PHYSICAL REYIEW A

VOLUME 37, NUMBER. 7

APRIL 1, 1928

Rotating oscillator —shifted 1/4 expansion and supersymmetric considerations

Rajkumar Roychoudhury® and Y. P, Varshni
Department of Physies, afvervity aof Onawa, Oitinea, Gnrarie, Canaedo KTV 68
{Heceived 16 June 1W8T

The rotabing displaced cseiflator problem has been ireated by the shified 158 cxpansion methed,
Mext, the Hamiltonian lor this problem is framed in supersymmerric form for certain values of the
parameier. Exact cigenvalues and eigenfuncrions arc obtained. The eigenvalues obtained from the
shifted 1./ expansion method are compared with those obtained by numerical methods and super-
symmetric exact values, and are found to e in satisfactory agreement both at low aned high values of

the caupling purameler.

I, INTRODUCTTION

The rotating displaced oscillator problem, with the
Schridinger equation

fid 41 yE
il r-ll e b
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and with @iQi=gf = }=0, has been known for many
years in physics literature,’ ¥ as it represents the sim-
plest model of a rotating-vibrating molecule, In Eq. (L), o
15 the inverse of the coupling parameler sssumed to satis-
fy D=l In genersl, the exact analytical solution of
1Y ¢annar be oblained bud, as will he shown later on, for
some partcular values of the coupling parameter, the ea-
act solution could be obrained from supersyimmetric con-
stderaticons. Tn recent years {here has been s renewal of
interest* ¥ in the problem and also some controversy.” ¥
Masson® has reviewed the history of the problem. Unless
grenl care 15 exercised, formalism based on a three-rerm
recurrence rolation can lead to erroneous conclusions™’
about the eigenvalues A of Eq. (11, Killingbeck® has
shown that the use of three-lerm recarrence relations can
lead to false cigenvalues,

The shifted /% expansion method proposed by
Sukhatme and Imbo™ and Tmbo e al.'' has proved to be
a powerful method for ohtaining the sigenvalues of spher-
ically symmetry potentials.'' ='* 1t is nonperturbative in
nature and thus can be used in problems where the coun-
pling constant may not be small. The shifted 14N expan-
sion mefthod overcomes the slow convergence of the
large-¥ expansion method'®~ ! by modifying the expres-
sion of the eipansion parameter. In the larpe-N expan-
ston, the expanding parameter is 1/, where & =N =2/,
& being the spatial dimensions; i the shifted 1% ver-
sion, 17k is changed to 1/k, where & =N 4+ 2/ —g, where
¢ is a shift chosen by requiring agreement between the
17k expansion and the exact analviic results for the har-
momic oscillater and the Coulomb potential.

In the present paper we shall emnploy the shitted /8
cxpansion method to caleulate the energy eigenvalues for
the rotating displaced oscillator. Following Killingbeck,*
wi shall write the potential for this problem in a more
general form,

F=FrdVrt, i)
where the parameters | and V', are related 1o o by
V= —-2F,=—1/2a, 13

and the gigenenergy £ i connected to X and o by

E—— - _ i4)

We have also [ramed the Hamiltonian [or the rotating
displaced oscillator problem in a supersymmetric form
for certuin values of the parameter and ohtained exact ei-
zenvalues angd  eipenfunctions  which corres'gond 73]
graund states of supersymmetrie Hamiltonians, ™ In Sec.
1T this will be discussed in more detail,

1. ENERGY ETGENVALUE EXPRESSION

Imbo e al.'! have described the procedure for deter-
mining the energy eigenvalues in the shifted 1/% expan-
sion formalism. Hence. for the sake of brevity, we omit
the intermediate steps and give here only the final expres-
stons, We shall use the anits in which A=2m = = |,

The effective potential in the shifted 17X expansion is
given hy

i5)

Lheen it is assamed thar Fir) is sulficiently well behaved so
that ¥, nir) has a minimum al r ==r, and there are wetl-
defined bound states.

Feor lh_g:qpulcnti:tl (21, one obrains the fallowing capres-
sion for & 7

K =2V r} +4¥,ry . 161
and the positton of the minimum »#; 15 determined from
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where &, is the radial quantum number. The gquaatitics FYoand g appearing in the correc-
The tinal expression for the gigenvalues is as follows: tions to Lthe leading order of the energy expansion are
o ]
Al=11—a)l3—al4+ (142008, +30142n, + 20}k,
= -1---[13‘f+6[l + 20, JEE i1 b= 300, 43087 1ES] i9
1]
¥ =14+ 2m, 8.+ 300+ 2n, + 20,18, 503+ B, + 67 4 40 215,
~a {l+2n, BE 1201+ 20, 4+ 2021058, + 2021 590, + 5107 4 340 e 320 B,
+ 6120, 08 B+ 30014 2n, + 2028 By 601+ 20, B35 + 2011 4 30m, 4 300} 58,
+ 10013 4+40n, —42n7 + 280, 12,5:]
T AT B, 4 3601420, B2 8,84 B 1 4 30m, 4 300 2,0 54 2401 + 2, 12 5T,
+BI31 478, + 780208 B g+ 12(57 4 1890, -+ 225n + 1500} IE 35, )
—ro [BEE+ HOBI 1420 JE TE S -4B011+ 30K, 43002 17,2 34 30031 + 1098, + 141n2+94n 12 9], {10

TABLE I. Energy eigenvalues obtained from the shifted 14N expansion method are compared (o

E E
ef ¥, Fy n, / {This paper} (Friman et af.}
0,01 — 3000 25000 1 1 -2344.% —2347.8
2 | —1252.4 —22471.7
0.03 — 585555 277778 0 0 —261.23 —261.11
1 0 —2290.50 — 22778
2 ¢ — 19261 — 144,44
3 0 — 168,49 -161.04
4 0 — 13578 — 12767
K] 0 —101.34 — 34,002
005 — 200 1D 0 0 —o0.127 — 353,993
it 1 —§7.716 —87.68
1 0 —T1.368 — 69,974
1 1 —467.288 — 6672
2 0 —51.028 —40.79%
2 i — 46,050 —45.18
3 0 — 30902 —29.312
4 1] 8,337 - T4
5 0 15.54 + 1540
1 30 25 0 it — 19,562 -~ 19.925
0 1 --17.463 —17.44
1 0 — 9651 —9.42
1 1 —5.793 - 574
2 | 1450 1.98
2 1 6,775 6,75
3 0 14,634 14,37
4 0 811 27.59
5 0 4217 41,44
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in which
E‘.frfd,-,fw""'z. 5..;5}!:-.?*:31.

[31, = 8Fsr |V

2

1 — | ———— Lo =2—02n | lw,
Vi+2Vs ‘

Bi=— 18, =—{l—ai3-ai/2.

By - 3ty =2, = — jg,=212—al,

|'-_,_{——11 :Ei_'% h_—\.- l, t.h_—:.

Froman of of.” bave obtained eigenvalues for () lor
certain values of @. In Toble 1 we have compared the ei-
genvalues ohtained from the shilted 178 expansion
method with these obtained by Froman er af,®

III. SUPERSYMMETRIC CEIARACTER
{1 THE ROTATING OSCILLATOR

Belore casling the rotaling oscillutor in supersym-
metric torm, let us recall briefly some salient features of
supersymmetric quantum mechanics (SUSYQM) in ane
dimension. %! In one dimension the Hamiltonian of
SUSY QM is given by

H, 0
HS=i0".Q1= | i
b 1 | St I |:| H % L
where
i, ;_..”f._j__;/lf_x}‘ 120
1 o s
F_ixi— Wi Wi
) S i1
Brixi=S
tx dx

Hixh is called the superpotential and ng-, are the su-
percharges, whose explicit lorms are given below:

B _
@=ip+iWi|, o (14}

ot _
Q' =ip- WYy 4 ! ) (151
The relations obeyed by Q,Q' and H¥ are the following:
[HY.01=1H%0"1=0,

0?=Q"=0 i
The eigenstates of £ are of the form
¢ lx)
Lt | = T :
#"ix) |6 (x3 1 i17}

If supersymmetry is unbroken the ground.state energy is
zero ang the ground-state wave functions are of the form

2ok . , ;
{p” i or i;',, .} The choice will depend on the normal-

izability of $%(x 1. Now if | ¢} is a ground state then

2311

Q=0 =0, 18]
From i1 and (25) it can easily be seen that

#hixizexp |+ [ winde | (19}

Now we comme to the rotating esciflator, To show that s
Hamiltonian can be cast into the form (1), we chose

2 I

Wirl=1 ¥.ir-—-11 - g 20!
2 lygr #

then il can be easily seen that 7 (¢] can he written in the
form

! - . 2"1-/?;+:’-HV;IT. + 2ec i
V_iri_Fiir—11+ E
) i L4

Zelg FV KD e s
el BN O O e 3
r L
21)

Therefore, the effective potential appearing in  the
Schridinger equation corresponding to (2) and that ap-
pearing in the radial Schrodinger equation carresponding
1o (21} are, respectively, given by

Ve Vo — W 41T = 11457 {22]
and
2V, -2gV V< 2ges
V"fl:rl—lur‘ 2V 4 — T .5_;' 2 £
1+gr
2088 =V Vel i1
____..g..}i.'_-_"ic :l_l ) (21
¥ P
For V)= —2VF,, ie, for the rotating oscillalor, 122) und
(233 can be identified provided we take
g=—VV;. i24)
(e i, i25;

[the nepative value of ¢ is chosen to ensure the normaliza-
bility of expl — [ Witldt1] and

. S (26}
T

The relation between the corresponding energy eigenval-
ues is [Fg is the enerpgy as given in (4]]

ER+V,+ Vv Vile —31= £ 271

MNow the ground-state wave funeltion corresponding to
the Bosonic sector (- 7 1% found to be

1
¢ ir)~exp | - J” Woidid
I ok . ||:

—Ar' TN ) grie : ; (28]

where A 15 a normalization constant, It is clear that

lim 3" irl=lime® iri=0 . (29
[ER— roall
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TABLE [l Comparisen will cxact supersymmetniv eigenval-
nes. n,= | state, Fy =114 +3fl'\.__

E

Shifted 178 E
! K e X MATIATN [Supersyroelric!
t . 22239 211122
2 o 287 g 215750
3 + 2160113 2 T
4 = 213694 2138 8y
5 - A2248

212245

Hence & (r1 is an acceprable ground state, and in this
case

£ =0,

Henee from (27 we huve

o g g A :

= — . (M
A i3 '..II _!.z.lz

A comparison with pore oscillator ensares that (300 gives
i, =1 excited state when #.—1/f 12}°. Now the gen-
cral unsatz tor W is
P il . o
W= Fair — 1] PRI i3l
ok I g, T4gr A
The g, " cun be so choscn as 1o make (227 and (237 identi-
cil iwith ¥ = —2V,1 As p_ =1 vase has been shown in
detail above we just state the results for v, — 2 here for fu-
tore cofmparison with 1% shifted expansion result. We
huwe

Wiri=1"Fiir—1 :.__..{’i_ 8 55 S ¥ 3
E l4g;r F=g.¢  F
where
I a7 ‘ |
ks L i — 41’ iZ | "
= ot | Falmr—e—=— : Y
Bk =g | Vi LY 34 |
: i’
_ __I'.'L_‘]'_:':'_q';!l.'.__1 ; (34
B A S S T
A VF i -1 ;
L P el Y LT Mg el +g.r0,
i35
and
O S ey O O 36}

"Omn leave from the Indian Statisweal Tnstitate, Caleuta 700335,
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TARLL (I Comparisen with exact sepersymmetnc eigen-
value. m, - 2 siate, ¥o=09 | 47 [0+ D4 + 30

&
Bhilled 1AV E

! F, cxpansioni {Supersymmelric)
t L1736l 8.594 92 %576 249

2 N.732 50 RG34 58 8627 50

3 (1450 261318 8610 00

4 0,354 31 BAT5RA B.374 26

5 0.210a7 B.53627 B35 30

O, being 4 normalization constand, Again if we compare
(36} with the results of pure oscillator, il can be seen thul
1368 gives the o, =2 excited states for all values of {0 In
Tables 1T and 1Ml a comparison has been made belween
the exact supersymmetric values with the energy values
obtained from the shifted 1/A expansion method.

I¥Y. DISCUSS1ION

Tn this paper the shifted 1/ ¢apansion method has
been applied to find the energy eigenvalues ol the rotating
displaced oscillalor. Since this method is applicable to
any spherically symmetric potential it will not give rise to
any problems such as those encountered in the use of
three-term recurrence relations.” * The numerical re-
sules obtained are in good agresment (Table 1) with the
published reswlts® [or smalf values of @0 As is expected,
the agreement is belter for nonzers values of f. Further-
more, it hus been shown that the rotating oscillator has a
supersymmetric character for certain values of the cou-
phing parameter. This property has been exploited suc-
cessfully to find exact energy vabues and eigensiates of the
rotating oscillaror Hamillonians which correspond to the
ground state of SUSY Hamillonians. Thus we hawve
checked the securacy of the 1/5 method in another way.
The energy values given hy the shifred 1/% method
match the exact SUSY valoes eatremely well especially
for values of ] =2, This oceurs (Tables [1 and II1 when
¥ is small, i.e., o 15 larpe. Thus SUSY provides a check
for the numertcal calculation of the cnergy eigenvalues of
the rotating oscillalor by any method. Also we find that
the shifled [/ cxpunsion method is able to provide ener-
gy cigenvalues which are of reasonable accuracy botl at
low and high values of the conpling parameter.
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