ON STATISTICS INDEPENDENT OF A COMPLETE SUFFICIENT STATISTIC

By D. BASU

Indian Statistical Institute, Calcutta

1. INTRODUCTION

If $\{P_{\theta}\}$, $\theta_i\Omega_i$ be a family of probability measures on an abstract sample space $\mathfrak S$ and T be a sufficient statistic θ then for a statistic T_1 to be stochastically independent of T it is necessary that the probability distribution of T_1 be independent of θ . The condition is also sufficient if T be a boundedly complete sufficient statistic. Certain well-known results of distribution theory follow immediately from the above considerations. For instance, if x_1, x_2, \dots, x_n are independent $X(\mu, \sigma)^*$ s then the sample mean T and the sample variance σ^* are mutually independent and are jointly independent of any statistic f (real or vector valued) that is independent of change of scale and origin. It is also deduced that if x_1, x_2, \dots, x_n , are independent random variables such that their joint distribution involves an unknown location parameter θ then there can exist a linear boundedly complete sufficient statistic for θ only if the x's are all normal. Similar characterizations for the Gamma distribution also are indicated.

2. Definitions

Let $(\mathfrak{S}, \mathcal{A})$ be an arbitrary measurable space (the sample space) and let $\{P_{\theta}\}$, $\theta \epsilon \Omega$, be a family of probability measures on \mathcal{A} .

Definition 1: Any measurable transformation T of the sample space (S, \mathcal{A}) onto a measurable space (S, S) is called a statistic. The probability measures on S induced by the statistic T are denoted by $\{P_k^n\}_k G$.

For every $\partial \epsilon \Omega$ and $A \epsilon \mathcal{A}$ there exists an essentially unique real valued \mathcal{B} -measurable function $f_{\delta}(A \mid t)$ on \mathcal{I} such that the equation

$$P_{\theta}(A \cap T^{-1}B) = \int_{\mathbb{R}} f_{\theta}(A \mid t) dP_{\theta}^{\mathsf{T}} \qquad \dots \quad (1)$$

holds for every $B \in \mathcal{B}$. The set of points t for which $f_q(A|t)$ falls outside the closed interval $\{0,1\}$ is of P_{θ}^{*} -measure zero for every $\theta \in \Omega$. We call $f_q(A|t)$ the conditional probability of A given that T=t and that θ is the true parameter point.

Definition 2: A statistic T is said to be independent of the parameter θ if, for every $B \in \mathcal{B}_1$, $P_0^T(B)$ is the same for all $\theta \in \Omega$.

Definition 3: The two statistics T and T_1 , with associated measurable spaces $(\mathcal{Z}, \mathcal{B})$ and $(\mathcal{Z}_1, \mathcal{B}_1)$ respectively, are said to be stochastically independent of each other if, for every $B \in \mathcal{B}$ and $B_1 \in \mathcal{B}_1$

$$P_{\theta}(T^{-1}B \cap T_{1}^{-1}B_{1}) = P_{\theta}(T^{-1}B)P_{\theta}(T_{1}^{-1}B_{1})$$

for all $\theta \epsilon \Omega$.

Vol. 15] SANKHYÄ: THE INDIAN JOURNAL OF STATISTICS [PART 4]
Now.

$$P_{\theta}(T^{-1}B\cap T_1^{-1}B_1) \approx \int\limits_{\mathbb{R}} f_{\theta}(T_1^{-1}B_1|t) \; dP_{\overline{\theta}}^{T}.$$

It follows, therefore, that a necessary and sufficient condition in order that T and T₁ are stochastically independent is that the integrand above is essentially independent of t, i.e.

$$f_{\theta}(T_1^{-1}B_1|t) = P_{\theta}(T_1^{-1}B_1) = P_{\theta}^{T_1}(B_1)$$

for all teT excepting possibly for a set of P_{θ}^{T} -measure zero.

Definition 4: The statistic T is called a sufficient statistic (Halmos and Savage, 1949) if for every $A \in \mathcal{A}$ there exists a function $f(A \mid t)$ which is independent of θ and which satisfies equation (1) for every $\theta \in \Omega$.

Let G be the class of all real valued, essentially bounded, and \mathcal{S} -measurable functions on \mathcal{A} .

Definition 5: The family of probability measures $\{P_{\theta}^{\bullet}\}$ is said to be boundedly complete (Lehmann and Scheffé, 1950) if for any geG the identity

$$\int_{-\pi}^{\pi} g(t)dP_{\theta}^{T} = 0 \quad \text{for all } \theta \in \Omega \qquad \qquad \dots \qquad (2)$$

implies that g(t) = 0 excepting possibly for a set of P_{θ}^{*} -measure zero for all θ . $\{P_{\theta}^{*}\}$ is called complete if the condition of essential boundedness is not imposed on the integrand in (2). The statistic T is called complete. (boundedly complete) if the corresponding family of measures $\{P_{\theta}^{*}\}$ is so.

3. SUFFICIENCY AND INDEPENDENCE

For any two statistics T_1 and T we have for any $B_1 \in \mathcal{B}_1$

$$P_{\theta}^{\mathsf{T}_1}(B_1) = P_{\theta}(T_1^{-1}B_1) = \int_{\mathcal{T}} f_{\theta}(T_1^{-1}B_1|1)dP_{\theta}^{\mathsf{T}}. \qquad ... \quad (3)$$

Now if T be a sufficient statistic then the integrand is independent of θ and if, moreover, T_1 is stochastically independent of T then the integrand is essentially independent of t also. Thus, the right hand side of (3) is independent of θ and so we have

Theorem 1: Any statistic T_1 stochastically independent of a sufficient statistic T is independent of the parameter θ .

That the direct converse of the above result is not true will be immediately apparent if we take for the sufficient statistic T the identity mapping of $(\mathfrak{S}, \mathcal{A})$ into itself. No statistic T_1 independent of θ will then be stochastically independent of T excepting in the trival situation where T_1 is essentially equal to a constant. We, however, have the following weaker but important converse.

Theorem 2: If T be a boundedly complete sufficient statistic then any statistic T_1 which is independent of 0 is stochastically independent of T.

STATISTICS INDEPENDENT OF A COMPLETE SUFFICIENT STATISTIC

Proof: Since T is sufficient the integrand in (3) is independent of θ . It is also essentially bounded. Now the left hand side of (3) is independent of θ since T_1 is independent of θ . Hence, from bounded completeness of $\{P_{\theta}^T\}$ it follows that the integrand in (3) is essentially independent of t as well. That is, T_1 is atochastically independent of T.

In the next section we demonstrate how the above theorem may be used to get a few interesting results in distribution theory.

4. Some characterizations of distributions with location and scale parameters

Let $x = (x_1, x_2, ..., x_n)$ be a random variable in an n-dimensional Euclidean space whose probability distribution involves an unknown location parameter μ and a scale parameter $\sigma > 0$. Then any measurable function $f(x_1, x_2, ..., x_n)$ which is independent of change of origin and scale, i.e.

$$f\left(\frac{x_1-a}{b}, \dots, \frac{x_n-a}{b}\right) = f(x_1, \dots, x_n)$$

for all a and b>0 is independent of the unknown parameter (μ,σ) . Now, if there exists a boundedly complete sufficient statistic T for (μ,σ) then f must be stochastically independent of T. For example, if x_1,x_2,\dots,x_n , are independent observations on a normal variable with mean μ and s.d. σ then it is well known that T=(z,s) is a sufficient statistic (\bar{z}) is the sample mean and s the sample s.d.). The completeness of T follows from the unicity property of the bivariate Laplace transform. It then follows from Theorem 2 that any measurable function $g(\bar{z},s)$ of \bar{z} and s is stochastically independent of any measurable function $f(\bar{z}_1,x_2,\dots,x_n)$ of the observations that is independent of change of origin and scale. The functions g and f need not be real valued. For instance, we may have

$$g = (\sum x_i^*, \sum_{i=1}^n x_i x_j)$$

nnıl

$$f = \left(\frac{\sum (x_i - \bar{x})^3}{\kappa^3}, \frac{\sum (x_i - \bar{x})^4}{\kappa^4}, \dots\right).$$

Again the stochastic independence of z and s follows from the fact that, for any fixed σ , the statistic \bar{z} is a complete sufficient statistic for μ and that s, by virtue of its being independent of change of origin, is independent of the location parameter μ .

Now let $x_1, x_2, ..., x_n$, be independent random variables with joint d.f. $F_1(x_1-\theta), F_2(x_2-\theta), ..., F_n(x_n-\theta), \bullet$ Since θ is a location parameter it follows that any linear function $\Sigma a_i x_i$ with $\Sigma a_i = 0$ is independent of θ . If $\Sigma b_i x_i$ is a boundedly complete sufficient statistic for θ then from Theorem 2 it follows that $\Sigma a_i x_i$ is independent of $\Sigma b_i x_i$.

^{*} For the sake of notational convenience, we make no distinction between madem variables and the values that they may assume.

Now, since $\Sigma b_i x_i$ is a sufficient statistic it follows that every $b_i \neq 0$. For, if possible, let $b_i = 0$. Then x_j is stochastically independent of $\Sigma b_i x_i$ and so from Theorem 1 x_j is independent of the parameter θ which contradicts the assumption that the d.f. of x_j is $F_j(x_j = 0)$. Again, we can take all the a_i 's different from zeros. Thus, the two linear functions $\Sigma a_i x_i$ and $\Sigma b_j x_i$ (with non-zero coefficients) of the independent random variables x_1, x_2, \dots, x_n , are stochastically independent. Therefore, \dagger all the x_i 's must be normal variables. We thus have the following:

Theorem 3: If $x_1, x_2, ..., x_n$, are independent random variables such that their joint d.f. involves an unknown location parameter θ then a necessary and sufficient condition in order that $\Sigma b_{i,k}$ is a boundedly complete sufficient satisfic for θ is that $b_i > 0$ and that x_i is a normal variable with mean θ and variance $b_i^{-1}(i = 1, 2, ..., n)$.

Let us now turn to the case of the Gamma variables. Let $x_1, x_2, ..., x_n$, be independent Gamma variables with the same scale parameter $\theta > 0$, i.e., the density function of x_i is

$$f_i(x)dx = \frac{1}{\Gamma(m_i)\theta^{m_i}} x^{m_i-1} e^{-x/\theta} dx \qquad (x \geqslant 0, \quad \theta > 0, \quad m_i > 0).$$

It is clear then that Σx is a sufficient statistic for θ and its completeness follows from the unicity property of the Laplace transform. Thus, we at once have the well known result that Σx_i is stochastically independent of any function $f(x_1, x_2, ..., x_n)$ that is independent of change of scale (i, c.) independent of θ .

Recently it has been proved by R. G. Laha that if $x_1, ..., x_n$, are independent and identically distributed chance variables and if Σx_i is independent of $\Sigma x_i x_i x_j / (\Sigma x_i)^t$ then (under some further assumptions) all the x_i 's must be Gamma variables. Using this result we can immediately get a characterization of the Gamma distribution analogous to Theorem 3.

References

BASU, D. (1951): On the independence of linear functions of independent chance variables. Bull. Int. Stat. Inst., 33, Pt. 2, 83-96.

DARHOIM, G. (1951): Sur diverses proprietes characteristiques de la loi de probabilite de Laplace-Gauss, Bull. Int. Stat. Inst., 33, Pt. 2, 70-82.

——— (1963): Analyse generale des linisons atochastiques—Étudo particuliero de l'analyse factorielle lineaire. Rev. Inst. Internat. Stochastique, 21, 2-8.

HALMOR, P. R. AND SAVADE, L. I. (1949): Application of the Radon-Nikodym theorem to the theory of sufficient statistics. Ann. Math. Stat., 20, 223-241.

LEHMANN, E. L. AND SCHEFFÉ, H. (1950): Completeness, similar regions and unbiased estimation. Sunkhys, 10, 305-340.

LANA, R. G. (1954): On a characterization of the Ganuna distribution. Ann. Math. Stat., 25, 784-787.

[†] This result was first conjectured (and proved under certain assumptions) by the author in 1951. The proof without any assumption is due to O. Darmeis (1953).