow down the learning pro- 
cess. A less accurate estimate of p(t) is computed in 
the following way. We only take note of real upda- 
tions, that is, the number of times when d(t) and 
y(t) (defined in Section 2) are different. Let q(t) 
denote the total number of updations up to time t. 
Then p(t) is approximated as q(t)/ t  which asymp- 
totically gives p(t). 

Now, at selected numbers of iterations, the fol- 
lowing quantities are computed. 

(i) a(t)= percentage of misclassification of the 
perceptron classifier obtained at the tth iteration with 
respect to the testing set S 1. This is computed as 
lO0(n 1 + n2)/2n. 

(ii) b(t) ={[wl(t)/w3(t) - w; /w~  ]2 
+ [wz(t)/w3(t) - w~/w~ ]2}1/2. 

The value of b(t) shows how close the perceptron 
classifier at the tth iteration is to the Bayes classi- 
fier. The values of a(t) and b(t) are computed at 
iterations 1, 20, 50, 250, 500, 1000, 5000, 10000, 
50 000, 100 000, 200 000, 300 000, 400 000, 500 000, 
600 000, 700 000, 800 000, 900 000, 1 000 000 which 

are marked as 1, 2 . . . . .  19 respectively in Figs. 1 and 
2 where the graphs corresponding to r/i are indicated 
by symbols with legends i (i = 1, 2, 3, 4). Figs. 
l (a)-(c)  show the values of a(t) for all foui choices 
of ~7(t) for 0- = 5, 15 and 25 respectively. Similarly, 
Figs. 2(a)-(c) show the values of b(t) in such cases. 
In all these cases, the starting vector W(0) ig always 
taken as (0.01, -0 .03 ,  1.0) which in fact represents 
the straight line joining /x 1 and /.L 2 and is perpendic- 
ular to the straight line giving the Bayes boundary. 
This is to let the iterative process start l from a 
position with high rate of misclassification i(in fact, 
50% in this case). From Figs. 1 and 2 it carl be said 
on the whole that in terms of the rate of convergence 
of both a(t) and b(t), ~2,~3 and 774 perform nearly 
equally well and perform better than r h. After 
1 000 000 iterations the percentages of misclassifica- 
tion achieved by the four perceptron classifiers and 
that by Bayes classifier are given in Table 1 for 
0- = 5, 10, 15, 20 and 25. It can be conchlded that 
the performance of the best perceptron is nearly as 
good as that of the Bayes classifier. 

4.2. Nonlinear case 

The means of the two classes are /3.1 = (40, 0) T 
and /z 2 = (100, 0) T and the covariance matrices are 
"~1 = °-21 and "~2 = 0-22I. The feature space here is 
made 5-dimensional indicated by (x 1, x 2, x 2, x 2 2, 
XlX 2) making what is quadratic in 2 dimensions, 
linear in 5-dimensional space. Thus, p = 5 here. 
Three different sets of values for the pair (0-1, 0"2) 
are considered - (10, 15), (15, 20) and i(20, 25). 
Before learning starts, a testing set S e iof 4000 
samples (2000 randomly selected from each of the 

i 
two classes 0 and 1) is formed. In the present case 
also p(t) is approximated as in the linear caSe above. 
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Fig. 1. t vs a(t) graphs with (a) o-=  5, (b) o- = 15 and (c) o" = 25. 



20 

U. Bhattacharya, S.K. Parui / Pattern Recognition Letters 16 (1995) 491-497 

2 6  

16 

10 

40  

(a) 

0 I I I I I I I I I I I I I I I I I I I 

1 2 3 4 6 6 7 8 9 10 11 12 13 14 16 16 17 18 19 

- -~ - -  1 l 2 ~ 3 - - ~ -  4 

495 

3O 

26 

2O 

b(t) 16 

10 

5 

0 

(b) 

1 2 3 4 ,5 6 7 8 9 10 11 12 13 14 16 16 17 18 19 

t 

--~-- 1 - 4 - -  2 - -~ -  3 - -~ -  4 

30  

10 

b(t)2o 

. . . .  ~. _~ _ _~ ~ _~ _~ ~ ~. 

1 2 3 4 15 0 7 8 9 10 11 12 13 14 16 10 17 18 19 

t 

o 1 - - 4 -  2 - -~ -  3 o 4 

Fig. 2. t vs b ( t )  g raphs  wi th  (a) o" = 5, (b) tr  = 15 and  (c) o- = 25. 
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b(t) 



496 U. Bhattacharya, S.K. Parui / Pattern Recognition Letters 16 (1995) 491-497 

8 0  

6O 

4O 

a ( t )  30  

2O 

I0 

0 

(a) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 16 17 18 19 

t 

- - ~ -  1 I 2 " - ~ -  3 "4a -  4 

6O 

6O 

4 0  

a c t  ) 30  

20 

(b) 
• 

10 . . . . . . . . .  

0 I I I I I I I I I I I I I I I I I I I 
1 2 0 4 6 6 7 8 9 10 11 12 1~3 14 16 16 1"7 18 19 

- t ~  1 - ~  2 - w ' -  3 - 8 - 4  

8° t " ( c )  

'° I 
3 0  

2O 

10 

/ I  I I I I I I I I I I I I I I I I I I 

,,(t) 

o 
1 2 3 4 5 0 7 8 9 10 11 12 13 14 15 16 17 18 19 

t 

' ° - - 1  - 4 - - 2  --'~-- 3 - - ° - 4  

Fig.  3. t vs  ¢ ( t )  g raphs w i t h  (a)  o- 1 = 10, or z = 15, (b )  (71 = 15, o" z = 20  and (c )  o- 1 = 20,  o- 2 = 25. 
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Table 2 
Misclassification (%) 

(~1,~2) Perceptron Bayes 

71 72 73 74 

(10, 15) 0.875 0.925 0.925 1.025 0.850 
(15,20) 5.15 6.225 5.225 7.05 4.400 
(20, 25) 10.85 9.95 10.125 11.375 8.875 

Here also at the same selected number of iterations 
the quantities a(t) and b(t) are computed with re- 
spect to the testing set S 2. It is seen from the values 
of b(t) in each of the three cases that W(t) does not 
converge to the Bayes classifier (quadratic). Figs. 
3(a)-(c) show the values of a(t) for .11,.12,.13 and '14 
for the three different pairs of (trl,0-2). In terms of 
the rate of convergence of a(t), the four choices of 
*1(t) form two distinct groups - .11, .13 and .12, *14- 
The first group performs almost uniformly better 
than the second one. After 1000000 iterations the 
percentages of misclassification achieved by the four 
perceptron classifiers and that by the Bayes classifier 
are given in Table 2. 

5. Conclusions 

In both linear and non-linear cases above, .13 
performs better than (or at least equally well as) .11, 
.12 and .14 in terms of rate of convergence of W(t) 
measured on the basis of classification error. We 

have so far considered *1(t) which satisfies the con- 
ditions (4), (5) and (6). Now, there may be choices 
of *1(t) violating condition (5) or (6) where W(t) can 
still converge. Our next plan is to consider such 
choices of *1(t) and the corresponding rate of con- 
vergence of W(t). In the present paper the Choice of 
g (Eq. (2)) has been taken as hard limitin~ non-lin- 
earity. Other choices of g (sigmoid non-linCarity, for 
example) can be investigated. 
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