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MULTIVARIATE MAJORIZATION AND DIRECTIONAL
MAJORIZATION ; POSITIVE RESULTS

By SUBIR KUMAR BHANDARI
Indian Statistical Inslitule

SOMMARY. Gonoral rolations botwoon directional msjorization and multivariate majori
wwan aro studiod, and ! iti irecti jori: to imply multi
msjorzation are obtained.

1, INTRODUCTION

For two matricos X(™X™ and Y™, Marshall and Olkin (1979) dofined X
to bo majorizod by Y, written as X < Y, if X = YP, for somo nXn doubly
stochastic matrix P. Following Marshall and Olkin (1979, p. 433), wo defino
X to bo diroctionally majorizod by Y, writton as X —{z Y, if aX < aY for
ol aeRm, Marshall and Olkin (p. 433) posed tho opon question whother
X4 Y implies X < Y. A moro gonoral problom stated in Marshall and
Olkin is whothor AX —<{ 4Y for all 4 :%kxm (for fixed k) implies X —< Y.
In this paper, sufficiont conditions are given undor which directional majori-
zation implios multivariate majorization.

It will bo reportod in a subsoquont communication that tho above impli-
cation is not true undor some spocified conditions.

2. MAIN RESULTS
Theorom 2.1: For a fired Y, X23xm 4y YEX™ implies X <Y for
all X%, if all the column veclors of Y (in RR?) are boundary poinis in the convez
hull of the column veclors of Y, and this convex null has 2-dimensional positive
colume,

Thoorem 2.2 : Suppose every column veclor of Y :mXn is an exlreme
poind in the convex hull generated by the columns of Y, which has r-dimensional
positive volume, and at least (n—r+-2) of these column veclors are co-planner.
Then X ~{g Y tmplies X < Y for all X. Moreover, AX { AY forall A:
kxm tmplies X < Y.

AMS (1080) subjecs clasification : 16A39, 15A00.
Key worda and phrases : Majorizati {rootional majorization, multivariata
coavex bull, hyporplane.
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3. PROOF OF THE RESULTS
Definition 3.1: A functionf: Rm— R is said to bo directional conver
Sunction, if it is of the form f(z) = gla. z), for fixed aeR™ and g: R— R convex.
Noto that diroctional convox functions are convox functions,
Lomma 3.1: For X{mXn) = (z{, ..., z5), Y(mXn) = (y, ..., y), X~ ¥
if and only if,
LF) € & F(y),
=1 {=1
for all functions F which are sums of finitely many directional convez
functions,
Proof : TFirst noto that for 2 = (24, ..., 2,), ¥ = (s eo0r Ya) 2=y iff
L glz) < Z gly)
=1 =1
for all convox functions g:R—» R (s00 Marshall and Olkin, 1979, p. 108 or
Hardy, Littlowood and Polya, 1934).
Now for X imXn, ¥ :mxn,
XY
waX <aY, for all @ ¢ Rm
< (azl, ..., axf) < (ays, ..., ayf), for all a ¢ R™
for all @ € ™ and all convex fune-

n n
z § z s
= t=1 glaxp) < (=1 gle) tions g : R—» R.

< 'i‘ Flz) € ‘2"‘,‘ F(y), l;yr all diroctional convox functions

for all F which are suma of finitoly
many diroctional convox functions.
Definition 8.2: Tor a,be R, a lino L in R? (having equation l(z) =0
for z € R?) for o point Z ¢ R with Z ¢ L, dofine Cp 45 z : B* > R by
CL a0,z (x) = a.d(L, z), if Yz). 2Z) > O
= b.d(L, 2), if Yz). Y2) < 0,

= EFe) < £ Fop),
=1 =1

whore for AG R, pe R}
d(4, p) = inf {l7—pli : g6 4}
Cloarly Crq,5,z is o diroctional convox function for a » 0, b > 0.
Lomma 3.2: For m =2, X —a Y implies that the columnvectors of X
are in the convex hull of the column vectors of Y.




MULTIVARIATE AND DIRECTIONAL MAJORIZATION 201

Proof: Lot C donoto tho convox hull of tho column voctors of Y.
Supposo that for somo i, tho ith column vector 2f of X isnot in C. As Cis
closed, thore oxists a lino L which soparates zf from C and doos not contain z{.
Now considor tho diroctional convox function ¢ = C“lo_’:. Noto that

3 olf) = 0 < E ofa),
1= =1

sinco ¢{zf) > 0. This contradicts Lomma 3.1, Hence 27 is in C.
Proof of Theorem 2.1 : TFirst noto that X : (mxn) =< Y :(mxn) iff

E; oz) < ,2_“1 olys), . (30)

for all convex functions ¢ : R™— R (Sco Fischor and Holbrook, 1977, p. 604
or Blaclwoll, 1053). Honco it i3 sufficiont to show the above inoquality
for our caso m = 2.

Lot tho polygon C C R? donoto the convex hull of tho column vectors of
Y which are assumed to bo distinct. Supposo y;'s aro the n vertices of C, i.e.
#;'s are tho extrome points. We name theso vorticos by 4y, 4, ..., 4, in
consecutive order. By Lomma 3.2, all zf's aro in C. Considor & convex funo-
tiongon C. Dofino oy = ¢fdy), & = (ay, ..., &,), and

F, =lsup {f: f convex on C, f(4) = & for all §}. . (3.2)

In view of Lommas 3.1 and 3.2 it is sufficiont to show that F is tho sum of
finitely many diroctional convex functions, sinco

o(2) < Fozf), @lyf) = Fi(yf) for all 4. . (33)

Wo can assumo @, = a, = 0, sinco othorwiso wo can make a; = a; =0
by adding & suitablo affino function to ¢. o can furthormore assume that
a; » 0 for all § > 2, sinco this can bo achioved by adding the affino function

Cpoa, 4, for suitablo largo & > 0, whore L is tho lino joining tho distinct

points 4, and 4, end ¢ > 2. Noto that Cy,q 2 is affino if & = ~b.
Consider C; o 4 for £ > 0 and note that this function is affine on C.

For =0
Crovagld) € ayy for all £ > 2, e (34)

Now as wo incronso ¢, at somo point (say ab ¢ = f;) at loast ono equality in
(3.4) will bo attained prosorving the othor inoqualitics. Lot A‘l, A,g, e 4y

"
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(r € n—2) bo tho vorticos at which tho equality in (3.4) is attained. If
r =n—2, dofino I".=C,_',n.°.h and wo aro dono.

If r < n—2, considor tho following poasiblo configuration :

Fig. 1

Lot fy=i—Cp 4, 0 4, (40. Thon

A0, ﬂ1=ﬂl=ﬂ(l= =‘ﬂ(, =0. o (38)

Considor now tha polygon A, A3 4, 4,...4,. Note that C—4, A3 4, .. 4,
ia tho urion of disjoint polygons. DBecauso of (3.5) wo can apply tho abore
oporation on each of theso polygons, taking the tiwo initial vertices to that f/s
aro zero on thom.

Ultimatoly adding theso Cp, 4,», 2z functions obtained at each stago from
oach of thoso polygons wo got a function which is F, ; this follows from the
fact that for cach point in the polygon A4, ... 4, thero oxists a sub-polygon
with vortices in {4,,4,, ..., 4,) on which tho dorived function is affino.

This construction shows thab F, as dorived above, is the sum of finitely
many directional convex functions. This proves Theorom 2.1 whon all the
column vectors of Y aro oxtrome points.

Now supposo tho vortices of C aro V,, V,, ..., Vg, arranged in consccutive
order, and B is a column voctor of ¥ which lies on' tho sogmont ¥,V closest
to ¥;. Then wo shall follow tho abovo initinl oporation with 4, = ¥, and
A, =DB. By making @, =a, =0, wo can onsuro that a at all colunn
voctors lying on V,Vgis » 0. Tho abovo proof can now bo followed stags
by stage.

When tho column voctors of Y arc not distinct, tho above operation is
usod only on distinct column veetors of Y 5 the desirod result then followy
from (3.3).
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Lemma 3.3: Let the convex hull of the column vectors of ¥ :mXn have
r-dimensional positive volume, r < m. Then the problem of equivalence of
X —<a Y and X < Y reduced lo the corresponding problem in r-dimension.

Proof : Tor somo nonsingular 4 :mXm and suitablo b:mx1 and
Y,:rXn, wo havo

ALY+, . b)] = (?) .

Following the Lino of proof of Lemma 3.2, we can show that X —4 Y implies
that overy column vector of X is in tho convox hull of tho column voctors
of Y. Thus

AXAHG, 0 b)] = (’f)‘) ,

for somo X;. It canboshown nowthat X <3 ¥ < X; 1 ¥,and X < Y »
X, <7,

Proof of Theorem 2.2: In viow of Lomma 3.3 we may assumo, without
any loss of gonorality, that r = m.

Honco our assumption onteils that at loast (n—m<-2) of the Y¢'s aro
co-plannor, i.e, thoy bolong to a 2-dimonsional affine spaco of ™, Lot thoso
voctors bo roprosentod by tho points Ay, 4y, ..., 4, myy and thoir convex
hull bo a polygon donoted by Ay A; ... 4,_mye, WTitton in consocutivo ordor.

Tho convox hull of 4, 4; and tho (m—2) column voctors of Y outsido
the above plane has (m—1)—dimonsional positivo volumo ; lot this convex
hull bo contained in a hyporplano 1.

Noto that I doos not contain tho polygon 4, 4, ... 4, m,s. Sinco 4,
and A, aro in 11, tho othor 4¢'s (i = 3, 4, ..., n—~m+2) aro on ono sido of 1.

Tollowing Dofinition 3.2, dofine

(], z), iflz)l(4s)> 0
Cn.t.o.AJ(i) = {

whore t > 0and l(z) = 0 ia tho equation of H.

0 ifllz)[(4,) <0

To comploto tho proof wo follow tho oporations employed in tho proof
of Thoorom 2.1 with a hyporplano JI taking tho rolo of the lino dofining tho
C-function. Noto that initially wo can mako a; to bo zoro at 4,, 4, and
{m—2) points lying outsido tho plano by adding a suitablo affino function to ¢.
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