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This paper is concerned with interface wave diffraction by a thin vertical barrier 
which is completely submerged in the lower fluid of two superposed infinite fluids 
and which extends infinitely downwards into the lower fluid. By a suitable appli- 
cation of Green’s integral theorem in the two fluid regions, the problem is formu- 
lated in terms of a hypersingular integral equation for the difference of potential 
across the barrier. A numerical procedure is utilized to evaluate the reflection and 
transmission coefficients directly from this hypersingular integral equation. 

Also, an integro-differential equation formulation of the problem is considered, 
wherein the equation is solved approximately up to O(s), s being the ratio of the 
densities of the upper and lower fluids. Utilizing this approximate solution, the 
reflection and transmission coefficients are also obtained up to O(s). Numerical 
results illustrate that the reflection coefficient up to O(s) thus obtained is in 
good agreement with the same evaluated directly from the hypersingular integral 
equation for 0 < s s 0.5. The advantage of the hypersingular integral equation 
formulation is that the reflection and transmission coefficients can be evaluated 
for any value of s such that 0 s s < 1. It is observed that the presence of the 
upper fluid reduces the reflection coefficients from their exact values for a single 
fluid significantly. 

1 INTRODUCTION in the lower fluid and extending infinitely downwards. 

Problems involving two superposed fluids are in general 

complicated because of the coupled boundary conditions 
at the interface of the two fluids [cf eqn (3)]. The litera- 
ture on two-fluid problems is rather limited. Gorgui and 
Kassem,’ Rhodes-Robinson2 and Kassem3g4 have stud- 
ied the problem of generation of waves at the interface 
of two superposed fluids due to various types of singu- 
larities submerged in either of the two fluids by methods 
similar to those which were used for the corresponding 
one-fluid problems. A study of the problem of interface 
wave diffraction by a thin vertical barrier is initiated here 
by assuming the barrier to be submerged in the lower 
fluid of two superposed fluids. The corresponding prob- 
lem for a single fluid bounded by a free surface is well 
studied in the literature for a number of positions of the 
barrier. This problem is an extension of the submerged 
barrier problem, considered by Dean,5 Ursel16 and others 
for deep water, to two superposed fluids wherein the up- 
per fluid extends infinitely upwards and the lower fluid ex- 
tends infinitely downwards, the barrier being submerged 

By suitable application of Green’s integral theorem in 
the two fluid regions, and taking care of the coupled in- 
terface conditions in an appropriate manner, the problem 
under consideration is formulated here in terms of a hy- 
persingular integral equation for the difference of poten- 
tial across the barrier. This type of hypersingular integral 
equation arises in acoustics, hydrodynamics and elasto- 
statics7-9 in a natural manner. Parsons and Martin’ have 
studied the problem of water wave scattering by a plate 
submerged in a single fluid, after formulating it in terms 
of a hypersingular integral equation for the difference of 
potential across the barrier by a finite series of suitably 
chosen orthogonal polynomials multiplied by an appro- 
priate weight function. This was then utilized to evaluate 
the reflection and transmission coefficients numerically. 
Very recently, they have also considered water wave scat- 
tering by submerged curved plates and surface-piercing 
flat plates by the same procedure.9 The numerical proce- 
dure of Parsons and Martin8 is adopted in this paper to 
solve the hypersingular integral equation by using a col- 
location method. This was then utilized to compute the 
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reflection and transmission coefficients directly. 
We have also adopted an alternative approach to solv- 

ing this problem approximately. Instead of the aforesaid 
hypersingular integral equation formulation, an integro- 
differential equation formulation similar to that used for 
the corresponding single-fluid case is utilized.iO It may 
be noted that for the single-fluid case, the corresponding 
integro-differential equation possesses an exact solution. 
However, this is not so for the present two-fluid case. 
Here, the integro-differential equation is solved approxi- 
mately by exploiting the fact that its kernel has some sort 
of series representation involving the parameter s (0 I 
s < l), the ratio of the densities of upper and lower fluids. 
Assuming a similar series representation for the potential 
difference across the barrier, we obtain, up to O(s), two 
integro-differential equations whose solutions are known 
explicitly. The reflection and transmission coefficients ate 
assumed to have similar representation in terms of s and 
are obtained up to O(s) analytically. The numerical re- 
sults illustrate that the reflection coefficients evaluated di- 
rectly from the hypersingular integral equation for vari- 
ous values of the wave number and for s = 0.0013 (for 
an air-water combination), 0.01, 0.1, 0.25, 0.5 coincide 
with the reflection coefficients evaluated by the second 
method up to three decimal places in most cases This 
also demonstrates the utility of the approximate solution. 

As mentioned by LaFond,” internal waves (here 
termed as interface waves) exist between subsurface wa- 
ter layers of varying density; they exist in all oceans, and 
probably in most bays and lakes. It was earlier reported’* 
that in the mouths of some of the Norwegian fjords 
there exists a layer of fresh water over salt water. These 
remarks form a basis for the practical interest in the 
problem considered here, wherein a two-fluid model is 
constructed to investigate the effect of the upper fluid on 
the reflection and transmission coefficients for the clas- 
sical problem of water wave diffraction by a submerged 
vertical barrier. Also, this model may be used for practi- 
cal purpose to find the effect of air on the reflection and 
transmission coefficients by interpreting the two-fluid 
problem as an atmosphere-ocean system. However, as 
the ratio of the densities of air and water is 0.0013, this 
is too small to produce any appreciable effect on the 
reflection coefficients, as the numerical results presented 
later in this paper am very close to those for s = 0. 

2 FORMULATION OF THE PROBLEM 

We consider motion in two immiscible, inviscid, homo- 
geneous and incompressible superposed fluids Let pl be 
the density of the lower fluid occupying the region y 2 0 
and pz(< pt) be the density of the upper fluid occupy- 
ing the region y I 0. The y-axis is taken vertically down- 
wards with the plane y = 0 as the mean interface. A thin 
vertical barrier is completely submerged in the lower fluid 
and extends infinitely downwards so that it occupies the 

position x = 0, a 5 y < 00. Assuming linear theory and 
irrotational motion, a train of time-harmonic progressive 
waves propagating at the interface from negative infmity 
is represented by +0(x, y) in the lower fluid and @I) (x, y) 
in the upper fluid, where 

40(x, y) = exp(-My + iMx) 

+0(x, y) = - exp (My + iMx) (1) 

Here, M = (1 + s/ 1 - SK, where K = cr*/g, (T is the cir- 
cular frequency of the incoming interface waves with time 
dependence exp(-iot) (dropped throughout the analy- 
sis), and g is the acceleration due to gravity. Due to the 
presence of the barrier, the incident wave train is partially 
reflected by and transmitted over the barrier. If the result- 
ing motion is described by the velocity potentials 9(x, y) 
and +(x, y) in the lower and upper fluids, respectively, 
then + and CI/ satisfy 

V*+=OforyzO, V2*=OforyI0 (2) 

K+++,=s(K4~+4+), &=vlyaty=O (3) 

+,=Oatx=O, a<y<m (4) 

r’/*V+ is bounded as r = {x2 + (y - a)*}‘/* - 0 (5) 

Also, (p and r& are to satisfy the following requirements 
as Ix1 - 00, 

[ 1 4hY) _ 
WC y) 

I 
T 40(x, y) 

[ 1 @0(x y) 
as x-co 

[ ~~~::~~] +R[$III=:1] as x- -00 

(6) 

where T and R are, respectively, the unknown transmis- 
sion and reflection coefficients and am to be determined. 

To solve the boundary value problem described by eqns 
(2)-(5), we require two-dimensional source potentials due 
to a line source submerged in either of the two fluids. 
Let G(x, y; 5, g) and H(x, y; 5.0) be the source poten- 
tials in the lower and upper fluids, respectively, due to a 
line source submerged in the lower fluid at (5, TV) (n > 0), 
and G(x, y; 5, r7) and w(x, y; 5, n) be the same due to a 
line source submerged in the upper fluid at (5, n) 01 < 0). 
These source potentials were obtained earlier by Gorgui 
and Kassem’ and are given in the Appendix. We now 
apply Green’s integral theorem to 91 (x, y) = 4(x, y) - 
+0(x, y) and G(x, y; 5, n) in the region bounded exter- 
nally by the lines y = 0, -X 5 x s X; x = *X, 0 I 
y I Y;y = Y, -X S x < 0;~ = 0-,a < y I Y;x = 0+, 
a<y< Y; y= Y;O<x~Xandinternallybyacircle 
of small radius E with centre at (5, n), and ultimately we 
make X, Y - a3 and E - 0. We then find 
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00 

27~41(5, r7) = - j” fty>G,AO, y, 5, q) dy 
(I 

where 

+ 7 14,G, - G41,l,=o~ (7) 
COD 

f(y) = 61(+O,y) - &f-O,y) 

= 4(+O,y) - 4(-O,y), (a < y -c 00) (8) 

Again we apply Green’s integral theorem to in, 1 (x, y) = 
Wx, y) - 4% lx, y) and H(x, y; 5, Q) in the region bounded 
bythelinesy=O,-XsxsX;x=+X,-YsysO; 
andy=-Y,-X<xsX.Wethenobtain 

Ir cyl,H L 9*Hy],=, dx = 0 (9) 
--oo 

Multiplying eqn (9) by s and subtracting from eqn (7), 
we tid 

2m41 t& rl) = - jk~)c,(O. y; 5, rj) dv 
a 

00 

+ [G,~I -wHy J - GUI, + sHJl~~l~=o dx 
-m 

W-9 

The interface conditions satisfied by 41, WI and G. H 

imply 

%41- N’rH, = 
s-1 
--y41& at Y = 0 
s-l 

1 

(11) 
G+I, - sHV+ = -,$+I, at y = 0 

so that the term in the square bracket in the right-hand 
side of eqn (10) vanishes identically. This results in the 
representation 

(12) 

To find I#I (5. q) (n < 0), we similarly apply Green’s 
theorem to I+V~ (x, y) and R(x, y; 5, n) in the region 
bounded externally by the lines y = 0, -X 5 x I X; x = 
&X,-Y IysOandy= -Y,-Xrx<Xandinter- 
nally by a small circle of radius E and centrc at (5, q) , and 
ultimately we make X, Y - 00 and E - 0. We thus find 

m 

2WI (5, r7) = - I [m,, - ry,q=o &x (13) 
(I 

We again apply Green’s integral theorem to 91 (x, JJ) 
and z(x, y; 5, q) in the region bounded by the lines y = 0, 
-X~x~X;x=~X,o~ySY;y=Y,-X~x<o; 

x=0-,a<ysY;x= O+,a<ys Y,andy= Y,O< 
x I X, and ultimately we make X, Y - 00. We then fmd 

m 

-I[ G4ly - 4,qJ],=, dx = 0 (14) 
--cp 

Multiplying eqn (13) by s and subtracting from eqn (14), 
we thud 

00 

The term in the square bracket of eqn (15) vanishes iden- 
tically because of the interface conditions. Thus 

co 

277s(cI1(5, r7) = - j-/W~xCO. y; 5, rl) dy (16) 

D 

Thus, the velocity potentials +(z, ~Z)(II > 0) in the 
lower fluid and r&(5,9) (n < 0) in the upper fluid are ob- 
tained in terms of the unknown difference of potentials 
f(v) across the barrier submerged in the lower fluid. 

From the condition in eqn (4), we have 

41&l 0) = -4o~Kh r7) 
= -iMexp(-MO), CI < n < bo (17) 

Using eqn (17) in eqn (12), we obtain the integro- 
differential equation for fb) as 

= 2nih4exp(-Mn), a < r) < CD f18) 

This is to be solved subject to the condition that f(a) = 0 
and f(v) is bounded as y - a. 

The order of integration and differentiation in eqn (18) 
can be interchanged provided the integral is interpreted 
as a finite part integral. This leads to the hypersingular 
integral equation 

00 

f 
f(y)G,~(O,y;0, rl) dy 

(I 
= ZniMexp(-MO), a < q < do (19) 

As in the work of Parsons and Martin,s the cross on 
the integral sign indicates that it is to be interpreted as a 
two-sided finite part integral of order two. 
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In the next section, we solve this hypersingular integral 
equation [eqn (1911 numerically, utilizing the method used 
by Parsons and Martin* and also calculate the reflection 
and transmission coefficients 

3 THE HWERSINGULAR INTRGRAL EQUATION 
AND THE METHOD OF SOLUTION 

In eqn (19), G,#, y; 0, rl) is given by 

1 1 
GxEtO,y;O, q) = -- - - - 

2M 

(Y - ov cv+ a)2 (1 +s)(y+ r?) 

2M2 Q) exp[-kty + Ml dk 
-- 

l+s f k-M (20) 
0 

Then, eqn (19) becomes 

1 1 2M - _ 
W-8)2+ 01+9)2+ (l+s)cy+r?) 

+ 2M2 wexp[-k(y + Ml dk 
f 1 +se k-M 

I 

fO1, dy 

= -2niMexp(-Mq), a < q < 00. (21) 

Substitutingy = 2a/(l +p) and rl = 2a/(l +q) in eqn 
(21), we find 

1 
-+Uq,p) 
(p - q)2 1 ji(p)dp=h(q), -1 <q<l 

where 

(22) 

1 
L(q, P) = tp + q + 32 

4Ma 

+ (l+s)(l+p)(l+q)(p+q+2) 

8M2a2 

+ (l+s)(l +p)Z(l +q)2 *(P# q) (23) 

and 

cu(p,q) = (24) 

with CI = [2a(p + q + 2)ll[(p + l)(q + l)], and the path 
in the integral being indented below the point k = M, 

h(q) = -4rrMmex$~) -1 < q < 1 
2 ’ (25) 

so thatfi(+l) = 0. 

(26) 

Following Yu and Ursell,13 it can be shown that 

W(p, q) = - exp(-PM) 

x O” (M/J)~ hrpM+y-in+ I- 
m=l mm! 1 (27) 

where y = 0.5772 is Euler’s constant and p is given above. 
Since fl( f 1) = 0, following Parsons and Martin,8 we 

assume 

j-l(p) = (1 - p2)“2g(p) (28) 

where g(p) is a bounded function. g(p) is now approxi- 
matedas 

g(p) = 5 a&(p) (29) 
n=O 

where U,,(p) is the Chebyshev polynomial of the second 
kind given by 

U,(cos 8) = 
sin(n + 1)0 

SiIltJ 
(30) 

and the values of a,, am to be determined. 
The use of eqns (28) and (29) in eqn (22) produces 

N 

C aA = h(q), -1 < q c 1 
n=O 

(31) 

where 

A,(q) = -rr(n + l)&(q) 

1 

+ 
I 

(1 - p2)“2Gt(p)L(q, p) dp (32) 
-1 

To 6nd the unknown constants a& = 0, 1,2,. . . , N) 
we put q = qj(j = 0, 1,2, . . . , N) in eqn (3 1) to obtain 
the linear system 

ga&(qj) =h(qj),j=O,l,2,...,N 
n=O 

(33) 

which can be solved by standard methods. In eqn (33), 
the values of qj am collocation points and can be chosen 
suitably. Parsons and Martin* suggested these as 

q,=COS{(jN+:2n},j=0,1,2 ,..., N (34) 

They also suggested another possible choice as 

q,=Cos~‘~~~~~,j=O,l,2 ,..., N (35) 

In our numerical calculations we have used both these 
choices. 

The reflection and transmission coefficients R and T 
can be obtained by making 5 - &a~ in eqn (12) or eqn 
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(16) and noting the requirements at infinity given in eqn 
(6). Then, 

00 

R=-fi 
I 

f @I exp( -My) dy (36) 
Cl 

and 

m 

T=l+$ 
I 

f ty) exp(-My) dy (37) 
(1 

Substituting y = 2ai (1 + p), eqns (36) and (37) become 

R= _2Ma ’ fi(P)exP(-%) dp -J l +s_, (1 + pP 
and 

fi (P) exP (- z) dp 

-I 
(1 + p)2 

Substituting fl (p) into eqns (38) and (39), we find 

R _ ;y; : a, j (l - P2)“2 

n=O _, (l+pF 

x exp 

and 

(38) 

(39) 

(40) 

(41) 

These can be evaluated numerically after the values of a,, 
are obtained from the linear system [eqn (33)]. 

It may be noted that R and T are obtained here for any 
value s such that 0 I s < 1. However, for small values of 
s, a perturbation technique can be utilized to obtain T 
and R up to O(s) analytically. This is carried out in the 
next section. 

4 APPROXIMATE SOLUTION UP TO O(S) 

The integro-differential equation, eqn (18), can be re- 
duced to another integro-differential equation by using 
the procedure adopted in the corresponding one-fluid 
problem. lo Noting 

G&J y; 0, r7) = G,,(O, y; 0, r7) (42) 

eqn (18) can be written as 

d2 - 
w fWG@,y;Q ~1 dy J a 

= ZrriMexp(-Mq), a < Q < 00 

Our integration of eqn (43) yields 

(43) 

+ if (YHW, y; 0, ~1 dy 
LI 

where 

= -27&%4exp(-Mrj), a < rj < 00 W 

~jf(y)~MG+G,i(O.y;O.rl)dy=O (45) 
D 

Now, 

2SM 
(MG+G,)fO,y;O,q)=E(y,q)+- l +,WY+ ol 

=E(y,rl)+2sMhly+rll 

+ W) (46) 

where 

E(y,r~) =Mln ‘s -L+- 
I I 

1 

Y-V y+r7 
(47) 

Equation (46) gives some sort of expansion for the kernel 
of the integro-differential equation [eqn (45)] for small s. 
We assume a similar expansion for f(y) given by 

f(y) = fo(y, + sfi (y, + O(2) (48) 

Using eqns (46) and (48) in eqn (45) and equating the 
coefficients of so and s from both sides, we find that fofy) 
and fi (y) satisfy the following integro-differential equa- 
tions. 

m 

--& foCy>ECy,rl)dy=O, a<u<m J (49) 
(I 

and 

= -2M$ J fo(y)hly+ uldy, a< q < m (I 
(50) 

The integro-differential equations [eqns (49) and (5011 
can be reduced to the following singular integral equa- 
tiOIlS 

-dy=O, a<q<m (51) 
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c4 

-c$ J fi (y)GtO, y;O, q) dy = -2rriexp(-Mrl) a 
and 

m 2yh1 (y) J + _ yz dy = r(r7) 
(I 

(52) 

where the integrals a= in the sense of Cauchy principal 
value and 

Ao(y) = Mfo(y) + A(Y) (53) 

AI Cy) = Mh Cv) + f;(v) (54) 

and 
a0 

r(rl) = -2M; 
s 

foWInly+rlIdy (55) 
Ia 

The functions Ao(y) and hl (y) have integrable singulari- 
ties at y = a. The edge condition [eqn (511 suggests that 

ho(y) = 0(ly2 - a21-“2) 

Al(y) = O(I3 - a2(-‘T as y - a (56) 

Solutions of eqns (51) and (52) satisfying eqn (56) are 
well known6 and are given by 

Y 

h(y) = c,exp(-My) (57) 

and 
Y 

fi (y) = exp(-My) J exp(Mu) {c, - B(u)} du (58) 
(I (u2 - a2)*j2 

and 

B(u) = f (59) 
D 

and CO and cl are arbitrary constants to be determined. 
From the Appendix, we have 

G(O,y;O, q) = Go@, y;O, q) -t sfh ly’ - ~~1 

- Go@, y;O, rl)] + 0<& (60) 

where 

GotO, y;O, q) = -2rriexp{-M(y + q)] 

_ 2 Q) UM, y)L(M, q) J k(k2 + M2) dk (61) 
0 

with L(M, t) = kcoskt - Msinkt. 
Using eqns (48) and (60) in eqn (44) and equating the 

coefficients of s” and s from both sides we find 
m 

-& 
J 

h(yWo(O, ~0, rl) dy 
a 

= -2niexp(-MO), a < q < 00 (62) 

-$~/o(y~lnly2-~21dy, a<r)cco (63) 
II 

where the right-hand side of eqn (63) was simplified using 
eqn (62). 

To evaluate CO, we substitute f&y) from eqn (57) into 
eqn (62). After evaluating the various integrals, we find 

2 
co=-- 

Ao 
(64) 

where 

A0 = &(Ma) + hlo(Ma) (65) 

& and ZO being mod&d Bessel functions 
To evaluate cl, we substitute f~ (y) from eqn (58) into 

eqn (63) and the various integrals involved are simplified. 
The main steps are indicated below. 

Co 

J 
fi ty) exp(-My) dy = &&(Ma) + 2 (66) 

a 

where 

o(, _ O” m+-W)BCy) dy 

-J (y2 - a2)1/2 (I 

m 

J fi (y)LtM Y) dv = -Tc,Jo(ka) 
a 

(67) 

m cos kyB(y) 
OD 

-1‘ 2 1,2dy+; J (I (a2 - y 1 
r(y) cos ky dy (68) 

II 

Utilizing these results in eqn (63) and after making 
further simplifications we obtain 

CIAO + A1 - is(M) = -2 + J r(t) exp(Mt) dt 
(1 

m 

+ exp(yrl)-$ J h(y) In ly2 - ~~1 dy I (I 1 
a<u<m 

where 

A1 = o(1 + $1 

(69) 

(70) 

(71) 
and 
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and 
m 

6(M) = exp(-Mt)r(t) dt 
I 

(72) 
(I 

The right-hand side of eqn (69) can be further simpli- 
fied. We note that 

r(q) exp(Mt) dr 

m 

+ exp(Mo) 
I 

fo(y) In Iv* - rl’l dy 
Cl I 

(73) 

This vanishes identically for a < q < 00 due to eqn 
(51). Hence cl is obtained 

-2 - AI + is(M) 
Cl = 

Ao 
(74) 

The reflection and transmission coefficients R and T 
can now be obtained up to O(S) by making 5 -, &CO 
in eqn (12) or eqn (16) and noting the requirements at 
inlinity given by eqn (6). Then, 

co 

R=-e J f ty) exp(-MyI dy 

and 

(I 

T=l+ e i/ Ql exp(-MyI dy 
II 

If we assume 

R=Ro+sR1 +0(g) 

and 

T=G+sTi+O(& 

then 
00 

RO = -M J fo(y) exp(-My) dy a co 
To = 1 + M 

I 
fo(y) exp(-MY) du 

B 

(75) 

(76) 

(77) 

(78) 

(79) 

(80) 

m 

RI = -M fi(y)exp(-My)dy-Ro (81) 
(I 

and 
m 

F =M fi(y)exp(-My)dy-To- 1 J (82) a 
Using fob4 and ft (y) from eqns (57) and (58), respell 

tively, we lind 

R. _ &(Ma), T iml0Ma) 

Ao 
0= 

Ao 
(83) 

and 

RI = -TI = ~[#I - G(M)}&(Ma) - rrorlIo(Ma)] 

W 

where Q, B1 and 6(M) am given in eqns (67), (71) and 
(72) respectively. 

5 DISCUSSION 

The problem of interface wave scattering by a thin vertical 
barrier which is completely submerged in the lower fluid 
and which extends infhmely downwards into the lower 
fluid of two superposed infinite fluids has been studied. 
Green’s integral theorem is suitably utilized to formulate 
the problem in terms of a hypersingulur integral equa- 
tion for the unknown difference of potential across the 
barrier. This unknown difference of potential is approx- 
imated by a truncated series of orthogonal polynomials, 
namely Chebyshev polynomials of the second kind, mul- 
tiplied by an appropriate weight function, and the zeros of 
the Chebyshev polynomial are used as collocation points. 

The reflection and transmission coefbcients are ob- 
tained in terms of a truncated series Again, the problem 
is formulated in terms of an integro-differential equation. 
As the kernel of this integro-dill’erential equation has 

Table 1. Reflection coeflkient 

Ka 
0.001 
0.005 
0.01 
0.05 
0.1 
0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 

s=o 
H.S. Exact 

o.9ko 0.9247 
0.864877 0.864939 
0.83243 1 0.832524 
0.703620 0.703786 
0.610188 0.610408 
0.266129 0.266668 
0.105712 0.105264 
0.041294 0.041293 
0.015903 0.015902 
O.OO6O32 O.OO6032 
0.002266 0.002266 
O.OOO846 O.OOO846 
o.ooo314 o.ooo3 14 
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Table 2. Reliedion coewnt 

s = 0.0013 s = 0.01 s = 0.1 

H.S. O(s) H.S. O(s) H.S. O(s) 
Ka IRI IRI IRI IRI IRI IN 
0.001 0.912744 0.912917 0.912366 0.912540 0.908286 0.908485 
0.005 0.864766 0.864913 0.864063 0.864208 0.856448 0.856579 
0.01 0.832293 0.832425 0.831353 0.831478 0.821075 0.821206 

0.05 0.703332 0.703505 0.701332 0.701511 0.679624 0.679804 
0.1 0.609794 0.610006 0.607023 0.607253 0.577136 0.577379 

0.5 0.265202 0.266013 0.259042 0.261630 0.200335 0.203492 
1.0 0.105100 0.104757 0.101057 0.101391 0.064863 0.069601 

1.5 0.040949 0.040990 0.038687 0.038993 0.020248 0.021899 
2.0 0.015727 0.015743 0.014591 0.014711 0.006195 0.006722 
2.5 0.005950 0.005956 0.005420 0.005466 0.001867 0.002031 
3.0 0.002229 0.00223 1 0.001993 0.002011 0.000558 0.000608 

3.5 0.000830 0.000831 0.000729 0.000735 0.000166 0.000181 
4.0 0.000308 O.OOC308 0.000265 0.000268 0.000049 0.000054 

some sort of expansion in terms of s, the unknown func- In Tables 2 and 3, IRl is tabulated for s = 0.0013,0.01, 
tion satisfying the integro-differential equation and the 0.1,0.25,0.5 obtained directly from the hypersingular in- 
reflection and the transmission coefficients are assumed tegral equation and approximately up to O(s) by the per- 
to have similar expansions. An approximate solution of turbation method for various values of Ka. It is observed 
the integro-differential equation up to O(s) is obtained. that here also these coincide up to 3-4 decimal places 
Utilizing this solution, the reflection and transmission co- This demonstrates that the perturbation technique also 
efficients are evaluated up to O(s). furnishes good results for values of s up to 0.5. 

For numerical computation of the reflection coefficient 
based on the hypersingular integral equation, we have 
used N = 10 in eqn (29) and the collocation points given 
by eqn (34) in the linear system [eqn (3311. The different 
integrals are evaluated by using a 24-point Gauss quadra- 
ture formula. Almost the same numerical results are ob- 
tained if N is taken as 15 and the collocation points are 
taken as those given by eqn (35). 

In Table 1, IRl is tabulated for s = 0 obtained directly 
from the numerical solution of the hypersingular inte- 
gral equation and from the known exact result given by 
UrselP for various values of wave number. It is observed 
that the results coincide within 3-4 decimal places in most 
cases This demonstrates the effectiveness of the numeri- 
cal scheme based on the hypersingular integral equation 
formulation of the problem. 

Comparing the values of the reflection coefficients 
for the two-fluid case with single-fluid values (exact) for 
f&d Ka, it is observed that the density ratio, s, has a 
sign&ant effect on the reflection coefficient (and also 
the transmission coefficient). Also, in Fig. 1, ]Rl is plot- 
ted against s in the range (0, 0.5) for Ka = 0.05, 0.1, 
0.5 and 1.0, and it is observed that the effect of s is to 
diminish the reflection coefficient which implies that the 
upper layer diminishes the penetration of the interface 
waves into the lower layer to some extent. Again, as 
Ka becomes large, the reflection coefficient for a 6xed s 
becomes small, which is plausible since for large wave 
numbers, the waves are confined within a thin layer near 
the interface and almost the whole wave energy is trans- 
mited above the barrier submerged in the lower fluid. 

Table 3. Reflection coeflicient 6 CONCLUSION 

s = 0.25 s =0.5 
H.S. O(s) H.S. O(s) 

The numerical method based on the hypersingular inte- 
gral equation formulation of the problem seems to be Ka IRI IN 

0.001 0.900652 0.900855 
lRl IRI 

0.883432 0.883630 
0.005 0.841925 0.842053 
0.01 0.801363 0.801510 
0.05 0.637748 0.637960 
0.1 0.520144 0.520413 
0.5 0.142905 0.143341 
1.0 0.029539 0.030102 
1.5 0.004982 0.006033 
2.0 0.000963 0.001175 
2.5 0.000184 0.000226 
3.0 0.00003s 0.000043 
3.5 0.000007 0.000008 
4.0 0.000000 0.000002 

0.808378 
0.755370 
0.540326 
0.392536 
0.029553 
0.001577 
0.000080 
0.000004 
0.000000 
0.000000 
0.000000 
0.000000 

0.808513 
0.755518 
0.540584 
0.392856 
0.031293 
0.002266 
0.000117 
0.000006 
0.000000 
0.000000 
0.000000 
0.000000 

Fig. 1. Graphs of IRI against s for various Ku. 
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very convenient for handling problems of interface waves 
involving two superposed fluids That the method works 
smoothly is demonstrated here by simply taking s = 0 
in the numerical scheme. The resulting numerical results 
for the reflection coefficient coincides up to 34 decimal 
places with the results obtained from the known analyti- 
cal expression for IRI for a single fluid. This method can 
be applied successfully when the barrier is inclined with 
the vertical or is horizontal or even when it is curved. The 
practical interest in the problem arises when one wants 
to consider interface wave diffraction by a barrier sub- 
merged in salt water over a layer of fresh water in the 
ocean. For mathematical simplification, the upper layer is 
assumed to be extending in6nitely upwards and the lower 
layer extending infhritely downwards. An upper layer of 
finite height with a free surface would have been a better 
model. We hope to pursue this in the future. 
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APPENDIX 

The source potentials G, H, c and p have been obtained 
by Gorgui and Kassem.’ These arc given below. 

For 0 > 0, 

1-S 
G(x,y;E,q) =lnr- l+slnr’ 

2 m expb-k~ + ~11 -- 
l+s f k-M 

cos k(x - 5, dk 

0 
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(Al) 

and 

H (x, y; 5,~) 

f 
- exp’k(y - ‘)’ cosk(x _ 5) & kM 

0 1 

and for q < 0, 

C(x, y; 5, rl) 

f 
OD=pI-kOl- rl)l cosk(x_ 

k-M 
5,dk 

0 1 
643) 

and 

1-S 
R(x,y;~,rj)=Lnr+~lnr’ 

2s O” expikty + rl) I -- 
l+s f k-M 

cos k(x - 5) dk (A4) 

0 

where the path of integration of each integral is along the 
positive real axis and indented below the pole at k = M, 
and 

?, rr2 = (x - 5>2 + (y + # 645) 

Now, it can be shown that 

(MG + G,,)(O, y;O, q) = E(y, r7) + 1 + s = In Iv + rll (A6) 

where E(y, V) is given by eqn (47), so that 

(MG+G,)(O,y;O,rl)=ECy,rl)+ZsMlnly+rll 

+ OLa 647) 
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Also, an alternative form for Gtx, y; & ~1 is given by 

Gh Y; 5, a) = &Go(x, y; 5, rl) + sWr')l (~48) 

2 - Uk, W(k, y) J k(k* + M2) 
=p{-klx - 511 dk 

0 

649) 

where 

Go (~9 Y; 5, rl 1 
= -2niexp{-M(y + q) + iMIx - 51) 

Thus 

G(O, .Y; 0, rl) = G(0, Y; 0, rl) 

+ sIln 13 - r1*1 - Go(O,y;O, rl)I + OC& 

(Al01 


