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SOME STATISTICAL MODELS, METHODS AND
APPLICATIONS IN GENETICS

PARTHA P. MAJUMDER

Anthropometry & Human Genetics Unit, Indian Statistical Institute,
Calcutta 700 035

Some statistical models and methods used in genetical studies of populations are
described. In particular, estimation procedures pertaining to parameters of models used
for measuring genetic structures of contemporary populations, within- and between-
population genetic diversities and population phylogenies are discussed.

A second section of this paper describes models and procedures pertaining to genetical
studies in families. Models for estimating genetic and environmental components in
the determination of a quantitative character are described. An application to family
data on blood pressures is presented. A newly developed multilocus epistatic model
is described, likelihood of non-randomly sampled family data is derived and an
application to understanding the genetics of a pigmentary disorder (vitiligo) is
presented.

INTRODUCTION

Statistics has always occupied a central place in genetical investigations. Many
of the commonly used statistical methods (e.g., regression) were, in fact, developed
in the course of genetical investigations. Because the foundations of Mendelian
genetics rest on a set of probability laws, the use of statistical models and methods
is natural to the analysis of genetic data. Contemporary statistical models in genetics
remain to be crude approximations of reality because of the intrinsic complexity of
biological systems. However, refinements continue to be made. Statistical applications
in genetics range from providing statistical models of Darwinian evolution to the
determination of the probability that an individual accused of having committed a
murder is indeed the culprit. In between are a whole host of problems in which
statistical models and methods play key roles. These include assessment of genetic
relationships among contemporary populations, determination of mode of inheritance
of a character, estimation of mutation rates due to various factors such as ionizing
radiation, identification of breeds of commercial importance and designing efficient
breeding strategies, assessment of relative roles of genes and environment in the
determination of a character, mapping genes controlling a genetic character, etc. Since
it is infeasible, in a single article, to describe the myriad of statistical models and
methods used in this vast territory, we shall restrict our attention to only some
specific areas. Further, this article will focus primarily on models and applications
to humans. It must, however, be emphasized that many of the statistical models and
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methods discussed below are applicable, and have actually been applied, to
non-human species also. To avoid delving into specialized biological concepts and
nomenclatures, we shall primarily discuss. simple models and applications.

GENETIC STUDIES IN CONTEMPORARY POPULATIONS

The major concerns of genetical studies of contemporary polulations are : (i)
estimation of genetic diversity within a population, (ii) measurement of genetic
distance between a pair of populations, (iii) study of genetic relationships among a
set of populations, and (iv) investigation of the genetical structure of a set of
subdivided populations. For such studies, the data comprise maximum likelihood
estimates (m.l.e.’s), x,,, of allelic proportions, m,;,, where m,;, denotes the proportion
of the ath allele (@ = 1, 2, ..., A7) at the Ith genetic locus (/ = 1, 2, ..., L) in the

pth population (p = 1, 2, ..., P). Obviously, O sm,, =<1, and EﬁL_l T = 1. In

genetical literature, the allelic proportions, x’s, are called allele frequencies, which
will henceforth be used.

Gene Diversity

The extent of variation of allele frequencies at a genetic locus within a population
is termed as gene diversity. An average of gene diversities over several loci is termed
as the average gene diversity. While it is possible to use any of the standard entropy
measures, such as the Shannon information measure, for measuring gene diversity at
a locus within a population, the most commonly used measure is the Gini-Simpson
index, which affords a biological explanation (viz., the probability that two randomly
chosen genes are not identical) and has been popularized in genetics by Neil8. For
simplicity, if we consider d single population and a single genetic locus, the gene
diversity is defined as :

hm)=1- = = . (1)

1

(We have dropped the suffixes / and p, since they are irrelevant now.) This is a
measure of the proportion of heterozygous individuals in a randomly mating popula-
tion. Obviously, this measure has many desirable properties : it yields the same value
for any permutation of (w;, %, ....,m,); is 20 (= 0 iff m; = 1 for some i = 1, 2, ..,
A, and x; = O for all j=i); and attains its maximum value for g =¢ = (1/A, 1/A,
.., 1/A). We also note that the maximum value of h(X) — 1 as A — . Are there
other measures satisfying these properties ? Rao?” proved that any measure h(%)
satisfying the above properties, the property h{{f+€)/2} = c.{h(€)—h(X)} (where c
is a constant) and a regularity condition, must be of the form

A=

hx) = ¢, [1— 4 . n§]+c2,

where ¢; > 0 and c, are constants.
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The natural estimator of hA(x) is

hmy=1- %' . x. . (2)

Now, E[h(®)] = {1 — (1/n)}.(1 - =

a=1

n:,f ), where n denotes the sample size. Hence,

h(r) is only asymptotically unbiased. However, in practice the bias is quite small
since in most studies n ~ 100. The variance of A(x) is (Nei and Roychoudhury??)

VIk(m)] = [2(n - 2) {Ex~(Ex) 2} + 2x - (£ )/ [n(n - D] ()
The unbiased estimator of A(x) is : A(®) = {n/(n - 1)}. (1—2: ) ). Asymptotic

distributions of these estimators have been derived by Nayak'’, which can be used
for performing tests of some hypotheses pertaining to gene diversity.

Genetic Distance

For the purpose of studying genetic variation between populations, a measure of
genetic distance was first proposed by Sanghvi?®. For a single locus, Sanghvi’s
distance is defined as :

A
.. (4
G?= E (nas - J‘:at)z/{2(3":ax + Jtat)}v ( )
a=1

where s and (s, t = 1, 2, ..., P) refer to two populations. (We have suppressed the
suifix I, since we are considering a single locus.) It can be shown (see Chakraborty
and Rao’) that this distance measure is the same as Mahalanobis’ D?, when the
underlying distribution is muitinomial instead of normal. This is because of the
structure of the dispersion matrix of allele frequencies, which for a set of allele

frequencies (m,, %y, ..., M, _,, My =1- E._  m,) has as the elements : Var(m) =

m(1-x) and Cov (m,m) = -mm; i =j = 1, 2, ..., A — 1. The inverse of the
dispersion matrix has 1/m; as the diagonal entries, and (1/m; + 1/x) as the off-diagonal
entries. By using the pooled allele frequencies of the two populations s and ¢ to
compute the pooled dispersion matrix, the proof that G? and D? are equal is
straightforward. With its roots branching out from the basic formulation of a distance
measure by Mahalanobis, various other genetic distance measures have subsequently
been proposed. We shall not provide a review of these measures here; the interested
reader may consult Nei?®®., We shall, however, consider one other distance measure
because of its biological interpretability and its widespread use. This measure is due
to Nei®, and is defined as

1/2
Dotn[ By /|y ) ) ] @
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The numerator of the term within brackets in the definition of D denotes the
proportion of identical genes between two randomly chosen genomes, one drawn from
population s and the other from population r. The denominator is a normalizing factor
reflecting the proportion of genes that are identical between two randomly chosen
genes from within each of the two populations. When many loci are considered, the
terms in the numerator and the denominator are replaced by the averages of each of
the terms taken over loci; for example, the numerator is replaced by
L_l 2f‘-l 2:"-l T Mo

It must be noted that D is not a metric because it does not satisfy the triangular
inequality. However, in addition to its biological interpretability, it is useful for
evolutionary studies because the expected value of this distance measure increases,
under certain assumptions (stated below), linearly with evolutionary time of
divergence/isolation of the two populations under consideration. Most other proposed
measures of genetic distance which are metrics, including Sanghvi’s G2, do not satisfy
this property. Under the assumptions that (i) the populations are in steady states under
mutation-drift balance, (ii) the sizes of the populations remain ccastant over
generations, (iii) the rate of gene substitution is constant across loci and generations,
and (iv) every mutation gives rise to a new allele,

E(D) = 2yr, o (6)
where p denotes the rate of gene substitution, and T denotes the time of diver-
gencefisolation of the two populations. Thus, populations which diverged earlier are
expected to have a greater genetic dissimilarity compared to pepulations which
diverged later — a desirable property of a distance measure. Further, eqn. (6) can
be used to estimate the evolutionary time of divergence if the substitution rate (u)
is known. Rao¥ showed that the transformation cos™ (e®) renders D to a proper

metric. But this transformation destroys the useful relationship of the distance measure
with evolutionary time.

A natural estimator of D is obtained by substituting m.Le.’s x5 and x,, for m,

and m,, respectively, in eqn. (5). However, this natural estimator is biased. The
asymptotically unbiased estimator is!®

D = - In {Zh.y Xe Xa/ ({20, oy X5—-1)/(20,- 1)}
x {(2n,Zh .1 ¥a— DI2n,~ DN}, e (7)

where n, and », are, rcs'pfctively, the sample sizes from populations s and ¢ The
sampling distribution of p is unknown. The variance of the natural estimator is
derived in Nei and RoychoudhuryZ.

Genetic Relationships

The study of genetic relationships among populations is performed by estimating
the matrix of pairwise genetic distances, and then performing a cluster analysis using
this distance matrix. For contemporary populations with short evolutionary times of
divergence/isolation, the most popular clustering algorithm is the average-linkage
method, also known as the UPGMA method®. However, when the populations under
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consideration have long divergence times; for example, when one is analyzing genetic
data of different species or phyla; the UPGMA may not perform well in
reconstructing genetic relationships, which involves estimating the topology of the
phylogenetic tree and its branch lengths. This phenomenon has been observed in
many computer simulation studies. The major reason for this is that rates of gene
substitution are often variable over long periods of evolutionary time and across loci.
Various other clustering algorithms have been proposed to deal with this problem
(see Saitou®® for a recent review).

Even when one is dealing with contemporary populations, there is a sampling
variance associated with each estimate of pairwise genetic distance. Therefore,
conceptually this will lead to a variance in node positions (distances at which OTU’s
successively join to form clusters) of a reconstructed tree. Nei et al.?3 have suggested
a method of computing the variance of a node which is a weighted sum of the
variances of and covariances between distances of populations which are included in
the node under consideration (see also, Chakraborty?). Felsentein® has suggested a
bootstrap approach to this problem. We are currently investigating another
computer-intensive approach which not only provides sampling variances of the nodes,
but also provides an estimate of the level of confidence of a particular tree topology.
Our approach comprises generating many simulated distance matrices based on the
estimated distance matrix, and reconstructing a phylogenetic tree for each of these
generated matrices. For the estimate of the distance, p, between a pair of nopulations

and its variance, Var (i)), we draw a random number from U[b -
BV Var(D), p+PBV Var(D) ], where B > 0 is a constant. When this is done for all

the P(P + 1)/2 pairs of populations (symmetry of the distance matrix is assumed),
we obtain a simulated distance matrix. We then apply a clustering algorithm to this
matrix to obtain a phylogenetic tree. The procedure is repeated a large number of
times, which yields a frequency distribution of different phylogenetic topologies, from
which the most parsimonious topology can be chosen. This frequency distribution is
a function of many parameters, including . The variances associated with each node
of this parsimonious topology are easily estimated from the simulated trees
conforming to this topology. Our results based on analysis of actual gene frequency
data from human populations, albeit preliminary, indicate that for contemporary
populations often little confidence can be placed on the dendrogram depicting genetic
relationships reconstructed from the observed distance matrix.

Genetical Structure

When a population is subdivided into a set of related subpopulations, it is of
interest to investigate the genetical structure of these subdivided populations. An
effect of subdivision is an increase in the proportion of homozygotes in the total
(pooled) population, which results in departures of genotype proportions from those
expected under Hardy-Weinberg equilibrium. This effect is observed even if the
genotype proportions within each subpopulation do not differ significantly from
Hardy-Weinberg expectations. If these subpopulations are random mating units but
are not completely isolated, that is, if there is exchange of mates among the
subpopulations, then Hardy-Weinberg equilibrium is slowly restored with the passage
of time. Thus, deviations of genotype proportions from Hardy-Weinberg expectations
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shed light on the genetical structure of a subdivided population. The genetical
structure is studied in terms of three correlations between two gametes uniting to
form an individual. In a randomly-mating population, there is no correlation between
homologous genes of uniting gametes relative to the gene frequencies in the whole
population. Upon division into primarily intra-mating subpopulations, correlation
between uniting gametes is expected. The parameters for studying genetical structure
are : Fyr = correlation between gametes that unite to produce the individuals (1)
relative to the gametes of the total population (T), Fig = correlation between uniting
gametes averaged over all subpopulations relative to those of their own subdivision
(S), and Fgy = correlation between two gametes drawn randomly from within a
subdivision (S), relative to gametes of the total population (7). Wright*! showed that

1-Fir=(1-Fps) (1 -Fsp). - (&)

With reference to the deviations of genotype frequencies from Hardy-Weinberg
equilibrium for a single autosomal locus, these parameters can be defined as (Nei®?)

Frr=(Hy—Ho)/Hr, ... (9a)
Fis=(Hs—Hy)/Hs, ... (9b)
Fgr=(Hr-Hg)/Hr, ... (%)
where Hy=%., wp(1-T1,), .. (10a)
Hr=3 ., 7, (1-T,), .. (10b)
Hs=%,1 wpZoo1 7y (1-11g), - (100)

I1,, = proportion of individuals who are homozygous for allele a (= 1, 2, ..., A) in
population p (= 1, 2, ..., P), w, = size of the pth subpopulation divided by the total
population size, 7, = ZZ_, w,m,,. In genetic terms, H, denotes the proportion of
heterozygotes in the total population, H, denotes the proportion of heterozygotes
expected under Hardy-Weinberg equilibrium ("heterozygosity") in the total population,
and H; denotes the average within-subpopulation heterozygosity. When data on many
loci are used, averaging is also done over loci.

Assuming that, for all p = 1, 2, ..., P, w, = 1/P (an assumption which is
generally made in practice because of lack of reliable knowledge of subpopulation
sizes), Nei and Chesser?! provided approximate unbiased estimators of Hrp, H, and
Hg. The exact unbiased estimators have been derived by Chakraborty and
Danker-Hopfe®. These are

Hp=30_ (X, (1-X, )+ P2 20 x,, (1 -x4)/(2n,-1)], .. (11a)

Hy=1-P135_ %0, X,

- .. (11b)
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Hg=P13) ) 2n,(1-%5., x3)/(2n, - 1), .. (11¢)

- p e
where x, =2, x,/P, X,,p=ni,"")/np, nﬁ,"") = number of individuals who are

homozygous for the ath allele in the sample of size n, from population p.

When these estimates of Hr, Hy and Hg are plugged into eqns. (9), the resulting
estimators are consistent, but not unbiased, for Fj,F;s and Fgy as defined by
Wright*!. Approximate sampling variances of these estimators can be derived by using
the procedure given in Nei and Roychoudhury??. However, virtually nothing is known
about the sampling distributions, even asymptotic, of these estimators, and therefore
tests of hypotheses concerning these parameters cannot be performed. Some heuristic
test criteria for certain hypotheses are given in CockerhamS. The relative values of
the estimates of Fy, F;s and Fgr are generally used in a descriptive manner. Fgr,
which is necessarily positive, when "large" indicates that there is a strong effect of
subdivision; that is, there is considerable genetic differentiation among the subdivided
populations. While usually positive, if F;; < 0, then it indicates that there is
systematic avoidance of consanguineous mating within subdivisions. If there is
systematic subdivision, whether into random mating subpopulations (F;g = 0 and
F;r=Fgr) or into inbred groups, Fyr is positive but it can be negative if there is
little or no systematic subdivision and there is prevailing avoidance of consanguineous
mating. The various statistical procedures employed in the analysis of genetical
structure of subdivided populations have recently been reviewed by Chakraborty and
Danker-Hopfe* and Chakraborty>.

GENETIC STUDIES IN FAMILIES

One of the major goals of genetics is to understand the causes of aggregation
of a character (qualitative or quantitative) in families. Familial aggregation of a
character can arise because individuals in families share common environmental
factors (such as, food) or because they share genes. Thus, any statistical model for
the analysis of the causes of familial aggregation must start with estimating the
relative roles of genes and environment. It must be emphasized that sometimes
environmental factors may be transmissible in the same way that genes are. For
example, parents often play a leading role in imparting attitudes and values to their
children, although not all children may pick up similar attitudes and values, as is
often the case. Thus the transmission of a learned behavioral character may mimic
Mendelian transmission even though it is not genetic. Therefore, a character being
transmitted from parents to offspring in accord with Mendelian probabilistic laws is
not a sufficient condition that it is genetic. Statistical models must take this fact into
account. The ultimate proof that a character is genetically controlled is arrived at not
in a statistical laboratory, but in a genetical laboratory by actually cloning the gene(s)
controlling the character. However, statistical models and methods can and do provide
guidance to geneticists in determining gene cloning strategies so that cloning efforts
are not reduced to searching for a needle in a haystack. In this section, we shall
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describe some of these models and provide some applications of (i) estimating the
relative roles of genetic and environmental factors in the determination of a character,
and (ii) determining the mode of inheritance of a genetic character. Because of space
constraints, we shall not be able to discuss the statistical methods for determining
whether two characters cosegregate in families. A review of these procedures can be
found in Ott** and more recently in Ott%,

Path Model

During the last five years we have been involved in several studies pertaining
to the determination of genetic and environmental contributions to blood pressure
levels — systolic (SBP) and diastolic (DBP). The motivation for these studies is that
although essential hypertension — defined by the W.H.O. as SBP > 160 mmHg or
DBP > 95 mm Hg — is a major risk factor for cardiovascular diseases, even "mild"
hypertension, conventionally in the range of 90 to 104 mmHg DBP is viewed as a
major public health burden (Labarthe3?). Therefore, the belief is that an
understanding of how blood pressure is influenced by genetic and environmental
factors is the key to understanding the role played by hypertension in cardiovascular
complications. The most recent study undertaken by us was among the Marwaris
residing in Calcutta. The reasons for the choice of Marwaris as a study group,
pertinent study details and their epidemiological profiles relating to blood pressures
and lipid levels have already been published (Majumder et al.l¥). Suffice it to say
that the Marwaris have a high prevalence (17%) of hyperteusion, and their lipid
profiles are "worse" than the Caucasians living in the United States (who have poor
lipid profiles from the cardiovascular standpoint). To study the relative contributions
of genes and environmental factors, we have performed a path analysis of the blood
pressure data collected from members of 210 nuclear families. Path analysis,
developed by Sewall Wright, is a method based on algebraic manipulation of
standardized regression coefficients to explain linear relationships between variables.
The path model used in the present study is presented in Fig. 1. As may be seen
from the legend to this figure, there is a variable called "environmental index" (I).
Since family environment in its totality is not directly measurable, an index was
created as an estimate of the environment, separately for SBP and DBP. The index
is assumed to be a measure of the family environment alone, and the genetic
correlation between the index and the corresponding blood pressure variable is
assumed to be zero. We note that the existence of any such correlation is expected
to yield an underestimate of the genetic heritability (the variance in the character
explained by genetic factors) and an overestimate of the environmental heritability.
The index (I) was created by a stepwise regression procedure using the
anthropometric variables height, weight, and skinfold thicknesses — biceps, triceps
and subscapular. Blood pressure levels were also simultaneously adjusted for the
effects of other concomitant variables such as age, gender, education, occupation,
tobacco use, alcohol use, contraceptive use, steroid use, presence of tension and major
disease. The adjusted levels were then standardized. Details of the procedure are
given in Majumder er al!®. Path analyses were performed on standardized blood
pressure variables. Under the assumption of multivariate normality and an intra-class
correlation structure, maximum likelihood estimates of familial correlations were
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Fi6.1 . Path diagram depicting biological and environmental (cultural) inheritance of blood pressure in
nuclear families. P denotes phenotype (standardized blood pressure, systolic or diastolic), G denotes
genotype, C denotes transmissible indexed (primarily cultural) effect, and B denotes nontransmitted common
sibship environment. The subscripts F, M, C1 and C2 denote, respectively, father, mother and two children.

estimated, which are presented in Table 1. The 10 parameters of the path model are
defined in Table II. Marital resemblance, as measured by the correlation between
environments of spouses (u) reflects the combined effects of social homogamy and
cohabitation. Genetic and common environmental (cultural) heritabilities are A? and
c?, respectively, in children, and A%? and c%?, respectively, in adults. Thus, possible
intergenerational differences in heritabilities are taken into account in this model. It
is pertinent to note that anthropometric variables have significant genetic components
that may be correlated with plausible genetic factors involved in the determination
of blood pressure levels. Therefore, the index I that we have created using
anthropometric variables may contain some confounded genetic information in addition
to environmental information. In view of this, it is appropriate to reinterpret the

heritabilities. If h,2 and c,2 denote the true (unknown) genetic and cultural heritabilities,
then h2 = (1 — ) A} and ¢? = indexed (combined) heritability. Parental environmental

effects are also distinguished; effects of maternal and paternal environments on those
of their children are denoted as f),; and fr, respectively. In addition to a nontransmitted

common sibship environment (B), separate indices are incorporated for each child.
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TaBLe 1

Maximum likelihood estimates of familial correlations (r) and their standard errors (s.e.) for
systolic (SBP) and diastolic (DBP) blood pressures

Variables SBP o DBP
r s.e. r s.e.
Pr, Pm -.081 106 224 106
Ir, Iu .088 110 121 112
Pr, Iu -.049 082 147 084
Pr, Ir 362 .055 457 049
Pcy, P2 324 076 252 .081
Iet, Ic2 463 078 352 .094
Pc, Ic .491 .048 470 .049
Pcy, Iz 315 .064 259 069
Pr, Pc 134 079 177 .084
I, Pc 142 .086 -027 096
Pr, Ic 078 .091 .078 .093
IrIc 075 102 -.006 103
Pu, Pc 245 089 202 085
Im, Pc 154 .091 121 .092
Py, Ic 125 .099 193 .089
Iv, Ic 105 .098 108 095
TaBLE 1I
Definitions of parameters of the path model

Parameter Definition

h Effect of child’s genotype on child’s phenotype

hz Effect of adult’s genotype on adult’s phenotype

c Effect of child’s environment on child’s phenotype (= square root of cultural

heritability)

cy Effect of adult’s environment on adult’s phenotype

u Correlation between parental environments

b Effect of nontransmitted common sibship environment on child’s environment

fr Effect of father’s environment on his child’s environment

fm Effect of mother’s environment on her child’s environment

i Effect of child’s environment on child’s index

iv Effect of adult’s environment on adult’s index
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The phenotypes and indices of parents and children yield 16 distinct expected
correlations by the use of standard rules of path analysis'®, which are presented in
Table HI. Maximum likelihood estimates of the path parameters were estimated using
the methods given in Morton et al.’® (see also, Rao et al.?). For identifying the most
parsimonious model, various submodels which are nested within the general model

TaBLE III

Expected correlations berween variables observed on members of a
nuclear family under the path model

Relation Variables Correlation
Martial Pr, Py uc? y2
Ir, In uit v
(PF, In) or (Pu, IF) ucyiv
Parental {PE, Ir) ot (Pp, In) cyiv
Full sibs Pci, Pc2 R/2+ W
Icr, Ie2 wi?
Pc, Ic ci
(Pc1, Ic) or (P2, Ic1) c Wi
Parent-offspring Pg, Pc W z/2 + P y(fr+ ufu)
Ir, Pc civ(fr + ufum)
Pr, Ic <yilfr + ufu)
IrIc Zv(fr + ufu)
Py, Pc R2/2+ ¢ty (fur + ufF)
Iy, Pc civ(fu + ufr)
Py, Ic cyi(fm + uffr)
Im, Ic iy (fm + ufr)

Note : ‘I’—b2+f,2r+[if+2ufpﬁu

are tested. The various submodels tested in this study are : (i) no intergenerational
differences in heritabilities (y = z = 1); (ii) no effect of assortative mating and
cohabitation (¥ = 0); (iii) no extra sibling environmental effect (b = 0); (iv) no
specific maternal environmental effect (f- = fy); (v) no genetic inheritance (h = z =
0); and, (vi) no cultural inheritance (¢ = y = 0, i = v = 1). Likelihood ratio test is
used for examining the fit of a submodel in comparison with the general model. The
fit of the general model is calculated by comparing the In-likelihoods obtained for
estimating the correlations with that obtained under the general model.
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The maximum likelihood estimates of parameters of the general model and of
relevant submodels are presented in Table IV. It is seen that the general path model
considered in this study provides an adequate fit to the familial correlations observed
for the standardized levels of both SBP and DBP. For standardized SBP, it is also
seen that the subhypotheses of no cultural inheritance (¢ = y = 0, i = v =1) and no
extra sibling environmental effect (b = 0) are rejected at the 5% level. There is no
evidence of any significant residual genetic inheritance of the standardized SBP,
although under the general model the estimated values of residual genetic heritability
in children (h?) is about 20%, and that in adults (h%z%) is about 10%. No evidence
of any effect of assortative mating and cohabitation, or of specific maternal
environmental effect could be detected. The findings for the standardized DBP are
broadly similar. Our interpretation of these findings is that the effects genetic factors
(if any) on blood pressure levels is mediated through anthropometric characters such
as those relating to obesity (weight and skinfold thicknesses); there is no residual
effect of genetic factors on adjusted blood pressure levels.

TABLE IV

Maximum likelihood estimates of parameters and other statistics pertaining to systolic (SBP)
and diastolic (DBP) blood pressure levels

Hypothesis ~ Variable -2InL 2 i Ky z u b fr fu i v

General SBP 2868.93 4.59 20 34 122 84 -12 .74 19 28 .84 .59

6
DBP 276310 209 6 .15 .33 142 154 33 68 00 27 .82 .69
y=z=1 SBP  2869.25 032 2 .18 36 [10] [1.0] —07 .74 21 29 82 .70
DBP 277089 7.79 2. 20 22 [10] [10] .18 61 00 .14 10 .92
=0 SBP 286925 032 1 20 35 110 8 [0] .74 .18 28 .8 .65
DBP 276744 434 1 12 33 154 134 [0] .69 08 24 81 .63
b=0 SBP 287931 1038 1 .15 .40 8 81 -37 [0] .62 .76 .78 .60
DBP 277268 958 1 .15 38 122 93 33 [0] 00 50 .75 .80
fe=fu SBP  2869.15 022 1 20 34 120 84 -12 74 23 23 84 .60
DBP 276395 085 1 .12 33 147 150 30 .71 .14 .14 8 .66
h=z=0  SBP 287257 364 2 [0] 43 113 [0] -08 .74 25 34 .75 .65
DBP 276657 347 2 [0] 40 134 [0] 29 69 09 30 .74 72
c=y=0} SBP 296519 9626 4 .65 [0] [0] 59 .10 .68 .08 .10 [10] [LO]
4

DBP 288142 11832 4 48 [0] [0] .73 .13 61 00 .11 {10] [10]

Values in [brackets] indicate fixed values of parameters.

Logistic Regressive Model

While estimating the relative contributions of genes (major genes and polygenes)
and environmental factors for a qualitative dichotomous character is somewhat more
difficult under the classical liability threshold model®, a more recent model uses a
logistic regression formulation!.
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Suppose Y denotes a dichotomous random variable (r.v.) which takes the values
1 or 0 depending upon whether or not an individual possesses the character under
study (e.g., affected or unaffected in respect of a disease). Let p = Prob (Y = 1).

Suppose C is a r.v. (possibly vector-valued) correlated with Y. The logistic regressive
model assumes that

logit (p) = log[p/(1 — p)] = a+BC=6. - (12)
Hence
p=cxp(a+ BC)/{1 + exp{a + BC)}. ‘ - (13)

If Y=(Y,, Y, ...,Y,) denotes the observations on n members of a family, and

¢ = (C,, C,, ..., C,) denotes the associated covariate (C; is the covariate vector for
Y)), then we can write :

Prob (Y|¢) = Prob (Y, |{). Prob (Y2|Y, ¢) ...
Prob (Y,| Y, Y2 ... Y1, ) - (14)
For simplicity, we assume
Prob (Y;|Yy, ... Yi_1, §) = Prob (Y;|Yy, ..., Y;i_1, C)). .. (15)
In this model, it is further assumed that
Prob (Y;|Yy, ..., Y;_1, C) = Prob (Y;| Yr, Yy, C)), ... (16)

where (F, M) € (1, 2, ..., i — 1) are the subscripts corresponding to the father and
mother, respectively, of individual i{. Hence,

logit (p)) =8, =0 +BC;+Yr Yr+ Yy Yy . (7

By convention, Y;(Y,) is zero if information on the father (mother) of the ith
individual is absent in the data set.

Now, if g = (g1, &2, ... £») denotes the ousiotypes (which is a more general term

to denote major locus genotypes and/or polygenotypes and/or types that are culturally
transmitted) of the » members, then

Prob(g, Y| ¢) = Prob (g).Prob(Y | g, ¢). .. (18)
Hence, Prob (¥ | ¢) = = Prob (g).Prob (Y | g, ¢), .. (19)

where the summation is over the set P of all possible vectors g; 2, Prob (g) = 1.

If the ousiotype refers to genotypes at a major locus with alleles A and a, then
for any individual i who is a founder (i.e., with no parental data) in the family,

Prob(g;) = n? for g;=1=AA
2n(1 - ) for gi=2=Aa

(1-n2) for g;=3=aa
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where & is the frequency of the allele A in the underlying population which is
assumed to be in Hardy-Weinberg equilibrium. If the individual i is not a founder,
then

Prob (g;) = Prob (g; | g, gm)s

where g, and g, are the genotypes of the father and the mother, respectively. These
probabilities are obtained using Mendelian transmission laws. The likelihood of the
observations on a family are then computed using the Elston-Stewart algorithm’ or
some telated variants (see Bonney' for further details).

Multilocus Recessive Model

Just as environmental contributions to the determination of a primarily genetic
character adds to the "complexity" of transmission of the character, involvement of
multiple genetic loci also leads to a similar complexity. If the character is not
expressed at birth but at a later age, which is usually variable from one predisposed
individual to another, there is further addition to the complexity. This arises because
an individual possessing the predisposing genotype may not have manifested the
character at the particular age when data are collected. During the past few years,
we have been involved in the study of a dermatological disorder called vitiligo, which
has a variable age at onset. This disorder is characterized by pale white patches on
the skin, which tend to be progressive over time, and may eventually cover the entire
body. The aetiology of vitiligo is unknown; a favoured hypothesis is that it is due
to an autoimmune process. Reports of several twin pairs being concordant for vitiligo,
and of many families exhibiting remarkable familial aggregation, lends credence to
a genetic hypothesis. However, the disorder is found not to segregate in a simple
Mendelian fashion, and although several environmental factors have been implicated,
there is no compelling evidence of an environmental causation. The prevalence of
vitiligo is roughly 0.5%. The modal age at onset is between 30 and 35 years. Some
years ago, we (Majumder et al.!%) have proposed a genetical model of vitiligo, based
on family data collected by us from Calcutta. We have recently cross-validated the
model using a set of fresh family data collected from the U.S.A. (Nath et al.'%). In
this section, we shall provide an overview of the model and the statistical method
used in the analysis of these family data.

The model postulates that several (say L) unlinked, autosomal, diallelic (4; and
a; denoting the two alleles at the ith locus) are involved. in the pathogenesis of the
disorder. Individuals of the genotye (a; a;a;a; ... a; a;) are said to be susceptible;
and individuals of the remaining 3 — 1 genotypes are non-susceptible and never
manifest the disorder. If, for simplicity, we assume that the frequency of the allele,
a; in the population is g, for all { = 1, 2, ..., L, and if the disorder manifests itself
at birth, then the prevalence of the disorder in the population will be

d=qg%. - (20)

Properties of this model at the population level are derived in Li"' and Majumder
and Nath'2. For the purpose of analyzing data on families, it is necessary to derive
the likelihood of observations [phenotypes and ages (ages at onset for affecteds and
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current ages for unaffecteds)] of members of a nuclear family. Since the data in
these studies were collected through the presence of an affected individual in the
family (which is a cost-effective strategy for sampling families in respect of a rare
disorder), appropriate correction for ascertainment-bias is necessary. However, for
analyzing data collected by ascertaining a family through an affected parent (the other
parent being unaffected) no ascertainment-bias correction is required. The conditional
likelihood function for phenotypic observations given the parental mating type (af-
fected x unaffected) can be written as :

L= 2{{1 W Hg_] ( :gg ) [6« (1 —Zg)]mg [1 -6 (1 —zg)]"g""lg (21)
where, m, and n,-m, denote the numbers of affected and unaffected offspring
belonging to age group g (= 1, 2, ..., G), K denotes the number of possible genotypic
matings corresponding to an affected x unaffected mating, 6, denotes the probability
that an offspring is of the susceptible genotype given that the parental genotypic
mating is of type k (= 1, 2, .., K), z, denotes the probability that an individual in
age group g (= 1, 2, ..., G) is phenotypically unaffected given that (s)he is of the
susceptible genotype.

The conditional likelihood function needs to be corrected for ascertainment-bias
when the family is ascertained through the presence of an affected offspring. For
data on a family so ascertained, the corrected likelihood function of observations on
children conditional on both parents being unaffected can be written as

L =[ay - Mn, m)]/B(n, m) .. (22)

where AM(n, m) is of the same form as the right-hand side of eqn. (21), the variables
in this term are defined in a similar manner as before, n = (n,n, .., n;), m=

(my, my, ...mg), ay=1—(1-n M=3C_, m,, . = probability of ascertainment, and
Bn,m) = = [a,ZpA(n, D], P = {l|l,sn, and Z_ L =r}. If m~ O, then
oy~ Mn, which results in some simplification of f(n,m). For further details, see
Nath et al.'® )

Since other possible types of families were not observed in our data set (Nath
et al.1%), we shall not discuss these types. Our data set comprised information on 86
affected x unaffected families each ascertained through the affected parent, and 61
unaffected x unaffected families each ascertained through an affected offspring. For
brevity, we shall not provide details of the distribution of age at onset of vitiligo
which was used for the analyses of these data. These details can be found in Nath
et al’S, In Fig. 2, are presented a plot of the values of the log-likelihood function
separately for the affected x unaffected families, unaffected x unaffected families and
the pooled set of all families. These values were computed using eqns. (21) and (22)
for different numbers of loci. It is seen from this figure that for the entire set of
data while there is a remarkable increase in the value of the likelihood function from
1 to 2 loci and from 2 to 3 loci, the subsequent increase in likelihood is minimal
with an increase in the number of loci. Thus, our analysis reveals that vitiligo is a
recessive disorder that is controlled by genes at three unlinked autosomal diallelic
loci.
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F16.2. log-likelihood values of family data on vitiligo under the multiple recessive model for different
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numbers of loci.
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