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A general constcuction for Steiner 2-designs with prime power block size [(and
with a point-regular automorphism group) is presented. [ts success depends on
nusber-thedretic restriclions on the paramelers. -these are completely analysed in
vitee of block siees &= 110 The new designs constructed melude infinitely many
cyclic Bteiner 2-desipns with block siee 7. Among Lhem is 1 cyclic unital L&), that
is, o 5{2, &+ 1, 6" « 1L It is dhe frst example of a unital with THIM-[TME powisT
patameter and the second example of o cyclic umilel. @ 1983 Academic Prass. Ine.

I, [NTROTACTION

Recall that a Steiner f-design with parameters v and £, denoted by
S(¢, k. v), is a pair (X, B). where X is a v-set (its elements are called points )
and B 15 a set of f-subsets of X (its elements are called blocks) such that
cach ssubsel of X is contained in 4 unique block. The design is cailed
vegrfar if 1t admits an awtomorphism group of order ¢ which acts
transitively on the points. I further, this group is cyclic then the design is
called cyefic.

Barring the {desarguesian) projective spaces S(2, 541, (#"— 1){s— 110,
=3 and 5 a prime power (which are cyclic by Singer’s argument in [ 141},
the only general constructions of cyclic S(2, &, e)s available so far were for
k=35 (see [3, 5 11])

In the following., E(s} will denote the cyelic group of order 5 1f » is a
prime, and, more generally, we put E{s)=FE{s 1= Els;)x - - w E{x ) il
5= 8515, with ss primes. Thus, if 5 is squarefree then E{s) is cyclic.

Let p and ¢ be two odd prime powers such that p—1 divides g— 1. In
Section 2 below we use the finite felds of order p and ¢ to present a
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construction of a regular 82, p. py) wdmitting Fipg) as a point-regular
automorphism group—oprovided p and g salisfies certain complicated
number-theorctic conditions (see Thearem 1). MWote that the divisibility
condition on p, ¢ is necessary for the existence of S(2, p, pg). In case p and
g are distinet primes, the design obtained is cyclic.

The conditions involved have deficd complete analysis so far. A complete
apalysis appears to be feasible for each Nixed value of p, bur it is of
increasing complexity with increase in p. In this paper the anaiysis has been
carried through for p< 11, The results are presented in Theorem 2 in
Section 3. As a corollary it is shown that for each p in this range there are
infinitely many ¢ with (p.gi=1 lor which the construcHon works, We
comjecture that for each prime p there are infinitely many primes g for
which the construction works, yielding cvclic 8{2, g, py). We prove this for
p=T

It is briefly pointed out in Section 2 that when the construction succeeds,
the full autemorphism group of the design obtained is larger than E(v);
indeed, it 15 nonabelian. Determination of the group appears to be a
difficult problem.

A notable success of our construction is the case (p, g) =17, 31}, vielding
a cyclic unital &(6). Recall that a unital with parameter 5, denotes here by
Uish is an $(2, s+ 1, s’ ~ 1). As pointed out by Hughes and Piper in [8]
and by Piper in [12], unitals Lf{s) were hitherto known only for prime
powers 5. The case {p, g) = (5, 13) of our construction vields a cyclic unital
L4} This one is implicitly contained in [ 5] Apparently, other than the
Eidy and U6} thus constructed, no eyelic unitals arc known.

In Section 3, we also present a list of the "small” values of g correspond-
ing to p=7, 9, 11 for which the construction succeeds. Theorem 2 itsell is
proved in Section 4. Section 5 contains a number of concluding remarks.

The only lacts aboul finite ficlds wsed in this paper are (i) cyclicity of
their multiplicative groups and (i} the guadratic reciprocily law: sec | 131,
for ipstance. The higher reciprocity laws [97] have been used to lacilitate
the computation of cxplicit examples, but they are not necessary for the
procfs, Results from algebraic number theory [1] are used only in the
prool of Corollary 1 to Theorem 2.

2. CORSTRUCTION

Standing Netations, For any prime power 5. F, will denote the field
with s elements, and £* will be its muliplicative proup. For positive
integers m dividing 5 - 1, G (s} will denote the unigue {cyclic) subgroup of
F¥* of order m. We also put @7 (m = [0 w G (m)

Let p and g be odd prime powers such that p—1 divides ¢—1. Let
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Foip—1)=G{p—1)72) be an epimorphism {=onto group homo-
marphism). Our construction will depend on appropriate choice of f{when
possible). Let ¢ denote the largest divisor of p— | which is relatively prime
o (g—1)(p—1) Let us fix a generator 3 of G ({g— 1))

Let us set X=F,x F,, regarded as a ring with component-wise opera-
tions. For any sabset 4 of & and for any x in X, x+ 4 (resp. x4) will
denote the additive (resp. multiplicative) translate of 4 by . Thus,

xt+A={x+aacd), xd={xaacd}

By setting f{0)=0, wc extend f to a function f:G{p~1)—
Gui{p~1§2) Let Ay={(fix)hxkxeG,p 1)}=X and put A, -
(LA, O=tj=(g 1){p—1) Finally let B consist of all the additive
translates of the sets A, O=j<{g—1)}{p—1) and of the set 4 —
£, {0}, Thus (X, B) is a |-design admitting the additive group £{pg) of
X as a point-regular automorphism group, It has v = pg points and block
siz¢ p, having a total of pglg — 1 }({p— 1)+ g=rv{e — 1)ipip — 1) blocks. So,
in order to conclude that (X, B} is a regular S(2, p. pg), it is enough to
check that any wo distinet points occer in at most one block, This will
follow if the within-set differences of the “generating blocks™ 4, and 4,
0= foig—1){p— 1} are all distinct. Trivially, the within-set differences
of 4 are distinct among themselves and also distinet from those of the
other 45

For pe#,, let us put:

D.={x xix,xeGlp—1hx£x, f(x)—flxu)=y) (21)

Thus D, consists of the second co-ordinates of those within-set differences
of A, which have y in the first co-ordinate. In view of the above discussion,
the system (X, B) is a regular 5(2, p, pg} provided for each ye F,the p—1
elements of £ are distingt and the scts WD, 0< j<ig—1)ip—1). are
pairwise disjoint.

Since the Kernel of fis G (2)= {1, —1}, we have D,=2G ip— 1} so
that the elements of D, are all distinct. Also, if for some j,, j,, 0=/,
La<ig—1)(p—1), y"D, and 3"D, intersect then y/~“eG ip—1)n
G llg— 1V =G 0(p — 1)) (since by the cholee of ¢, the greatest common
divisor of 7- 1 and (g 1k is (p— 1%t} and hence (as the order of 7 i
(g— L¥ieh iy =f; {modig —1)/(p— 1)} and, henee, §, = js.

So the requirements on D), are always fulfilled for p =0, Next let v be in
FXOI for some x,, x,6 D, we have pix; =7 x,, with 0<4,, <(g— 1)
{p—1), then x,, x, belong to the same coset of & ((g—1)/1). In order to
conclude as before that §, = f.. we require x| and x, to belong to the same
cosel of {F ({p— L)1),

Let yy, y; e £7 belong o the same coset of Goi(p 1072 say y, = yp
with ye & ({p—1)2) Choose xc G ip—1) such that y=fix) Then
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Apg=(y, x}4y, and henee D =xD, . Henee if P, salishies  our
requirements then so does .. 5o it soffices to check the requirements on
D for exactly two values of y representing the two cosets of G {{p— 1)2)
in £}, that is, for one nonzero square and one nonsquare. If further p=3
(mod 4} then, for any yin F¥, v and — y represent these two cosets. Since
clearly It _ .= — D, in this case it suffices to check the conditions for a
singie value of y.
Thus we have proved:

Tueorem | Let p and g be odd prime powers such thar p— 1 divides
g— 1. In case p=1 {mod 4) fix a non-square v, in F,. Suppose there is an
epimorphism 1 G (p— 1) = G ((p—1)2) for which D {as defined in (2.1))
satisfies the following two conditions for p=1 when p=3 [(mod 4) and for
yr=1, ¥y when p=1 {mod 4);

{a) There are p—1 distinct elements in D, and

{b) whenever two elements of D, belong ro the same coset of
G (lg— 1)t} they actuadly belong to the same coset of G ((p - 1))

Then the ubove construction yields an 502, p, pg) on which E{pg) acts as a
point-regular antomorphism group. I pariicalar, i p, g are distinet primes,
then the design is cyclic,

(Recall that here ¢ is the largest divisor of p— | which is relatively pnime
to (g— 1) (p—1L]

Remarks, (1} Tsomorphism. Clearly the success of the construclion
does not depend on the choice of + If r=p—1 or ={p—1)2 then
different choices of + (with the same '} vield isomorphic designs. We know
of no instance where the construction yields non-isomorphism designs with
the same parameter.

(2} Automorphism. It 15 eclear from the construction that as
x ranges over O (p- 1} multiplications by (fix), x) constitute a cyclic
automorphism group of order p—1 of the design. This group does not
commute with the point-regular automorphism group E{pg). Thus the full
automorphism groups of the designs obtained are always nonabelian. If
further r=p 1 or r=1{p 1)/2, multiplication b¥ (1, y} generates a cyclic
automorphism group of order (g — 1)/t

1 ExroioT CoONDITIONS FOR p= 1]

Our main result is:

THeoreM 2. Ler poand g be odd prime powers with p = 1Y, Then an
512, p. pg) aderitting E{ pg) as a polnt-regular aulomorphism group existy in
the following cases,
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(a) p=3and g=1 (mnd 2),

(b} p=5agnrd g=1 (mod 4),

€} p=7.g=7o0r 13 {mod 18) and 3 is noi a cube in F,

{dl p=9 g=9 {mod 16), and V-"Z i5 @ sgugre but N_a"lﬁ + | iv g mon-
sguave i F_ | and

(el p=1l,g=1 (mod i), ¢ &1 {(mod 30), and there is a primitive
Fifth root of wnity, say w, in F, suct that w® + w and w* + w + 3 are both fifth
powers m F .

Remarks. Note that in {d] above, since g=1 (mod B), 2 is a square in
Foi /2 denotes either of the two square roots of 2. Clearly the validity of
the hypothesis does not depend on the choice of this square root. In {a)
above, since ¢ =1 {mod 5), there are four primitive fifth roots of unity in

F,; it can be shown that at most one of them satislies the hypothesis.

Exampres. The smallest pairs {7, g} {excepting g = p*, in which case the
construction alwavs works, see {7) of Section 5), with p=7T, 9, 11 for which
Theorem 2 yiclds repular S(2, g, pgl are the following:

(a) When p=7, ¢=13, 31. 43, 79, 97, 139, 157, 169, 211, 223, 229,
241, 277,

(b) When p=9, ¢=73 89, 121, 233, 281, 361, 601, 617, 937, 1033,
1049, 1097, 1193.

(c) When p=11, ¢ =331, 541, 571, 911, 941, 1231, 1481, 1621, 1721,
1741, 2161, 2281, 2371, 3011, 3361, 3391, 3821, 4231, 4931.

The corresponding values of the primitive fifth root w in F, (satisfying the
hypothesis of Theorem 2{e)) are:

w= 124, 124, 4K81, 361, 349, T71, 1383, 231, B69, 195, 1618, 633, 1554,
B17, 200, 3131, 3542, 136, 3375

In Section 4 we shall prove Theorem 2 as a consequence of Theorem 1.
Indeed, when p< 11 and g# p* for ez 1, the conditions of Theorem 2 are
necessary as well as sufficient for Theorem 1| o apply. (For g=p©, see (7)
of the concluding section.} For new, we prove two corollaries of
Theorem 2,

Corot.LaryY 1. For each p=3, 5, 7, there are infinitely many primes g
Sor which u cyefic 802, p. pg) exises.

FProofl For p=3 or 5, this is immediate from Dirichlet's theorem on
primes in arithmetic progressions {sec [ 9] and Theorem 2 (a), (b) {also
see 13, 5 11]) For p=7, It is immediate from Theorem 2 () and the
following:



56 BACGUHI ANT} BAGCLUI

LemMa,  There arve fafiniiely many primes p osuch thai p=7T or 13
imod 1B) and 3 iv wot a cube modulo p.

Proof.  Let X be the extension field of rationals by the three cube roots
of 3. Suppose the lemma 15 false. Then, arguing as in the proof of Lemma 4
in [1], we sce that for all sufficiently large primes p=7 or 13 {mod 18],
therc are cxactly s prime idcals P in K with norm p, wherc # is the degree
of this extension. Henee,

S MP)  fEzmY pt (3.1}

when the left-hand sum is over all prime ideals F of K. ¥(F) denoting the
norm over rationals of P, and the right-hand sum is over all sufficicntly
large rational primes p="7T or 13 (mod 18), s = 1. Now, as 5 -» 1 4, the left-
hand side of {3.1) is asymptotically —logis — 1) while the right-hand side
is —2mig{18)log{s— 1)Y= —m/3log(s — 1). Hence m=3 But this is
absurd, since clearly m=6.

CorinLARY 2. For each odd prime powsr p=l11 there are infinitely
many prime powers g with (p, g)=1 for which regular 5(2, p, pg) exisi.

Proof. Here, as uwsual, (-, -} denotes greatest common divisor, Note
that, since the desarguesian cuclidean spaces S(2, p, p°) are regular, the
corallary would be trivial without the restriction {(p, gi=1. For p=3, 5, 7
the resuft is contained in Corollary 1. So we have to prove it for p=9, 11.
When p=11, if g=y¢, is prime to 1 and satishes the hypothesis of
Theorem 2{e), then so does g=g; for e= 1 and ¢ £0 (mod 3). Finally, if
r is a prime power such that (r,9)=1 and r=3 (mod &) then g=r*
satisfies the hypotheses of Theorem 2{d). (In this case the elements of F,
may be uniquely written as g+ £ \;‘“2 with a, # in F.. It can be shown that
a+t./2 is a square in £, il and only il o’ — 2b% i3 4 square in F,, Hence
the claim.)

4. ProoF OF THEOREM 2

We prove Theorem 2 by showiog that wnder its hypotheses, there is a
choice of the epimorphism [ satisfying the hypotheses of Theorem 1. We
continue to use the notation of Section 2. Also we put n={g— 1} (p—1).

Proof of Theorem 2(c). Choose the epimorphism f: G (6] — (7(3) given
by f{—w]=2, where w i3 the primitive cube root of unity in F, determined
as follows. Sipce 3 is not a cube in #, nor is —3. Henee (—31°" s a
primitive cube root of unity in F, (since g=1 {mod 3}, —3 is a square in
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F,. Hence (-3} =(=3)9""2=1 But (-3}*"#1, since —3 is not a
cube). OF these two primitive cube roots of unity, determine w by:

w= (-3 i m=1(mod3)

and
w=(—=3}p" il #=2 (mod 3).

{By our hypothesis on g, n £0 imod 3).)

With § thus chosen, we have I ={+1. +1+w}. Clearly D, satisfies
condition {a) of Theorem 1 provided w# +2. But —2 is not a cube root
of unity in F_ since g £0 {mod 3). Also, 2 is a cube root of unity oaly if
g=7% ¢z, but in this case our choice of w simplifies to w= 3 £2,

Notc that in Lhe present case (=3 or 6. In either case, ) sarisfies condi-
tion (b} of Theorem | provided (1+w)™ 1 and (14 w)™ 2 {1 —w)™.
Using w?+w+1=0, we have 1 +w= —w" and (1 —w)*= — 3w, Thus
{1=w) =1 since n£0 (mod 3) and (1 —w)™ £ 1 since w"#({—3)"" by
our cheice of w. Finally. the requirement {1+ w )™ £ {1  w}*™ simplifies to
{ - 3)"# 1 which we have. simee 3 is nol @ cube in £, Since p=7=3
imod 4), this completes the proof.

Proof of Theorem 2(d). Here p=9% We claim that under our
hypothesis on g, any epimorphism £ G (B) — Gy{4) satisfics the
requiremnents. Let § be any primitive eighth root of uniiy in F, and put
g= f{ff) Thus « is a primitive fourth root of unity in Fy. Then 1+ 2 is a
nonsquare in F,, and we have

D=L+ +1+ 82 D= #0021+ 57

It suffices o show that both £ and 0, salisly conditions {a) and (b) of
Theorem 1.

Clearly £, , satisfies condition (a). Also D, fails 1o satisly condition {a)
only if one of +2, +1} is a primitive fourth root of unity in F,, which
happens only if ¢ is a power of 5, But il g=9 (mod 16) and g i5 & power
of 5 then ¢ = 5% with ¢ odd, But /2 is a nonsquare in #5; and henee also
in the field of order 57 for all odd ¢. Thus under our hypotheses on g, ¢
cannot be a power of 5. So D satisfies condition (a).

Since ¢=9 [mod 16}, we have =38, Hence [ satisfies condition {b)
provided the nth powers of distingt elements of [, are distingl. Using
fr=—f "and fFF+1 '—V-"E,U we find that £2, and £, , , satisfy condition
(b) provided {/2}"7 ¥ ] and (/2 + 1¥9 "W 41, respectively.
But these hold since (/2 is a square and /2 + 1 is a nonsguare in F,.

Proof of Theovem 2{e). Here p=11. Choose the e¢pimorphism
[ GA0 = (7 (5) given by fi—w)=—2, where w is the (unique)
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primitive fifth root of unity in F, satisfving the hypothesis of the theorem.
In this case,

D=4l 2widw’ guituth

Anv two elements of D, are of the form p {w), g.(w), where p,, p, are poly-
nomials with integer coefficients. Let p(x1=%1_, x* be the minimal poly-
nomial of w. We use the euclidean algorithm to compute the greatest
common divisor p, of p and p, p. (regarded as polynomials over the ring
of rational mtegers). In order to prove that p,(w} s p(w), il sullices to
check that p,{w) 0. This can be done for each pair of distinct elements of
D, proving that B, satisfies condition {a) of Theorem 1, provided {i) if ¢
is a power of 11 then w=3 and (ii) if ¢ is a power of 3| then w2 Bui
(i) and (i1} hold because of the choice of w.

Because of the congruence conditions on g, we have t=3 or 10, Thus,
to prove that D, satisfies condition (b), we have to verify that the {2njth
powers of distinct elements of D, are distinct, except when these two
elements are negatives of each other.

Dividing the identity ¥7_, w* =0 by w', we see that there is a square
root .\,-E of 3 in F, such that

w+w = [\;@ — 132 {4.1)

Let us put u= {.”.-"E + 132, By our assutnplion u \ﬁ =w*+w+3 (and
hence also —n \,*'EJ is a fifth power. A]Js:;_o, —u /S={2w—u 'y. Hence
- u./5 is a tenth power, so that [—u/5)" = 1. That is,

(5 = (=)™, (4.2)

Since ww ~'=w(l +w) 15 a filth power, so 15 u®w ™' Also w is a square

(since ¢ = [ {mod 10)). Hence u"w~" is a tenth power, so that (u"w )" = L
That is,

H_..uzu&u_ [4.3}

Using (4.1}, (4.2}, {4.3), the {2n)th powers of the ratios of elements of D,
can be written as powers of w. Sipce w20 (mod 5). it can hence be seen
that D), satisfies condition (b}, Since p=11 =3 (mod 4), this completes the
prool

When p=3, 5 and p— 1 divides g— |, there is a unique epimorphism f
from G (p—1) to G ip—1/2) We omit the trivial verification that this
salishics the conditions,



DESIGNS FROM FINTTE FIFIDS 59
5. ConcLupDing REMARKY

{1) Use was made of the Royal Socicty Math Table 9 [16] to compute
the examples in Section 3. Further, a computer was resorted to in order to
obtain the examples with p= 11. Note that whenever p £ g are both primes
the construction vields cyclic designs. Thus the examples include several
(apparently new) eyclic desipos with block size 7 and 11,

{2} During computation of the examples it was noticed that within the
range of our calculations, whenever g =9 (mod 16) ig_ a prime power such
that 2 is a fourth power in F,, we also have that \/2+ 1 is a nonsquare.
Thus the last condition in Theorem 20} appears to be superlluous, but we
are unable to prove it

(3} Im [117] it was shown that cyclic Steiner 2-design with block size 3
exists for all =1 or 3 (mod 6} except for ¢ =9. In Theorem 2.2 of [5] a
construction of cyelic §(2, 5, 5g) is presented whenever g =1 (mod 4) is a
prime satisfving certain conditions. The congruence condition on the
primitive root of £, imposed in this Theorem is vacuously fulfilled for ¢ # 5
in view of the Chinese Remainder Theorem (see [9]) Also, the second
requirement in this theorem may be rephrased as asking for a nonsquare
x in F, such that {x+ Iix— 137! 15 also a nonsquare. Since the map
x—+(x+1Hx—1)"" is a bjection of F\l onto itself taking the two
squares 0 and — 1 into squares, it is clear that it must take some nonsguare
inte a nonsquare. Thus Theorem 2.2 in [3] yields cyclic 8i2, 5, 5¢} for
each prime g =1 (mod 4), g 5. Thus there is little that is pew in parts (a)
and {b) of vur Theorem 2.

{4} As noted in the Introduction, the most notable success of our con-
struction is the unital L'{6). It may be recalled that there are two classical
serigs of unitals. The one due to Bose [4] exists for all prime-power
parameters 5 and admits the unitary group U405} as an automorphism
group acting douhly transitively on points. The other series due to
Luncburg [10] exists for »=3%, ¢ odd, and admits the Hee group as a
doubly transitive antomorphism group. Curiously, none of these classical
unitals are cyelic. So. in a sense, the unital 7(6) {and the U(4} arising from
(£ g1=1(5,13} which is also implicit in [5]} is better than the classical
ones! Other constructions of vnitals (all with prime-power parameters)
ansc from variations of Bose’s construction {see [12] and the references
there), bul none of these appear o yield cyclic unitals.

{5 Recall that an inversive plane of order v is an S{3. s+ 1, #*+ 1) It
i5 instructive to compare unitals with inversive planes. There are also
two classical series of inversive planes, admitting doubly transitive
autemorphism groups. The fiest exists for all prime-power orders 5, while
the sceond for 5 =27, ¢ odd. The first arises from an orthogonal polarity in
projective 3-space (cxactly as the first serics of unitals arises from a unitary
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polarity in projective 2-spuces), while the second series arises from the
internal structure of the twisted Lie-type simple group of Suzuki or
equivalently from polarities of certain classical generalized 4-gons {while
the second series of unitals comes from the internal structure of the twisted
Lie-type groups of Ree or, equivalently, from polarities of certain classical
genetalized 6-gons).

Now in [6] Dembowski proved that if an inversive plane has even order
5 then 5 must be a power of two. In [2] it was shown that an even order
inversive plane having a point-transitive automorphism group is necessarily
classical. The cyclic unital U'(6) shows that the natural analogues of both
these results are false for unitals.

(61 Another interesting series of Steiner 2-desipns 14 with v=k{2k — 1}
(For the significance of this serics see [15]) Designs in this series are
knownfork=2% ¢z, and =13, 5, 7. The cases (p, )= (3. 5), (5. 9], and
(7, 13) yield examples with k=3, 5, 7. Indeed, the designs thus obtained
are isomorphic to the corresponding ones in Hall's table [7]. All the same,
it 18 perhaps interesting to find that ail these sporadic exampies can be
obtained by a common construction. A computer search is under way to
sec if the construction yields lurther examples in this scoics.

{7} When g=p°, 221, and p is a prime power --so that F = F —the
function f: G {p— 1) — G,{{p — 1)/2} given by fix)=x" always satisfies the
requirements of Theorem 1. The design obtained has the same parameters
as (and at least in small cascs is isomorphic to) the point-line design of
EGia+1, p). If, further. p=3%"" ¢ = 1, then f(x)=x* also satisfies these
requirements. We do not know if the designs obtained ar¢ new. In par-
ticular, these imclude (when p=g=3*"") affine planes of order 3™,
¢ = 1, which may be new.

Post-script. While this paper was in preparation, we learned, by courtesy
of R. C. Mullin, that B. A Mathon has in a forthcoming paper used a
similar difference family construction to obtain a number of cyclic Steiner
2-designs with block sizes 7. 11, and 13. While some of the results in this
paper are thus anticipated by Mathon, it should still be of interest because
of its theoretical results, in general, and for its proof of infinitude of cyclic
designs with block size seven, in particular.
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