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ABSTRACT

Kohonen networks are well known for clusier analysis {unsupervised learming), This class of algorithms 1s a set of
heuristic procedures that suffers from soveral major problems (2.g., termination is forced, convergence is not guarantesd,
no model is optimized by the leaming strategy, and the output is often dependent on he sequence of daca). b this paper
wi propose @ fuesy Kohonen clusiedng network which integrates the Fuzzy o-Means (FCh) mode] ineo the leaming rals
and updating stratcgics of the Kohonen network. This viclds an optimization problem related to FOM, and our numerical
results show improved convergence as well as redoced labeling ereors. We prove that the proposed scheme is cquivalent to
the e-Means algorithms. The new method can be viewed as a Kohonen (ype of FCM, but is “self-organizing” since the
“size"” of the update neighborhood and leaming raie in (he competitive layer are auomatically adjusted during learning.
W pse Anderson's TRTS daa o iHusicare this method; and compare our resules with the standard Kohanen approach,

Keywords: Cluster Analysis, c-Means, Fuzzy Sets, Kobonen Metworks, Self-Organization, Unsupervised Leaming
L. INTROPUCTION

The arca of classical pattcrn recognition most closely related to the Kohonen self-organizing (1] algorithms is
kaogwn as clusier asalysis, Clusiering algorithms altempt 10 assess the interaction among patlerns by afganizing the
paltems inlo clugiers such that patterns within a cluswer are mone simalar to cach other than are paterns belonging o
different clusters. Treatmonts of many classical approaches to this problem include the texts by Kohonen 111, Bezdek [2],
Duada and Hart [], Tow and Gonzalez (4], Hartigan (5}, and Dubes and Jain [6]. Kohonen's work has become parsicularly
timely in recent years begause of the widespread resurgence of interest in the theory and applications of neoral network
struciures [7]. However, Kohonen clusiening notworks (KCNs) suller from sevaral major problems, Firsl, BONs ae
houristic procedures, sa wermingtion ks not based on optimizing any model of the process or s data, Secondfy, (the Ninal
weight veotors usually depond on the input sequence. Thirdly, different initial conditions usually vicld different resulis,
Fourthly, several parameters of the KON algorithing, such as (the leaming rale, the siee of update neighborhood, and the
shiategy 1o alier these two parameters during learing, must be varied from one data set to another v achizve “uscful”
rosults.

It is well known that KCN clustering is clogely related to the o-Means (CM) algorithms [8]. What is unknawn,
hivwever, Bg just what “closcly related ™ really means, Since CM alporithms are optimization procedures, whereas KCNW i3
nol, inkegeation of CM and KON is one way to address several probloms of KCMNs while simulianaowsly atlacking the
greneral problem of kow e 1wo Binilies are relaied. Huntsherger and Ajjimarangsae [9] lirst considered this appmach.
This note exlends their deas o a new family of algorithms we shall call the Fpery Keohonen Clusiecing Network
iFRCHNY alporithms, We combine the ideas of fuzey membership values for leaming rates, the parallehism ol Fueey -
Means {IFCM), and the structure and update roles of KCNs. Moreowver, we prove that each step of FRCN is equivalent to
FCM o Hard o-Means (HCMY}. In addition, FECN is self-organizing, since the "size™ of the ypdae neighborhood is
autrmatically adjusted during leaming, anid FKCM usually torminates in such a way that the FCM obiective hanction i3
approsimately minimized, FKCN is non-seguential, and hence is independent of the sequence of feed of the input dala,
The necighborhood constraint of KCM is relaxed in FKCM, but is embedded in the lcaming rate stratcey.

The remainder of this paper is organized as follows, In the next section, since the leaming rate we use is bused
on fuxey membership values from FCM, FCM and HCM are briefly described, The structure and update rule of KON arc
alac discussed. In section 3, we present the details of the FKCN model, and prove that FKCN is equivalent 1o either
FCM or HOM. Tn Section 4, # comparison between FKON and KOM iz reported gsing Anderson's iris dara. Finally,
some remarks on futuee research are given 1o conclude this paper in Scclion 5,
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2. FUZZY C-MEANS, HARD C-MEANS AND KOHONEN CLUSTERING NETWORKS

Let ¢ be an integer, 1< c<n, and let X = {xl,xz. ~aXq) denote a sct of n feature vectors in K X is
nymenical object data, the j-th objoct has vector x; as it's nemerical representation, and 3. 1% 1he k-th characlerstic {or
teature) associated with object j. Given X, we say that ¢ furzy subsets (u; : X —» [01,1]} are a fuzzy c-pactition of X in
case the on values {uy, = u;(x;,), 1=k=n, 12isc] satisly three conditions:

0= B =1 forall ik: a)
Ewy =1 foralk; (1b)
L = (} ¥i. [ ]

Here ujy is interpreted as the membership oka in the i-th panitioning subset {¢luster) of X, 17 aif of the Wy 's are in
{1.07, U = [u;,] is & conventional {¢risp, hard) ¢-partition of X. The most well known abjective function for clustering
in X 15 the classical within groups sum of squarcsd errors functiem, defined as :

30U 3 X) = K up (v D2 (2)

where v = (1.-'1, ¥ s vc} 18 8 vegclor of (unknown) cluster centers (weights or prototypes), v, E RPfor1=2i<c, and
U iz a hard or conventional c-partition of X, Optimal partitions U* of X are takeo from pairs (0%, v*) that are “local
meinimizers™ of 1. Duan (0] first generalized (2} for m=2, and subsequently, Bezdek [2) gencralized (2) to the infinies
family wrillgn as;

(3

Jm{U.‘n':Xj = E]Ekuikmillxk-\qllﬁjz 5

where m e [1, =<} is a weighting exponent on each fuzzy membership, U is 2 Nueey c-partition of X, v = (%1 ¥g95 oo

v are Clusler centers in RP, A= anv positive definite (p x P} matrix, and tlxk-?illﬂ = {xk-vi}TA {xk-i'i} is the distance
{in the: A noem} from xg 10 vy, Cor interest lics with the cases represented by equations (2) and {3). The conditions that
are necessary for J; and [ follow :

[lard ¢-Megng (ICWMY Theor (U,%) may minimize EE u( lb)- villﬂj?' only it :

L g il 0% = min {(Ohey- vyl %) _
ly, = [orall ik {4}
0; otherwise
'I."j= Elljkxk_.l"l'-IJik fﬂ‘]‘ all i {_f-”:I_:l

MNole that the HCM produces a partition U that contains hard closters. The well known gensralization of 11CM is
contangd in the following;

Fuyrzy ¢-Meaps (FCM) Theorem {21 Assume  lxg- \rjIIAE = 0, % 1k at cach iteration of (5} (U.¥)} mayv
manimize L& u,-km{ lxy, - w1l ﬁ}z for m=1 oaly if :

g = (Z (s will o J g vl )2A Uyl por il ik (5a)

vi= Eug)" % Eing)™ for all i £3h)

[t has heen showno (hat conditions (3) — (4) and Jm — .T! asm — 1 Irom above. The FOM (HOM) algorithms are
itecatve procedures for approximalety minimizing I (T,) by Picard iecation theough (3) or (4), respectively. A brigf
specification of these procedures fblows:
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FCM/HCM. Al ith (2]

CMI, Fiz:lscen]<m<e (m=1 for HCMY; Il IIA: and £ = {1 some small positive constani.

: LA : _ "

CK12 Inidalize network weight vector Y= ( Y0 Y20 vC,U:I e REP.

CM3. Fort=12, .., toyax
4. Update all (en) memberships [“ﬂc,:l with {5a) or (d4a).
b, Upsdate all (c) weight vectors {Tri ¢l with (5b) or (4E).
c. Compute E =1llv, - v 4 12 = Lol - v 12,
d. IF E =& stop Elsz Mext L

Notes | i
1. These are non-sequential algorithms: updates on the weights {"i.l} arc performed aller each pass theough X.

Thus, the ilgrate sequence {v; ] is independent of the data labels,

The parameter (m) esscntially controls the “amount of fuzziness™ in . As m - eo, 0y | Lfz; when m—=™1,
gy, — 1 ot 0. The performance of FCM is quite dependent on & good choive for m. Although several siedies
have attempicd to (nd & good way 10 choose m 111,12], this choice is still fargely heurisic {see [13] fora
physical interpretation of FCM at m=2},

Ties in (9a) and singularity in {5a) arc resolved arbitraraly,

The tcrmination criterion E, specified in CM3.c s sometimes replaced by U - U, 12, The imporant point is

that this stratcgy is designed o swop the procedure when successive fterates show liile change. We emphasize
ihat iermination using this scheme may or may not stop the glgoritun at a “desirable™ solation pair (U ).

And we specifically reserve the word wnmination 1o inean “the place at which a finite numerical procedurs slops.
The iterale sequence [U,,v 1, or a subsequence of it, converges g-linearly 10 either a local minimum or aaddle

pointof I (111,#[} such that El 215 an estimate of such a point. We emphasize particularly the dillerencs
betwean (he woeds termination and convergenoe,

Kohonen cluslering netwarks {KONs) are unsuperviscd schemes which find the "best™ sec of weighes for bard

clusters in an iteralve, sequential manner, The structure of KON consists of two layers: an inpu {fzooul) layer, and an
output {competitive) layer as shown in Fig, 1, The [¥; t] can be intcrpreted as “weights™ allached o the edges chat

connect the piapul wodes o the ¢ output nodes. The agpregate of the ¢ weight veciors (the aeiwork weight veelor v ) is

adjusted during learning. Given an input vector, the neurans in the output layer compete among themselves and the
witmer {(whose weight has the minimum distance eom the input) updares its weights and these of seme st of predefined
acighbors, The process is continped until the weight vectors “stabilize.” In this method, 3 leamning rate must be defined
which decreases with Ume in order o Tonce weemination. The update neighborhood must be defined and i3 alse reduced
with Lime. Asympiotic convergence of KCN schemes 10 a point thal possesses same property such us faeld poini, local
miniraum, etc. has nol been established.

Inpan Trngu layer

Lala O layar M etwinrk

Pole T %, (O i _ Weight
Wy | Meder

X,.-

Fig. 1. The structure of & Kohonen clustering network.
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A briaf specification of KCN algorithms i given below :
) .
KCNI1. Fixc, I, and & = 0 some small positive constant.

KCN2. Initialize vy = (¥) g, ¥9 g0 o ¥ gl € REP, leamning rate @ 05 (1.0} and update ncighberhood I, = an

index setin (1.2, 2.
KCN3. Port=12 ..,¢  Fork=12 ..m

4. Calculate dikﬁ = Ibeg- v, LIIZ, fori=twe.
b. Order the (dy,} in ascending order: d;, 2<dy %< | <9 .2

c. Update the winner :

VIV Ok Yy ) ()
4. I 19| =n,, update the {n,-1) nodes which are closest 1o xy inb

Viae= Vig1t O X ¥y 0 1) =23, L (0 1) (6b)
e Mexi k.

KCN4. Compute T, = llv - "’t-l”z = v v 12
KCONG, If B, £ € stop: Else adjust learning rates {n;:;iIE ) and update neighborhood N,; Neai L

Muytes pn the KON Algorithms
1. Asspecified, KCN is sequential - one xy is fed 10 the network, and some node weights are immediately updated.
This rakes the sequenge {"i,l] label-dependent, a very wnikesimable propenty for any itetative algorithm.
2. Wre have indexed learning rate oz on 1.k, and 1. This is becanse the values of o nsed in updaiing the node weights
are digtributed owver M., “centered™ at the winner, \-']Tt, and the index of Y 15 4 Tunciion of xp. Morcover, ois

usually decevased with time (8) to force E, = (Clearly E1 will - as e t—.'rl.']: this is an artificial termination
slrategy, in that ihe updaie rule guaraniees closencss of successive iterates after sufficient time, even if they are
not close 0 4 " solulion”™ vector,
3. Choosing the size of neighborhoad, the learning rate and (he stratepics to operace these paramatees is critical o
erminglion of KCN. Morcover, different sets of parameters yield different results. Kohonen [1] has shown that
this process converges, in the sense that ghe [vi] = {v.} as (o} —0, but v, is jusc a limit point of the irerate
SEgEEnCe - v, 15 0oL optimal with respect o0 a model, or any well defined performance goal such as “ermor’ rate,
KON does ot use or genendte a partibon U of the data during traiming, However, once the weight vectors
slubilize, they can be clamped (fixed), and at this point the Kohonen's model is often vsed to produce a hard U

using cquation (da) with A = IP' the identity matrix on 7.

Y

A FUZZY KOHONEN CLUSTERING NETWORKS

Recenl studies have shown a close relatonship between numerical results generated by KCN and FCM [9.
Huntsberger and Ajjimarangsce proposad the fllowing modification of the KON update rule (6):

Yie T Vit e v (7

where Gy | is caleulated via (52 for i = 1,2, n. There is no need to maintin U fec (73, and in [9]. neighborhood
contrl wis exerted as in KCN. Tesmination was forced on this scheme by wltimately shrinking the update neighbarhond
to the empy set. The scheme ia [9] was 4 panial integration of KCM and FCM, which showed some interesting resulls,
Homeewer, his was g hybrid scheme that foll short of realizing a swoede! Tor KON clustenng; and no propertics negarding
lermindlion ur penvergence werc catablished. We complets the integration of FCM with KCH by delining the learning
rale for Kohonen updating as :

Qiger = (Ui ™ 0 mp = (mg - Dinax. @)
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where Wi ¢ i5 calculatcd with equation (5a), but m = my = (mg-LAm), my some positive constant greater than onc: and
m =1, In practice, t cannot go to infinity, so we pat Am = (mp- Uyt 0 whete i the iteration limit for Fuzzy
KON (FEKCM), Defining the leaming rate with (B) for o ¢ Yields the new clusiering algorithm.

Fuzzy Kghgn 3 i { a
FKCN1. Fixce, lllly ande >0 some small positive constant.
FKCNZ, Iniualize o= { Y100
FKCN3. Fort=1,2, .., | S
a. Compute all {cn) learming raies [“ik.t] with (B} and {5a).

b. Update all (¢} weight veciors {"i.t} wilh

?Z,U‘ - ¥ ye BP, Choose my > 1 and e 5= itcrate limit.

n I
via = ¥irl + [0, GiulXe - vie1))Y iy
k=1 1=l {

¢. Compute E, = lv-v, 12 = Z; vy , - vy 12,
d. IFE, = e stap; Else Next t.

MNoles on
1. It is well knows [2] thal the lcamning rates [”ik,t} = {{ujk,tj’“l} satisfy the following ;
o, Iimm: O H‘ik,l] =1fc foralliand k;
b. 'i'“mt—m[”ik,t] =1orl [oralliand k;

¢. The leamning rates {{u, 1 ace caleulated with (Sa), which, for fixed ¢, {v; |} and m,, have the following
form for each x:

(U5, P = ()20 T (10)

where a is o pasitive constant. Thus, the effect of (10} is to distribute the contribution of cach X to the next
update of the aode weights inversely proportional to their distance from xp.. The “winner™ in (%) is the Vit
closesl o Xy dnd it will be moved forther along the ling conneciing viglox, Lhan any of the other weight
wictors. In the: limil (m=1), the update rule revents o hard ¢-Means (winner wake all}-bul non-sequentially.
Constraint (1 insures that each nc]-kJSI, and this scheme thus amoonts 1o distributing the partial updates
across albl ¢ nodes Tor each X€ X

2. KCHN and Hunisberger's scheme [9} both manipulate the neighborhood N In FEON, N = (1,2, ...c] %L, bul
the gffective neighborhood does vary with t, becanse of noie 10a) and 1(b), Thus, for large walues of m, (near
mph all ¢ nodes ane updated with lower individnal leaming rates, and as m,—1, marg and moze of the unit sum
i% given ko the “winner” node, In sther words, the lateral distribution of lcarning rates is 2 lunction of 1, which
“sharpens” at the winner node (for cach xk} as m,— 1.

3. FKCN is not sequential, Updates are done w all ¢ nodes afler each pass through X. Hence, FKON s not lahel

dependent.
4. Most imporiandy, for lixed m, FKCN npdates the [ v; ¢) using the conditions that are neccssary for FOM,

Indeed, we may stats as a:

Propusition For fixed m =1 (that iz, Am =0) in (8), FKCN iz FCM.
PBrogf ; Since {54} 15 used w compuois {u]-k L] W iand k, the explicit necessary conditiors for the (next) balf step
of FCM arc satisficd. It remains to be shown that the apdate rule in FKCN3Z b is equivaleat o (3b). Singe
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13, s - ¥ir IV s
]

k=l
= Z G!ix,u:ll.u"z Ol = \’E.HE ﬂ':}..tl‘lz Clisg
=1

k=l =] k=1

update mile (109 in FECH becomes

Vis = (i1 - ¥ig+ Y, Ganf Y o= Y (a0 ()™
it k=l =l

k1

which is (3b) for m, = m. We scc that taking Am=0 in FKCN makcs it FCM (with m=m,}. ]

5. Since cquations (3) — {4)and ) — }; as mt—}+1r it is clcar that at m, = 1 with Am=0, FKCN 15 hard ¢-
Means. Given this netwark interpretation, we may call FRCN the Hard KON (HEKCN) algorithm when mg = 1
in FROUMN. Of course, the HKCN algorithm computes the fmik_,t] in FKCN3.a wsing (4a}).

6. Although FEKCN for each m, is one step of FCM, the FKON iterales sequence I\-‘L} of node weights 13 nar, cven
it we maintain U as well, the same as the FCM sequence, hecause m in (5) is varying as a function of ums
vitcration). FKCN is a tue KCN type algorithm in that it docs possess 2 well defined method for adjusting buth
the learning rate distribution and update neighborhood in the KON approach as fungtions of time. Hence, FKCK
bas the "Sell-organizing™ sruclure of KCN, and al the wame Gme, is stepwise optimal with respect 1o a well

known and widely uscd fuzzy clustering model. How well does FECH work? We illustrate some of i
computaticnal properties in the next section.

4, WUMERICAL EXAMPLE

We pse Anderson’s [RIS data | 3] as an experimental data get. Let X he the IRIS dam. X contins 50 (labeled)
veptors in B for cach of =3 clasyes of IRIS subspecics, Properies of the data are well known [3], X has been used in
(conscrvatively 1) at least 50 papers o illustrate various clustering (unsupervised) and classifior (supervised) dasigns.
Typical error rates for supervised designs arc 0-5 mistakes (resubstimtion) and for upsupervised design , 10-15
"misiakes”. Our comparison below are based on training KCN and FKCN with all of the data (until terminaticn oeours or
is forged); and then classifying each data point in X with the nearest protogype rule (4a) using Cuclidean distance,

Al clusiering algorithms produce clusiers thal bave mumerival (not physical) Tabels. o KON and FRON, it is
the ¢ owiput nodes that have onidentificd labels. We use the followding algorithm to redlabel termingl weight vesiors 5o
that ermanal peototypes correspond to the correct physical lahels of the subclasses.

Ecl

Given  : n, physically labeled vectors in X, CRP, 1€iZc LetXn,=n
¥ ¥g. o ¥ any (c} proloypes in RP.
Fird : PPhysical labels of the {v-l}.
Let L= numnber of points from class i closest to ¥i wia the rule (dak.
While i=e:
Find the maximom value in C = Lcij |, aay Cixju-
Relabel v —» ¥

Dilete row i* and column j* from C.
Wend.

W dlhustrane the RL algorithe as follows, Suppose, after C is consirggiad, we have
2 5

] |2 1]

f 3 1
A 35

1
2

=4 Ay
7

L=l
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where [1,2,3} are the algorithmic labels on the prototypes, and {AB,C) are the physical classes, Application of RL o

(177} wields -
1 2 3 2 3
A 28 12 i0 A 12 0
B 46 3 1 - with 1 =1
C 7 3 38 C 5 A8
-3 A 112 with 3=Cund 2 = A,

Thus, the putput node labels are mansformed as in (12}

S

RL
O v, — Oy

2
5 S 5
Algorithmic Physiceal
{Abﬂls I.HI.'IEIR l:' u_:]

Wea count “errors” by submitting X to (du) using the physical labels of ihe oulpu? nedes, This aftords a means for
insuring dat the prototy pes ceally represent the “right” subclasses, In the example below, we wnialized KON and FECN
ramlorily, used only BEuclidean distance, and fixed £ = (L0001, Lone = 30,0060 for KCN ':tmm is a variable [or FKCN, as
dizeuszed below), Generlly, we can make thase pbservalions :

1.

v}

Learning rate & ; Wo lried several siralegies for oy Lwim KCN. Each peoduced different results. Moreowver,
KCN never terminated unless ag —0 {i.e., il was foreed o stop at the predefined limit [or g, 00 O the ather
hand, FKCN always werminated in the sense that E <& was satisfied before t=1, .

Sequential data leed @ Since KON is sequential, different sequences of feeding the dats did alwer ihe final
results, However, FKCN accumutates Av, for each input and wpdates v, after cach pass through all the daga.
Thus, FECM is parallz] and is independent of the feeding sequence. It always stopped al the same sel of nods
weighls.

€omplexity - Supposc t* s the number of fterabions for lermination or he prededined nomber of ircrations
for stopping. Dua w the sequential natwee of KON, its complexity 15 O(1*n). where n 15 the number of input
data. However, becapse FROCN is non-sequental, i complexily s (), independent of the number of input
dala,

Termination : We found that KON always ran 10 its ilerate Limic {1, = 50,000} unless ey | was forced o
zero, On the ether band, FRON always satisfied the termination criterion in |4-40 ierations, Figure 2 shows
error Fatcs obtained by various algorithms as & funclion of tme. In each case, we interrupted the algarichm at
gach , ran (RL) on the curent node weights, and comnted the crror rates, Note that KON ran oot e b =
B0, whersas FKON tecminates in both cases shown al v = F7. Note also thar FCM (im=2) and FKCN
imy=+. m=0} generate exactly the same curve {as reguired by our proposition dhoved, Finally, we obsarve that
FRON and FOM ran paase the minimum crmor rate (=100 6 gt their torminal siates, This 35 the well-known
“over-trdining” phenomena,

¢ abso studied the swability of FKON (0 both my and Am. Figure 3 shows FRON eroon rate cenlulion wilh Limne

lur fixud my=4; variable Am = 002, 004, 006, Byidently the trends of Figure 2 bold, and small shanges in
FEC™ du not atfacl the results much {for this data),
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4 . ‘ . . . . . L
43 + FECN (my=4, &m=0.06} .
»® FCM (m=4) and FKCN {Ino:fJ- Am={}}
e O KCN
ol
3 1)
3
& 30)
Z
E 25l
P
20
15]
0 . ; , . ; . : : .
0 3 10 15 20 25 30 35 40 45 50000

Mumber of itetations

Fig. 2. Ervor rates with 1 for KCN, FKCN (mg=4 and Am=0.06), FKCN fmﬂ..—-d- and Am=0) and
FCM (m=4). Mote the break in the horizental axis beiween 45 and 50,000,

At

45 L
O FECN (Am=0.02) r

404 Lt 0 BERKON (Am=0.04) s

A FEON CAmn=0.06)

akes
Ll

()]

i

of mist

WNumber
et
h
1

204 !
15 I
L r— = . .

0 2 4 6 8 10 12 14 16 138 20

MNumber of ilerauons

Fig. 3. FKCN error rates with t with mu=d; and Am = 0,02, 0.04, (06,
Figure 4 shows the reverse of the sludy in Figure 3: we hold Am = (W02 [ixed, and vary mp= 3, 4, 5, 6. Ayrain, the

trend is clear.Figares 2, 3 and 4 all suggest that FKCN will lerminate rapidly at a very predictable solotion (10-13
erroes) and (hat it iz relaively insensitive p changes in my, and Am, These resulls certainly encourage further suedy.
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Number of mistakes

0 A ; i A ; i
45 L
| O FECN (mu—' 3}
a0 O FECM (l'rh: 43 |
1 & FRCN (mg= 5)
15 O FKCN (mD= &) i
304 I
254 B
20H L
154 L
10 . . . . : = N —
0 2 4 6 = 10 12 14 16 L5 200

Numbocr of iteralions

Fig. 4, FKCN error rates as a function of time with Am = 0.02; and my = 3, 4, 5, 0,

5. CONCLUSIONS

T this paper, a fuzzy Kobonen clustering network (FKCN) algorithm, based on the integration of Fuzey o

Means (FCM) and Kohonen clustering network (KON}, is proposed. Our algorithm sddresses some intrinsic problems of
KCM. The FECH is non-sequential, unsupervised, and uses fuzzy membership values from FOM as learning rates. This
vields automatic control of both the teaming rate diswibution and wpdae neighborhood. The KCN neighborhood
conatraint has been dropped, buot is embedded in the learning rale which is manipulated by ceducing m [rom a Jarge valoe

tor 1.

Moreover, FKON always werminates independent of the sequence of feeding data 1n many 1ess ierations. Finally,

wa proved that FKCN with fixed o is equivalent w FCM {and Hard c-Means (HCM} if m=1}. Thus, FKCN can bc
comsidered as o Kohonen network implementation of FCM.
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