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A relacivistic LAY expansion method hus been developed for the Dirsc equation. This formalism
is applied to the screened Coulomb potential proposed by Mehta and Fatil [Phys. Rev, A 17, 34
(1978]]. The 1./% cxpansion result is compared with numernieal resubts and the envelope-method ap-

proiimation.

I INTRODUCTION

The shifted |/ cxpansion method has been used ex-
tensively (o determine the energy cigenvalues of the
Schridinger equation for some importanl potentials,!™*
A modified method which guaraniees better convergence
has been proposed by Maluendes ef af.’ Very recently,
Atag® applied this method 10 the rolulional-vibrational
states of the H, ' molecules. The shifted 1/¥ expunsion
method] i3 nonperturbative in nalure and henee is usefal
in problems invidving large coupling constanls, But until
very recently the use of this method bas been restrcied Lo
nonrclativistic problems. Some time ago Nieta’ extended
VAN expansion formalism to relativistic potentials but he
discussed i in the framework of the Klein-Gordon equa-
tion only and it was not the shifted 1% but the ordinary
1% cxpansion. Miramontes and Pajares! studied the
large-& limit of bath the Klein-Gordon and Dirac equa-
tions, But their result is not of much practical vsc as 1t
was applied to the pure Coulomb problem, they made use
of the exact solution of the Dhrac-Conlomb problem, and
they did not develop any [ormalism to deal with nonsoly-
able cazes. Very recently, the method has been used to
obtain linear scalar potential in the Dirac equation.’
Mathematically the scalar Dirac potential is compara-
tively easy to deal with, However, it will be interesting to
see if the shifted 1/ method can be applicd to
Coulomb-like relativistic problems at least for rthe cases
where the rest energy can be assumed to be larpe come-
parcd to the relativistic corrections, In this paper cxplicit
analytical formulas [or energy values for any radially
symmetric Dirac potential Fir) have been derived. For
numerical comparison the screencd Coulomb polential as
proposed by Mehia and Patil'® has been chosen as de-
tailed numerical results are availahle’' for this potential.
The organization of the paper is as follows.

In Sec. IT we develop the formalism (or the shified 155
expansion procedure for the Dirac equation for a radially
symmeiric potential, In Sce. 11T we apply this method to
the hydrogen atom problem. In Sec. IV the results for
the sereened Coulomb potential of Ref, 10 are presented
together with the numerical results of Ref. 11, Section ¥V
15 kept [or discussions and conclusions,

I, 17N EXPANSION FOR THE DTRAC EQUATTION

The Dirac equation in & dimensions for radially sym-
metric potential F{r} can be written as

2 (N, = 20N, —2+2s)
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where we have used the following factonzation for Dirac
SPINOrs:
r
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N_f-=f'v’+1j k 14)

In deriving (1) and (2) the second-order radial form of the
I3irac equation has been used and the Laplacian & has
been written {io ¥ dimensions) as
TS VA NP il A0
=—ghat ot ar '

2

L5
r dr= r

where Ap is the Beltrami operator'? with cigenvalue
fii+N%—2) where ! can assume the wvalue jils/2)
{5s==1). Egquations {1} and {2} can be recast in the form

A X piv—w—miG, (6
dr #
46 _ X qeiw—v—mF, (7
dr r

where
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When v+ 1 and &=3, y=1, and when s=—1 and

N=3, y— =01 +1), and then (6] and {7) reduece o the

usnal ser of Dvrac equations for a radially svmmetric po-

tential, Eliminating & from {6} and (7} and writing

W=E+m, (91
we have
2 Ay —11
aF XXl pinvomie - vir
dr e
35 1 dVIdE X ke pE L )

Tl AE -V dr|dr

The first derivative &F Sdr of the right-hand side {rhs) of
(10} can he remaved by the substitution
1-

Fir= 1+ EZFE L o (11

[ m

where @i r] satisfics the following cquation:

o< yir—1] .
ﬁ—T{P |2Hil[.l"- Vl:'l;IrJ
| 1 d3V |y dV :
— — P W Soatr g wced Pl Ui e s [ ]_l:E_V:IL
SRR PR T § aE [T ¥
a
3 av
O S .1 ] - 121
aam—E—vi | dr | ¥

In principle, the 1/5 cxpansion can be applied now by
capanding cach lerm in (12} in powers of 1/%. Bot if we
are inlerested i problems where the rest energy is large,
we cah expand terms like 172 +E — Fus

(12m [ —{E—Fi/2m+ ---},

and since the contributions of (E—F)/4m - terms arc
small we can treat them as perturbations and caleulale
them after the leading 1/me?® order calculalions hawve

been done, Thus neglecting terms of the order of
1
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(E— ¥ /4m we get from [12)

1o B MR8 ;
——Tt 4 ————— g —[F —FI
2m et pemel ok =
. (E--¥i .
=— + —u , (XY
uirle m t
where
L ady | xydV
=z i e v 1—_. -
i 4m? |2 @ ¥ dr
where
k=N+2f41 when j=I -]
and Y
kF=N+2j—1 when j=[~++,

Also, y=ik—1)/2 or —(k —3}/2 according as j=1--|

or ! +L Hence we can always write & =& 42/ in confor-
mirty with Lhe nonrelativistic result. If we further neglect
the (E— F¥/2p term then (13} reduces to a Schridinger
equation with the effective patential

1 [1a% _yav

Fiei=Fir+ — =
§ r dom? IE?- dr-

: . L5
Foar .

and onc can apply the standard 174 shifted cxpansion
method For the Schridimger equation. In fact, that is
how we obhtain the 15 result for Mehta-Patil potentials.
In fact, all the relativistic eigenvalues of the potential of
Ref, 10 could be obtuined in this way and they give very
good approximations, through the fine-structure splitting
would not be very accurate. In any case, since we pro-
pose to develop the formalism for pemeral screencd
Coulomb potentials of which the poleniial of Ref. 10 is
just one example, we procesd further to derive the formu-
las for relativistic eipenvalues up to about second order.
First we give a shift to the guantity &, i.e., we write

k=k+a . {16)

Then (13} can he wriiten as

2 1 : - . . o1
B, K0 [ a i @ | B cEr el e R i
Im dr® Bmr | & [ & 2m  m | i
e ey
PR -t 3 far ; P
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Ela—1 v | Q
mrw g o when j—=/—"., 3
(18) A T L R ‘ g {20}
i E+a—3 eIz b
—=— | whenj=I{+i. F2 _
- wirpl———[ulr,itgu{rglxrg+---1. 21

Mow we expand E and Fir)in powers of 1/, We write

3

g o E
E=K*E,+kE +E;+

b oo {19

and

where F is a scale introduced whose magnitude is 1o be
determined later on and x, g are defined through

(22}
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The leading 1 /¥ order energy term is obtained from solv- i ¥id 1 av + Y &V (25)
ing the equation R N
e 5 Firgl? 2k E,Virg) : ry is chosen as to make & E, a minimum. This gives
Hmr?—'_ ral am m Tulrg F2 7 LA
i 3__de ]+_k_..+{'!r.':_r1" i
. ZEE.I ‘ ¥ ar 4m2r1 21‘?‘1'1 !r'—rn
=k |Eqy , 123 ' -
2 Er rpllirg) _
which gives am 4m?
s [ P i ol l"ﬂ In the above derivations ' i1s chosen to be & 2, which
kKEg=Firgl—m+m |!1"' At '2 i s (24) gives back the correct Dirac eqgualion for any N
Ly o) Meglecting terms of the order of & {r ¥ /m®, & % is given
where by
R T L I
eyt 2o | ar | av P ok fav |Y 4 Jar o - av P11
ki=mr} 2 2B v e | 5] +- | T | 2= | + =Tl [5— J
s m- Lo (h"n d?‘{, |l ﬂ]_? EITI‘G m] o di’n pna " d}‘,:] !
(27
[
The terms of order &, 174, ete, can be obtained in exactly | €2 (343
the same manner as was done in the case of the 1 E,—¥iry) ' ’
Schridinger equation in Ref, 2. We here quote the re- j-—-— -
sults and cxplain the appropriate modification whenever R i
applicable, The nexl order contribulion to £ is given by Iy
= 2 -} €27 7 . (35
N (T T i (28) e
rz : Art i ¥ 152
a=2 ~{2n, + 13 I3+ dmrl-— ; [36)
where k-
L2
1] trg] and
w=——13+dmr,———— 129]
2m | g g l—a)3—a) (11 21,02,
B
and ¥''{ry}is given by +3(14+2n,+2n} %,
Y1 = P+ Uoirg) Vil Voirgd — -l (260142, 05,54 (1143084 30n21], (374}
Fol= r = i w
& : it i B irg where
£ .
— J e
ey I R | 11 .S [37h)
300 & { Borae 1172 d
In analogy with the nonrelativistic case we choose g such  and
that the contribution (28) vanishes., It will be shown in s (2—a) & o 2~} {37¢]
See. I11 that this chodee @ives the correct result for the L 2m 2 4m
hydrogen atom up to the appropriate order in T/m. 1 ra
Apart from the analytical demonstration we have Eq=— — E"‘ T&i} Yt {38)
checked eabaustively the Fact that for the hydrogen atom :
case the procedure mentioned hers reproduces the exact g AL M ) (39}
numerical values for the relativistic energy. Now the o ogm 240 Q5

vanishing of expression (23) gives the requined equation

e 1L -
for ry given below, " and ¥ are given by

O ley I )BT ) Frrivg & ?

NA+2 24020, ~112mW=F . 31 yrr=prripg )+ - ;
dm? b Hm z’r%
The encrey up to second order is given hy
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III. HYDRIWGEM ATOM PROBLEM

Here ¥ir)——v/r where v = £ where o 15 the fine-
structure constanl and 2 1% the atomie number, We have
fram {24) '

Z

s o 2_ml_E?
Ey=Fir,l+ S| 5 i 42
N Y e B lﬂm Lz

k is given by 0, /8r,=0 which gives [neglecting terms
ol order ([/m*1]
EE L‘é

ST : {43]
denry 2mFg

Hence from (42}

U i L“Z

Ey=— idd

2ry  Bmrd
Taking N =3 and n, =7+ 1=n. ry can be oblained from
(43, (29) and (31). After some manipulations and keeping
only terms of the order up to e/ ", we pet

1 me | met | ome?
R — e [43)
m " 2n [
Hence from id44) we get
1 4 4
= ML A my
Eo=— 2L M _mo, (46)

n? gnt T

Lot us compare Lhe result with the cader solation of the
irac equation for (he pure Coulomb patential; ™

1!

Firl— - —, 1471
¥

F,=_r~11:|.111_J'?:l:rJ4 |4 3 ! (48]

T et |l T |

where we have considered only lirst-order relativistic
correction. &, ds defined as follows. When & =0,
ky=n—n, and when k&, <0, k,=n—n,—1. Taking
k=0 and expanding 1/Tr —u, ] assuming # o be larpe
comparcd with s, [Lhis is equivalent to LAY cxpansion),
we have from (48]

2 4 e
== LH_E’T. ﬂUT_ ELT”; \ 149]
2n- ar 2n”

which is dclentical with (46, Henge the choive of Lhe shifl

a Is consistent with the Dirac Coalounb resalt. As men-

tioned before, apart from the above simplistic calculation

exhaustive checks were made Lo ensure that this choice

gives the cxact numerical result for the relativistic hydro-
gen problem.

I¥., RESULTS FOR THE SCREENED COULOMB
POTENTIAL

The screened Counlomb potential is of great importance
becanse of ils application in atomic phenomena invalving
transitions and they are known to adequately describe the
eleclive inleracliom in many-body alomic phenofmen.
There are a few popular three-dimensional models of the
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TABLE [. Eigenvalues E,J.: where P denotes padey for the
sereened Coulomb pulential given by (500 obtsined from the
EAY eapansion. The fgures in the parentheses and square
brackels ure  (the ocxact nomenigal  wvaloes and  envelope-
approaximalion results, respeetively, taken from Bef, 11,

Zz Eim Eya E A Elan
14 — 20013 —11.2752 —n2182 —0.2172
1— 1.1pu) [ —1L2493) | —tL2157) (—0.2147:
[—1.4591] [—0.E477] [—01577] [-0.1870]

L9 1ERSA 01.5667 4T -4
[ — 3 RBI6) [ — L5244 [—04724) ({14685
[— 3.8 [—frda9] [—h4264) [—04237]

4 f.3847 00247 — Rk — 01,5511
OAIEI: == (LY 26EH) [—{La541 f— 18438
[—&.31200 [0 7K [—0.7904] [-0.7310]
] 09,3754 15383 1.3867 |60
i 93740 LR .1.Y [ 13TH = 1.4

| 9401] [ 1.290] | - 1.290] [—1.26%]
14 —13.4545 —2.2374 — 20410 = 20085
(= 13,4060 1—=2.150 (— 2.034; Lus%)

[ 13.3a3] | 1933 [ 1933] | L.E%0)
4 — 1OARG - ANRRD — 28547 — LB
[— 18061 [— 2993} [—2.860 =207
[—174354) [—2.736] [—2.73¢] | - 2.653]
44 23 3858 418 — AAUGE — 3741
234400 L—4.001% §— 354 [~ 3, B9E]

[ 23288 [—3.7n3) [—3.703] | 5361}
49 — 204776 — 52452 — 51049 -4.8419
i—X95E2 [— 3 LE§ 5.013) i 4773

[— 29.544] [ -4.847] | 4.B47| | #619]
54 — M R0 — (0493 - 6.3084 b 1014
{— 3,468 [ =656 AT [~ &.002)

| 24320 | EIEL] [ —&.t&1] [—5.824]
59 —44.0332 B.2055 — 1573 — 75278
44 251} - R.1481 —THEL [ —7.386)

[ 44005 [—7.71%] [—7.714] [—7.193]
G —32.598H —9.9669 — 100165 —9,1273
(—52.942) [—49,947) =TI - 5.930
[—52.774] [—2.476] [~ 2.476]| [--8.721]

a9 - 620281 11.94E 12,178 10,506
Lo62.59T) 11990 ¢ LT3R [ 10638
[—62.418] [~ 11.473] [—11.473] [—10.4] L]

74 —72.3754 —14.104 — 14.661 —12.472
[—73.2871 {— 14248 (— 140231 (—12.512)
[—73.098] [—12.734] [—13.734] [—12.267]

™ RN UL — 16.647 —17.521 —15.032
(ORS00 £ TERORD I — 16,6013 [— 14.337

[ =4.90t] [ - 16.287] [—16.287] [—14.294]

LES — 96,0038 19.410 20835 17.3935
[—4H. 1450 [ 19 B2 0 [ 19510 [T Ry
[—u7.934]  [—1%.1063] [—12.165] [— lad96]
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screened Coulomb  potential. Among such guantum-
mechanical models the scrcened Coulomb potential of the

furm
I—L.f{1+r.-"]'
- ,

has been studied by some authors.'™!' In the ahove for-
mula for Fir), v =a, A is the screening parameter, o is
the Anc-struclure constant, and Z is the nuclear charge.
This potential is the represeniative of the more general
potential of the form

V[r}—'—% 1—rh {50)

Firi= —£+ pOR-RENSY
r =0

studied by Pratt and Tseng'* for analyzing the screening
effect. Since relativistic numerical eigenvalues for the po-
tential discussed by hMchta and Patil exist!! we have used
our 1/ expansion technique (o caloulate the eigenvalues
for this potential. For comparison with the published nu-
merical resalt A is taken as the following:

A=098pF ' . (513

In Table I our 1/4 results have been compared with the
numerical and envelope results.!! 1t is 1o be noted that
for Z =74 in Eqs. (43}, (29, and (31) a real value of », for
the 15 case could not be determined., This is not very
surprising as the shifted 1/N expansion (in rhe modified
version} gives good results except for the ground state
where N is nol large. However, for the 1S state, as mon-

tioned carlier, we have solved s Schrodinger equation
with a modificd potential

FiFl+ "

1 d2V+
4 2

2 gt

x dv

v dr

El

which takes account of the relativistic correction, and we
found that the agreement with the numerical result is
fairly good thoogh the 1/N eapansion is not eapected Lo
give very accurate results for the lowesi-lying state. Oth-
er states have been calculated wusing the formulas
(241031, 1.e., EU was calculated. Tt is clear that even our
lowest-order calculation gives a better approxitation Lo
the exact value than the result abtained by the envelope
method.  Alse  the envclope approximation pives
E . n= & » which is not true in our case. For Z =79
the agreement is not as good as it is for Z <79,

V. DISCUSSION

T summarize, we have developed a formalism of the
relativistic 1/% expansion method for the Dhrac equation
with radially symmetric potenlials. For simplicity we
have considered the case where the rest energy can be as-
sumned 1o be large compared o the hinding energy and we
have restricted owrselves to first-order corrections in 17N,
It has been shown that the shift chosen by vs leads to the
correcl resull for hydrogen alom. Our resull can be gen-
eralized o the modified 1/% expansion method to yield
very accurate results. It can be applied 1o the relativistic
potentials in gquantum mechanics and particle physics,
Waork is in pragress alomg these lines.
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