JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 30, 85-90 (1995)

Optimal Communication Algorithms in Distributed Loop Networks

RasB K. Das AND BHABANI P. SINHA'!

Electronics Unit, Indian Statistical Institute, Calcutta 700035, India

Time optimal algorithms for multiple node broadcast and
single node scatter in distributed loop networks have been pro-
posed in this paper. These algorithms involve the minimum
number of packet transmissions to effect both multiple node
broadcast and single node scatter. © 1995 Academic Press, Inc.

1. INTRODUCTION

In multiprocessor networks, the computation time at
each node is often small compared to the interprocessor
communication time. As a result, it is necessary to perform
internode communications as fast as possible. There are
different types of communication requirements in a net-
work [3], e.g., single node broadcast, multiple node broad-
cast, single node scatter, and multiple node scatter (also
known as total exchange).

Distributed loop network is one of the popular network
topologies. A distributed loop network [5], denoted by
G(n; 1, 5), is defined as follows:

(1) The total number of nodes in the network is 7;

(2) s is an integer such that 1 < s < n/2;

(3) If the n nodes are numbered as 0, 1, 2, ... n — 1,
then the node i is connected to the nodes (i = 1) mod n
and (i * s) mod n by symmetric (bidirectional) edges for
alli,0=i=n-1

As an example, the graph G(14; 1, 6) has been shown
in Fig. 1. The network G(n; 1, s) has many attractive fea-
tures such as regular structure and constant degree, and
is well-studied in the literature [5, 6]. This network is a
special case of a well-known class of networks called circu-
lant graphs [1], which have some good properties in the
context of optimal fault-tolerant design [2]. By suitably
choosing the value of s, we can achieve a diameter on the
order of Vn. Optimal routing algorithms for distributed
loop networks have been proposed in [8], for the fault-
free case as well as for the case with a single fault.

In this paper, we consider the multiple node broadcast
and single node scatter problems in a distributed loop
network. Our proposed algorithms are based on the model
of multiple link availability (MLA) [3], where we assume
that each node can receive or send packets through all of

! E-mail: bhabani®@isical.ernet.in.

its adjacent links simultaneously. Links are bidirectional
and full duplex communication is possible through each
link. However, if there are more than one packet to be
transmitted through the same link in the same direction
at the same time, only one packet can be sent, and the
remaining packets have to wait in a queue. We also assume
that each packet transmission takes one unit of time; i.e.,
packets are all of the same length. Packet transmissions are
assumed to be error-free. Under this model, our proposed
algorithms for both multiple node broadcast and single
node scatter are optimal in time. As each node has to store
the packets from all the nodes of the network, a buffer of
size n is required at each processor node.

In Section 2, we shall first discuss a few basic results and
then present our algorithm on multiple node broadcast in
optimal time. Section 3 deals with the time-optimal algo-
rithm for single node scatter.

2. MULTIPLE NODE BROADCAST

Since the degree of a node in a distributed loop network
is 4, a node can receive at most four packets at a time.
Since each node has to receive a total of (n — 1) packets
for multiple node broadcast, the minimum time for multi-
ple node broadcast is [(n — 1)/47 . A time-optimal algo-
rithm for multiple node broadcast should be completed
within time [(n — 1)/4], provided of course that the
diameter is not more than this quantity. We have shown
that the diameter of G(n; 1, s) is less than or equal to

[(n — 1)/4] and have developed a multiple node
broadcast algorithm which requires [(n — 1)/4] time,
and hence is optimal with respect to time. The minimum
number of packet-transmissions required for this opera-
tion is n(n — 1).

Our algorithm for multiple-node broadcast is based on
the ideas described in [3]. There, it has been shown that
for a time-optimal multinode broadcast algorithm in a
hypercube, all that we need is to construct a spanning tree
rooted at a certain node satisfying certain properties. Let
A, denote the set of links of the spanning tree those are
used for communication at the time instant ¢, t = 1, 2, ...,
T, such that U7_; A, is the set of all edges in the spanning
tree. If the set A, satisfies the property that for each time
t no two links in A, are of the same type (along the same
dimension of the hypercube), then by replicating this tree

0743-7315/95 $12.00
Copyright © 1995 by Academic Press, Inc.
All rights of reproduction in any form reserved.

86 DAS AND SINHA

and the time schedule at each node, a multinode broadcast
algorithm can be derived which completes within time 7.

In a loop network, we define the type of a link [v, w]
connecting v to w as A(v. w), where w = (v +
A(v, w)) mod n. The links can be of four types, namely,
+1, —1, +s, and —s.

ExampLE 1. Consider the distributed loop network
G(14; 1, 6) as shown in Fig. 1. The type of the link [1, 2]
is +1 and that of the link [1, 7] is +6. The types of the
links [13, 0] and [12, 4] are also +1 and +6, respectively.
The types of the links [6, 7], [0, 13], [1. 7], and [6, 0] are
+1, =1, +6, and —6, respectively.

In what follows, we shall describe a method for generat-
ing A,o’s (0 stands for source node 0) such that for all ¢,
A, contains at most one link of each type. For any other
source node u € {1, 2, ..., n — 1}, we use modulo n rotation
along the loop to obtain A,, from A,, as follows: If
[v, w] € A,,. then the link [(v + ©) mod #, (w + u#) mod
n] € A,..

Let §;, 1 = k = d, be the set of nodes at a distance &
from the node 0, where d is the diameter of the graph G(n;
1, s). A shortest path between any two nodes consists of
either of +s and —s links and/or either of +1 and —1 links
[8]- Hence, any node in S;, can be written in the form a,.s
+ a,, where a, and a, are integers and |a,| + |a,| = k. Here
|la;| is the number of +s or —s links and |a,| is the number
of +1 or —1 links used in the path. For a node « in S,
the node n — « is also in S,. The nodes in S can be easily
enumerated from those in S, . For k = 1, 2, ... d, we
generate the elements of S, in pairs, in the following order:

k., —k), (s + k=1, =s — (k — 1)), (s — (k — 1),
—s + (k — 1), ...,

(s + (k= j), —js—(k=j), (js — (k=) —js+
k =) oo (kos, — ko).

Here all numbers are taken modulo s, the node pair
(k, —k) are reached using k& number of +1 and -1
links, respectively, and so on.

It may be noted that in the above method of generation,

FIG. 1. The distributed loop network G(14; 1, 6).

some eclements of S, may be duplicated and in that case,
the corresponding term will be indicated by a dash. To
facilitate our later discussions, we construct a d X 2d matrix
M with these generated pairs of S;’s as follows:

1. The elements of 5, are entered in the kth row of the
matrix, each pair generated as above being placed in one
column. The pairs are placed in the successive columns
in the above order of their generation, starting from the
column 1.

2. The entries in columns 2k + 1 through 2d are all
filled up by a null (J) entry.

3. If an element is already generated in some S,, p <
k, then we keep it out to avoid duplication and mark the
corresponding position in S, by a dash (—).

An illustrative example is given below.

ExampLE 2. Consider the network G(14; 1, 6) of Fig.
1. The diameter d of this graph is 3. Hence, M will be a
3 X 6 matrix with the pairs of Sy, §; and §; as follows:

Si:(1,13) (6,8 @ %) % %
$:2,12) (7.—) (5.9 (——) O %
S::(3,11) (——) 4 10) (——) (——) (——)

Whenever a pair of generated nodes in S, will be encoun-
tered in our discussion, we will treat that as an ordered pair.

Before describing the algorithm for multiple node
broadcast, we investigate the following properties of the
sets S;'s.

2.1. Properties of the Sets S,

We observe the following properties of the sets §,’s (all
node numbers are taken modulo n):

ProOPERTY 1. The pairs generated as above are always
in the form (u, n — u). In a generated pair, if only u is
present, but not n — u, then u must be equal to n/2. In other
words, the nodes are duplicated in pairs (except the node
n/2).

PROPERTY 2. Let | be an integer, 0 < j < k and let k >
2. If an element s + (k — j) is present in Sy, then S,
must contain both the nodes (j —)s + (k — j) and j.s +
(k — j — 1). A similar property also holds for the elements
of the form js — (k — j), — js — (k — j), and —js +
k —j)in S,

PrOPERTY 3. For k > 2, if the node k is present in §,,
then S, _, must contain the node k — 1 and if the node k.s
is present in S;, then (k — 1).s € §;_,.

PROPERTY 4. In the process of sequentially generating
the pairs of Sy, each S, will contain 2k pairs of nodes, until
any duplication occurs. If a duplication occurs in some §,,,
either k or k.s or both will be absent in S, for k > p.

Proof. Omitted due to brevity. Detailed proof is given
in[7]. =

OPTIMAL COMMUNICATION ALGORITHMS 87

PrOPERTY 5. If n is even and the node n/2 occurs in Sy
in any form other than (k.s) then all 4 nodes adjacent to
the node n/2 must be in §;_,.

Proof. Omitted due to brevity. Detailed proof is given
in(7]. =

PROPERTY 6. If for some k, |Si| < 4, then k is the diame-
ter of the graph.

Proof. Omitted due to brevity. Detailed proof is given
in[7. =

PrROPERTY 7. The diameter d of G(n; 1, s) is less than
orequal to [(n — 1)/4].

2.2. Generation of A,,

DeriniTiON 1. Let (w, x) be a pair in S,;. For (w, x) in
any form other than (k, —k) or (k.s, —k.s) we define two
pairs (w.,, x-;) and (w.,, x_;) in Si-; such that w and x
are connected to w.; and x_, respectively, by links of type
+1 and —1 and w and x are connected to w,, and x_;
respectively, by links of type +s and —s. When (w, x) =
(k, —k), then we define (w,,, x_)) = (k = 1, =k + 1)
and when (w, x) = (k.s, —k.s) we define (w,,, x_;) =
((k — Ds, —(k — 1)s).

DErFINITION 2. We define an ordered set S}, by selecting
the non-null elements of the k-th row of the matrix M, in
order from left to right, excluding the dashes(-).

Remark. The purpose of S; is to keep track of the
nodes which are not yet included in the spanning tree.

We first give an overview of the generation process.
A,p's are generated in the increasing order of ¢, starting
from ¢t = 1. In S|, there are two pairs (1, —1) and (s, —s).
Ay consists of the links joining the node 0 to the pairs in
S1. We generate the subsequent A,y’s as follows.

We note that we have generated the elements in S; in
the following order:

k., k) (s+k—-1,-s—-(k-1)),s-(k-1), —s +
(k= 1)), ... s + (k = j), —js = (k =), (s — (k =)),
—js + (k — 1)), .., (k.s, —k.s).

Before any duplication occurs there will be 2k such pairs
in S,. We select a set of four nodes (w, x, y, z) from S, as
follows. We select the leftmost pair in Si. Let this pair be
(w, x). We also select the rightmost pair in §;. Let this
pair be (y, z). We can always find A, connecting the nodes
(w, x, y, 7) satisfying the requirement of different link types
as {[w., w], [x-1, x], [y+s, ¥, [z, 2]} Next we delete the
pairs (w, x) and (y, z) from S} and select the leftmost and
rightmost pairs in the new S;. This way we go on until all
the nodes in the network are included in the spanning tree.

If (n — 1) mod 4 = 0, all four link types will be present
in each A,p. If (n — 1) mod 4 = 2, we make all but the
last A, with four links. If (n — 1) mod 4 = 3, one of the
A,y’s will have three links and the rest four links each. If
(n — 1) mod 4 = 1, we can make either one A, with 1

link and the rest with four links each or one A,, having
three links, another A, having two links and the rest with
four links each. We now consider below a few more points
in detail for odd and even values of n.

2.2.1. For Odd n

Since n is odd, the elements of S, will always occur in
pairs. If a duplication occurs in some §,,, for p = k, then
some pairs will be absent in S, and there may be odd
number of pairs in S;. In that case we have to select A,
by taking one pair from S, and one pair from S;.,. By
Property 3, either the pair (k + 1, =k — 1) or ((k + 1)s,
—(k + 1)s) will be absent in Sg.,.

Consider the case when the pair (kK + 1, —k — 1) is
absent in S;., and §; contains one pair, say (w, x). Since
Si+1 is nonempty S, must have more than one pair and
since we have started to connect the nodes in S, by selecting
the leftmost and rightmost pair, (w, x) cannot be of
the form (k, —k) or (k.s, —k.s). We select the rightmost
pair from S;.; say (y, z). If the pair (y, z) is of the form
((k + 1)s, ~(k + 1)s), we construct A, as {[w.;, w],
[x-1, x], [y-s. ¥, [2-5, 2]} Here (y.. z-5) = (k.s. —k.s)
which are already included in the spanning tree. If (y, z)
is not ((k + 1)s, —(k + 1)s), then we make A,y =
{lw-1, wl, [x-1, x]. [y«], [z, 2]} provided (w, x) #
(y.s5, 7_5), Otherwise we make A, = {[w.,, w], [x . x],
[yer.), [z, 2]}

If the pair (k + 1, —k + 1) is present in S;., we select
the pair (y, z) from the leftmost end of S,., and proceed
as before.

2.2.2. For Fven n

After any duplication occurs, the number of elements
in S, will be odd only when n/2 is present in S;, and even
otherwise. The generation process is same as that for odd
n, except when the node n/2 is to be connected to the tree.
When the node n/2 is to be connected and there remains
another pair (w, x) unconnected to the spanning tree, we
make A, consisting of three links, connecting the nodes
(w, x, n/2) and also maintaining the property of different
link types. If no other node remains unconnected to the
tree, then we make A, 4 consisting of only one link connect-
ing n/2 to the tree.

We now give an overall idea for the multiple node broad-
cast algorithm. At each node, a buffer of size n is needed
to store data packets from n processors. Each of these
buffers has n locations with addresses, ranging from O to
n — 1. The packet originated from node r will be placed
in the location (r — u) of the buffer of node u. The overall
arrangement can be shown as:

Pu) | Pw+ 1)y | Pu+2) | .P(ry.. | Pu—-1

address 0 1 2 r—u

P(r): Data packet originated from node r.

88 DAS AND SINHA

The sets A, Azg, ... A7y are determined beforehand
once for all, and we store for each instant of time, the
address of the buffer from which a data packet is to be
sent and the link along which that packet is to be sent. Let
[w,x] € Ap. Then [w + u, x + u] € A,,,. Hence at time
t, the node (w + u) must send the packet originated from
the node u, i.e., P(u) which is stored in location (n — w)
of its buffer, to the node (x + u). To implement this, we

need to store the buffer address (n — w) and the link type
A(w + u, x + u) which is same as the link type A(w, x).
Thus the information regarding the link [w, x] in A, is
sufficient to effect transmission of data packets from all
the nodes in the network. If A,y = {[w,, w], [x1, x],
[vi, ¥]. [z1, z]} we store the ¢th record consisting of four
pairs (b, 1)), (bs, b)), (b3, 1), (bs, l;) for any node
(w + u) as follows:

(n—w) Alw,, w) (n —x)) Axy, x)

(n—y) Ay, y) A(zy. 2)

b h b, I

bx I8 by 1y

There will be [(n — 1)/4] such records. Fort =0, 1, ...,
[(n — 1)/47, each node will fetch the rth record, and
transmit the packet in location b, along the link of type /.

3. SINGLE NODE SCATTER

In scattering, a node has tosend (n — 1) different packets
to each of the other nodes in the network. Since a node
can transmit at most four packets at a time, the minimum
time required for single node scatter is [(n — 1)/47] . Also,
no scattering algorithm can be completed in time less than
the diameter of the network. We have already shown
that the diameter of G(n; 1, s) is less than or equal to

[(n — 1)/4]. We will present now a time-optimal algo-
rithm for single node scatter which requires [(n — 1)/4]
units of time.

To describe our scattering algorithm, we assume that
the node (is the source node. The packets will be transmit-
ted from the node 0, along a spanning tree 7 rooted at
node (. T consists of four subtrees T.,, T_,, T\, and T,
rooted at the nodes +1, —1, +s, and —s, respectively. Each
of the four subtrees contains at most [(n — 1)/47] nodes.

With such a construction of the spanning tree, all the
nodes will receive their packets within time [(n — 1)/4],
if the following rule for transmission of packets is
obeyed [3].

Node 0 sends packets to distinct nodes in the subtree
(using only the links in T'), giving priority to nodes farthest
away from node 0 (breaking ties arbitrarily).

We also ensure that each packet travels along the short-
est path to its destination by making 7 a shortest path tree.

3.1. Construction of the Spanning Tree

We find the sets S,'s for the graph G (n; 1, s) as before.
We maintain the property that if a node u of a generated
pair (u, n — u) isin T.,, then the node (n — u) will be in
T orifuisin7,,, then (n — u) will be in 7T_,. We divide
the total set of (n — 1) nodes into two partitions of nearly
equal size: partition /, consisting of the pairs which will be

included in the trees 7', and T, and partition S, consisting
of the pairs which will be included in the trees 7., and 7"_,.

Before going into the details of partitioning the nodes,
we make the following observations on the matrix M.

Observation 1. In row k, the pair in column 1 is of
the form (k, —k). So we put all the pairs in column 1 in
partition /.

Observation 2. All the pairs of the form (k.s5, —k.s) will
be put in the partition S.

Observation 3. If a node u of a pair (4, n — u) in S,
is adjacent to some node «’ in Sy, then (n — u) is adjacent
to the node (n — ') in S, ;.

The method of grouping the nodes for partition / and
partition S is almost identical for odd and even values of
n. First, we describe the procedure for odd n.

3.1.1. For odd n

Since n is odd, there will be a total of (n — 1)/2 pairs
in all the sets S;’s. We collect the pairs for partition / as
follows. We leave out the pairs of the form (k.s, —k.s). We
take all the pairs in column 1. The maximum number of
such pairsis [(n — 1)/47 . If the number of pairs in column
1is [(n — 1)/47] then we put all these pairs in partition
I and the rest in partition S. Otherwise, from successive
columns we select pairs starting at the bottom of that col-
umn and move upwards until we get [(n — 1)/4] pairs
(see Example 3). Later, we will show that it is indeed
possible to collect {(n — 1)/47] pairs in this way.

The pairs in partition / are connected in such a way that
if one node of a pair is connected to T.,, then the other
node of that pair is connected to 7_;. Now we have the
following lemmas.

Lemma 1. Suppose (u, n — u) is a pair in partition [in
some column c. Then the pair (u, n — u) can always be
connected to the subtrees T, and T_,.

OPTIMAL COMMUNICATION ALGORITHMS 89

Proof. The pairs in column 1 are of the form (k, —k).
The node k is included in 7., and the node —k is included
in T_] .

Let the pair be of the form (j.s + i, —j.s — i) in S;. Then
the pair (i, —i) is in column 1| of which i is included in T,
and —i is included in T_;, respectively. All the pairs
(ps + i, —ps —i), where 1 = p = j are in partition /
and the node p.s + i can be connected to 7., by a link of
type +s and the node —p.s — i can be connected to 7,
by a link of type —s.

The proof is similar for a pair of the form (js — i,
—js+1i). N

LEMMA 2. The pairs in partition S can be connected to
the subtrees T,, and T_,, after we connect the pairs in parti-
tionltoT.,and T_,.

Proof. Let a pair in partition S be of the form (j.s +
(k — j), —js — (k — j)). The pair (j.s, —j.s) will be in
partition S. So the node j.s will be connected to T.; and
the node —j.s will be connected to T_,, respectively. Also
all the pairs (js + i, —j.s — i),0 </ < k — j, are in partition
S and can be connected to 7., and T by links of type +1
and —1, respectively.

The proof is similar for a pair of the form (js —
k—j)—js+(k=-j). =

Lemwma 3. Itis possible to get at least | (n — 1)}/4 | pairs
in partitions I.

Proof. We have shown that the diameter d of the graph
is less than or equal to |(n — 1)/4|. Total number of
pairs for odd n is (n — 1)/2. Since we have to leave
out only the pairs of the form (k.s, —k.s) for partition
S, the maximum number of pairs that we can have in
partition / = (n — 1)/2 — number of such pairs of the
form (k.s, —k.s). That is, |/| = (n — 1)/2 — number of
rows in the matrix M = (n — 1)/12 ~d = (n — 1)/2 —
[(n—1D/M4] = |(n—-1)4]. =

3.1.2. For Fven n

The construction of the spanning tree in this case is
slightly different. When we encounter the nodes in pairs
the same procedure is followed as before. Only the node
n/2 will not occur in a pair. The following cases can occur:

Case I: n/2 is in row k and is of the form js + (k —
jyorjs—(k—j),0<j<k. Wemake partition / consisting
of [(n — 1)/4] pairs provided that the node n/2 is not
encountered in the process. Otherwise, partition I will have

| (n — 1)/4] pairs and the node n/2. If n/2 is included in

partition /, then we can connect this node to either 7',; or
T_, tree. On the other hand if n/2 € §, then we can connect
this node to either T., or T tree.

Case II: n/2 is in row k and of the form k.s. In this
case n/2 appears in column 2k and all columns ¢ > 2k will
be empty. Here n/2 € §. If the pair (ks + 1, —k.s — 1) is
present in row (k + 1) and is in partition S, to connect

this pair properly we have to keep the pair ((k — 1).s +
1, —=(k — 1).s — 1)) in partition S (the node k.s = n/2
becomes a leaf node).

ExampLE 3. Forn = 14,5 =
matrix M as follows:

4, we first construct the

S1:(1,13) (4,10)
§2:2,12) (5.9 (.11) (8,6)

3:(—=—)) () (=) 7)) (——)

The three underlined pairs are in partition / and others
are in partition S. The spanning tree is shown in Fig. 2.

Let C, denote the set of nodes which are destinations
of the packets sent from node 0 at time ¢. After constructing
the partitions I and S, the sets C,’s are generated by the
following algorithm.

ALGORITHM C.

Step 1: The nodes in partition / and § are arranged in
decreasing order of their distances from node 0.
Step2: Fort=0,1,..., [(n—1)/4] — 1,do the following:

If n is odd then a pair of nodes from partition / and
a pair of nodes from partition S, taken in the above

order, constitute C,.

If n is even, then C/’s are generated in the same way
as above except when the node n/2 is encountered.
Let the node n/2 be encountered at ¢t = ¢,. If another
pair of nodes remain to be included in C/s, then
|C,| = 3, otherwise |C,| = 1. When, |C,| = 3, if
n/2 € I, then C, consists of n/2 and a pair in parti-
tion S. If n/2 € 8, then C,I consists of n/2 and a
pair in partition /. W

To effect the transmission of data packets from node 0,
each packet will be associated with a tag depending on its
destination node. If a node is in partition / and appears in

FIG. 2. Spanning tree for single node scatter.

90 DAS AND SINHA

the matrix M in the form js + k, j, kK > 0 the packet
destined to this node will have a tag like this:

link type partition type

+5 ~s +1 -1

i 0 k 0 i

Similarly a packet destined to a node —j.s + & in partition
S will have a rag like this:

link type partition type

+5 -5 +1 -1

0 j k 0 S

The transmission of a packet at any node will be made
only along a link of type for which there is a nonzero entry
in the tag associated with the packet. Once it is decided
to transmit a data packet along a particular link, the corre-
sponding link type entry in its tag is decremented by unity.

We have to ensure that the packets destined to the nodes
in partition [always travel through T, or T_, and packets
destined to the nodes in partition S always travel through
T., or T_,. We do this by sending every packet destined
for a node in partition / along the links of type +1 or —1
first, until the corresponding link type’s entry in the tag of
the packet becomes zero. Then only, we transmit the
packet using +s or —s links. The reverse procedure is
followed for the packets destined to the nodes in parti-
tion S.

4. CONCLUSION

In this paper, we have given time-optimal algorithms
for multiple node broadcast and single node scatter in a
distributed loop network. Our algorithms are based on the
assumptions of multiple link availability (MLA) and full
duplex communication along each link. Also, to complete
the multiple node broadcast in time [(n — 1)/47, we
need proper synchronization among all the nodes of the
network. There is no overhead associated with the running
of this algorithm except an O (n) storage requirement at
each node. The required information for packet broadcast-
ing will be computed once for all and will be stored in
all the nodes of the network. The single node scattering

Received November 15, 1993; revised July 19, 1994; accepted March
25,1995

algorithm also runs in time [(n — 1)/47] and hence is
optimal with respect to time. The required information for
packet scattering is computed once for all and stored at
the source node. The resulting overhead is O(n) storage
at the source node. The total exchange or multiple node
scatter is another important communication problem. Fur-
ther work is being carried out to find if there exists a
time-optimal algorithm for this problem in a distributed
loop network.

REFERENCES

1. B. Elspas and J. Turner, Graphs with circulant adjacency matrices. J.
Combin. Theory 9, 297-307 (1970).

2. S. Dutt and J. P. Hayes, Designing fault-tolerant systems using auto-
morphisms. J. Parallel Distrib. Comput. 12, 249-268 (1991).

3. D. P. Bertsekas, C. Ozveren, G. D. Stamoulis, P. Tseng, and J. N.
Tsitsiklis, Optimal communication algorithm for hypercubes. J. Parai-
lel Distrib. Comput. 11, 263-275 (Apr. 1991).

4. D.P. Bertsekas, and J. N. Tsitsiklis, Parallel and Distributed Computa-
tion: Numerical Methods. Prentice-Hall, Englewood Cliffs, NJ, 1989.

5. J.-C. Bermond, and D. Tzvieli, Minimal-diameter double-loop net-
works: Dense optimal family. Networks 21, 1-9 (Jan. 1991).

6. D. Tzvieli, Minimal diameter double-loop networks, 1. Large infinite
families. Nerworks 21, 387415 (July 1991).

7. R. K. Das, and B. P. Sinha, Distributed Loop Networks. Technical
Report, Indian Statistical Institute, 1994.

8. K. Mukhopadhyaya, and B. P. Sinha, Optimal design and routing of
distributed loop networks. Proceedings of International Symposium
on Circuits and Systems, Singapore, Aug. 1991,

RAJIB K. DAS received a B.E. degree in electronics and telecommuni-
cation engineering from Jadavpur University in 1988 and an M.Tech.
degree in computer science from the Indian Institute of Technology,
Madras in 1990. Currently he is working toward his Ph.D. degree in
computer science at the Indian Statistical Institute, Calcutta. His research
interests include network topology and parallel and distributed pro-
cessing.

BHABANI P. SINHA received a B.Sc.(Hons.) degree in Physics,
B.Tech. and M.Tech. degrees in radiophysics and electronics, and a
Ph.D. degree in computer science from the University of Calcutta in
1970, 1973, 1975, and 1979, respectively. In 1976, he joined the faculty
of the Indian Statistical Institute, Calcutta, where he has been a Professor
since 1987. During 1986-1987, he visited the Department of Computer
Science, Southern lllinois University, as an associate professor. With
a fellowship from the Alexander von Humboldt Foundation of West
Germany, he visited Informatik Kolleg, GMD, Bonn during 1979-1981
and also the Department of Computer Science, University of Saarland,
Saarbruecken in 1990. His current research interests include parallel
algorithms and architectures, network topology, and computational ge-
ometry. He is a senior member of the Institution of Electrical and Elec-
tronics Engineers.

