Nonparametric Statistics, Vol. 10, pp. 405~420

A GENERAL METHOD OF DENSITY
ESTIMATION FOR ASSOCIATED
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Let {X,,n>1} be a sequence of stationary associated random variables having a
common marginal density function f(x). Let ¢,(x,»), n=1,2,..., be a sequence of
Borel-measurable functions defined on R Let f,(x) = 1/n3%; d,(x, Xz) be the
empirical density function. Here we study a set of sufficient conditions under which the
probability Pr(sup,+s<x<s-slfal*) —f(x)] > €)— 0 at an exponential rate as n— oo
where the rate possibly depends on ¢, § and £ and [g, b] is a finite or an infinite interval,
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1. INTRODUCTION

Let {X,, n>1} be a sequence of associated random variables defined
on a probability space (2, F, P). A set of random variables {X, ..., X}
is said to be associated it for every pair of functions A(x) and g(x) from

R" to R, which are nondecreasing componentwise, '

pely ?

Cov(A(X),8(X)) 2 0

whenever it is finite, where X = (X7, X3,...,X},). An infinite sequence
{X,} of random variables is said to be associated if every finite subset
is associated.

*Corresponding author.
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The concept of association was introduced by Esary, Proschan and
Walkup (1967). Associated random variables are of considerable
interest in reliability studies, percolation theory and statistical me-
chanics. For a review of several probabilistic and statistical results for
associated sequences, see Prakasa Rao and Dewan (1998).

Suppose {X,, n> 1} is a stationary sequence of associated random
variables and the marginal density f of X; exists. We now consider the
problem of estimation of f based on (X,..., Xy). Let ¢u(x, y), n =1,
2,..., be a sequence of Borel-measurable functions defined on R
Then the empirical density function is defined as follows:

fu(x) =%i¢n(x,)(k). (1.1)
k=1

This function can be considered as an estimator of f. This estimator
is a generalization of the histogram type density estimator, the kernel
type density estimators and the density estimator obtained by the
method of orthogonal series. Properties of the empirical density
function or a variation of it were considered by Foldes and Revesz,
(1974) and Walter and Blum (1979) in the case of independent and
identically distributed random variables, by Foldes (1974) for the case
of stationary ¢-mixing sequences and by Prakasa Rao (1978) for
stationary Markov processes, among others (¢f. Prakasa Rao, 1983).

Here we study conditions leading to the exponential rate of
convergence for the uniform consistency in probability of the
estimator f,(x), that is, the conditions under which

Pr( sup | fu(x) —f(x)|>€> — 0 asn— oo, (1.2)

a+6<x<b-6

at an exponential rate. Sufficient conditions for the asymptotic
property (1.2) to hold have been studied earlier for the case of a
sequence of independent and identically distributed random variables
(Foldes and Revesz, 1974), for a ¢-mixing sequence of random vari-
ables (Foldes, 1974) and for absolutely regular sequence of identically
distributed random variables (Yoshihara, 1984).

For some recent work on density estimation for associated se-
quences see Bagai and Prakasa Rao (1991, 1995) and Roussas (1991).
Bagai and Prakasa Rao (1995) have considered uniform consistency
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of kernel-type density estimator f,(x) of f(x) based on stationary
associated sequences. However, no rates were obtained. Roussas
(1991) showed that for # > 0 and for any compact interval [a, b],

sup r’{f,(x) =f(x)] = 0 as. asn — oo,
x€(ab

under some conditions. We have obtained the exponential type bounds
for the rate of uniform consistency for a larger class of estimators
which include the kernel-type estimator as a special case.

2. THE MAIN THEOREM

THEOREM 2.1 Let {X,, n> 1} be a stationary sequence of associated
random variables with the common one-dimensional marginal density
Junction f for which

[f(x1) = f(x)] < klx1 = x2| if x1,%2 € [a,b], (2.1)

/oo |x["f(x)dx < oo for some - > 0. (2.2)

Let {¢(x, )} be a sequence of Borel measurable functions which are
of bounded variation in y for a fixed x. Then,

¢>,,(x,y) = ¢1n(x7y) - ¢2n(X,J’), (23)

where @i,(x, y), i = 1,2 is monotone in y for fixed x. Suppose that there
exists two positive numbers o and 7 and an interval (¢, d] containing
[a, b] such that for each # the interval [¢, d] can be divided into disjoint

left closed intervals 7", s = 1, 2,..., for which
| > —1; Uﬂn = (24)
[n(x1,¥) = Pu(x2,¥)| < H'|x1 — X3 (2.5)

provided that x; and x, belong to the same interval [ §”>
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Suppose that

b
/ on(x, ) D)y — f(x) asn — o0 (2.6)

uniformly in [a + 6, b— 8] for some § > 0.
Suppose that for each n

Var(gin(x,X1)) < bn, i=12 (2.7)
n
hy < W, (2.8)

where w(n) = O(n?) for some ' > 0 and w(n) — oo as n— oo, and for
a positive constant C :

|9 (x,3)] <.Chy, i=1,2. (2.9)

Further suppose that there exists a v > 0 and a sequence of positive
numbers ¢, — 0 such that

|n(Xn, n)| < En (2.10)
whenever,
|Xn = ynl > 2", (2.11)
and
n > mye). (2.12)

Suppose that for i = 1,2, ¢in(x, ) is differentiable with respect to y
and

[fa(x, )] < bn (2.13)

where ¢! (x,y) denotes the partial derivative of ¢ (x,y) with respect
to y and there exists 8 > 0 such that

=5
=

= 0(n%). (2.14)
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Finally assume that

%Z Cov(X1, X)) = O™ (2.15)

Jj=

for some @ > 3/2. Then

Pr( sup | fulx) =f(x)] = e) < e (2.16)

a+6<x<b-6

as n— oo, where k; is a positive constant depending on ¢, é, and f.

Remarks 2.2 The list of conditions assumed above on ¢,(x, y) is long
and they are similar to those of Foldes and Revesz (1974) in the i.i.d.
case to include histogram type density estimator, kernel type density
estimator and the density estimator obtained by the method of
orthogonal series etc. In addition we have assumed here that ¢,(x, y) is
a function of bounded variation in y for a fixed x to deal with the
dependence of association type. Covariance structure of an associated
sequence plays an important role in the study of limit theorems for
associated random variables. Our condition (2.15) on the covariance
structure is of this type. The inequality (2.16) gives an exponential
bound for the uniform convergence of the density estimator f,.

3. SOME LEMMAS

The proof of Theorem 2.1 is based on the following lemmas.

LemMMA 3.1 Let Xy, X,,...,X,, be associated random variables that
are bounded by a constant &§'. Then, for any A > 0,

<N Y Cov(XnXp),  (3.1)

1Li<j<n

E[ T4 - T] £l

i=1

where
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Proof Using Newman’s (1980) inequality, we get that for » = 2 and
any A >0

|Cov(e’\X",e’\X2)[ < /\zkz)Cov(Xl,Xz)i (3.3)

The result follows by induction and using the fact that if X, Y and Z
are associated then so are X and Y + Z as they are increasing
functions of associated random variables. »

Note that because of (2.3)
1 n
fulx) = ;Z &n(x, Xi)
k=1

= LS (b 30 - o2 X))
k=1
= fin(3) — fnl) (s2). (3:4)

LeEMMA 3.2  Under the conditions of Theorem 2.1, there exists o/ > 0
such that for any x €|a, b},

2
E[MUnt)-EUnG)] < Mhin 4 an%g — (3.5)

n

provided that

n
0 < X < ~—=— :
< < ich (3.6)

where C is the constant in Condition (2.9) and ¢ denotes a positive
constant.

Proof Note that
E[eMUn)-Efu()] = /™ Ly Gk ~Eon(xXi)]
= E[™/" it T, (3.7)
where

Yy(x) = d1n(x, Xj) — Ed1n(x, Xj). (3.8)
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Observe that Y,,;(x), j ...,n, are increasing functions of asso-
ciated random Varlab]es ((2.3)) and hence are associated.
Then

’E[e’\n (fln(x)_E(fln(x))] ‘

n n
< E[e(z\n/n) b Ynj(X)] _ H E[C(A”/n)y,,,
=1

+ HE e()‘n/n n/(x)]

_]_

(3.9)

Thus, by using the inequality e“ <1 + u + u? for [u| < 1/2, we get
HE Cu/m¥(=)] < HE{I + = Yy(x) + 25 it Yi(x )}

<IT(1+7m) ovemn)
< e(’\"/”) " (3.10)

Further using Lemma 3.1 and (2.9) and the fact that 0 < A\, < n/4Ch,,
we get that

{ E[e/) T 1a9] _T] Efetn/ntat)]

J=1

22
g—’;%e"/z Z Cov(Y,i(x), Yyi(x)) (by Lemma 3.1)

1<i<j<n

" e"?p? Z Cov(X;,X;) (by Newman’s (1980) inequality)

1<i<j<n

2
< -/\—”e”/zbznz Cov(X1,X;) (by stationarity of Xj)
—_— n2 n . 1

j=

2
< ——%e"/zbf,nze“”o (using (2.15))

2
< nz%e-“’", o > 0. (3.11)

n

The result follows by combining (3.10) and (3.11). [ |
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A similar resuit holds for f5,(x).

LEMMA 3.3  Under the conditions of Theorem 2.1, for any x €a, b]
and for every € > 0,

2
Pr(|fn(x) = Efu(x)] = €) < e~ taler/mn +.n2%e“(k'(5)")/h“, (3.12)
n

where the constant k(¢) does not depend on n and x.

Proof Using (3.4), we get that
Pr(lf(x) - B 2 €) < Pr(mnm B 2

3)

+Pr(|fzn(x) Efn()] 2 5)

Nl"‘

(3.13)

Note that 0 < A\, < n/4Ch, and suppose that A\,h,/n — 0 as n— oco.
Then by the Markov inequality and Lemma 3.2, we get that, for i = I,
2, there exists a positive constant k() such that

Pr( () — Efu() > %) < E[MUn()-EUn()] jhee/2

2
e)‘ih"/" + an%% e—a’n
n
eMne/2

2
< e~k an% e~REnh (3 14)

n

One can choose k3 () = £/16C. The result now follows from the fact
that if W/’-, are associated, then so are —W}s. |

LEMMA 3.4 (Bagai and Prakasa Rao (1991)) Let X and Y be asso-
ciated random variables, with bounded continuous density functions given
by fx and fy. Then there exists a constant C such that

sup |Pr[X < x, Y < y] — Pr[X < x] Pr[Y <)]|
qu

SC{tZCOV (X, Y)+%}, (3.15)

for every t > 0.
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4. PROOF OF THEOREM 2.1
The proof of Theorem 2.1 will be along the same lines as that given in
Foldes and Revesz (1974) and Foldes (1974).

Let for each positive integer n

T =" <M< < z§("n)) =nT

(the number T will be determined later on) be a partitioning of the

interval [-n”, n”] having the following properties:
C1 (n) n) €
s S A K s 2

0<e <ec <oo, i=1,...,00n),

(b) those end points of the interval 1 5") which belong to [—-n”, n7} are

elements of the sequence z(()"),zg"), 556 ,zI(("n)).

By (a), (1.1) and (2.5), we get that

[fu(x) = fu(¥)] < c;}:r- ifx,ye [ztff'_)l,zl(n)}’ 4.1)

and

1 : n n
Ef(®) = BHO)| <€ eoamz i xy e [80,20). (42)

Note that,

fu(%) = B0 < | /u(x) = fu ()] + | (27) - E(Z7)]
+ |Ef(2™) = Efu(®)].

Therefore, using (4.1) and (4.2) we have

Swp ()~ EA)| S i+ sup (22 ~ B ()]

a+T
2 <xg2l i 20 <xg
c
natt’
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Hence,

Pr( sup lﬂ(X)—Eﬁ(X)|26>

), sx<d?

< pr(zh{; > ;) +Pr(|f,,<z§.1>1) _ B0 2 g) (4.3)

But, for large n Pr(2¢c/n®"™ > €/2) is zero. Therefore, using (4.3) we
have

pe( s ) = BRG] 2 <)

—nT<x<nT
I(n)
<Y {re( s 1nt0-Bhw] 2 ¢) )
i=1 2" <x<z

i

<t max {pe( sup )~ B 2 <) |

49 <x< s

i

n n €
<I(n) max {Pr(lf,,(zﬁ_),) - Ef,,(zs_)l)l > 5)}
2
< Un)e~Fi@m/hn 4 l(n)nzgg e k1@t (ysing (3.12))

n

< e klen/b (using (3.14)) (4.4)

for large n. Note that /() is the number of partitioning intervals of an
interval length 2n7. Therefore, In)~~2n***"*T. Furthermore,
Ef,(x) — f(x) as n— oo by (2.6). Therefore

N gxizal
x€la+6,6-6)

Pr( sup | fu(x) = Efu(x)| > 5)

x¢la+6,b-4] x € (a+8,b-4]

<ol s el 2 ) +re( o 1oc0]25)
)

£
=pr( sup (9] > 5
BIET
x € [a+6,6-8]

(4.5)
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for large n, since Pr(sup | f(x)| >¢/2) is zero. Now

N,

Pe( s, 91 2 5)

SPI( wp = Y (x> i—)

Ix|2nT Py ¥ 31<s

e s ST k)l 2 )

Ix]1 2071 100>
Xy € S(xnT/2)

-I-Pr( sup : Z [@n(x, Xi)| > %)

|x|2nTH ki Xp—x|>6
Xp ¢ S(xnT/2)

£

gzpr(lch,, Z 12-)
kX 3T 8

>
G52 25)  (49)
x| >nTH k| Xg—x]>6

X £ 5(xnT/2)

+Pr( sup 1

where S(x, n7/2) denotes the interval [x—nTj2,x + n7/2). This inequal-
ity is a consequence of (2.9) and the fact that, for large n,
AT
X >nl, X-x <6= X2

and
T

T
x| >nf, |X—x|>6 Xe S(x,%—) = x| > ”7

Denote by J, (1) the following indicator function
1, if|ul = n7)2
Inlu) = {0, otherwise. (4.7)
Note that J, can be expressed as sum of two monotone functions 7,

and 7, where

_f1, fu>n")2
[n(u) = {0, otherwise,
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and

vy 1, ifu< —nT/2
T(u) = {0, otherwise.

Then we have to estimate the following probability

& cne 1 cne
> — < > —
Pr(kZ;J,,(Xk) > hn> < Pr(;In(Xk) > 2hn>

L cne
+Pr(;[;(Xk) = ﬂ;)

for some positive constant ¢. Since X'} s are associated, Y, = L,(Xx),
k

(4.8)

k=1,...,n are associated and so are Z; =I,(Xx), k=1,...,n
Therefore, we will estimate (4.8) using Lemma 3.3 for the associated
random variables Y;,..., Y, and Z,,...,Z,.

Now

n
Pr(Zln(Xk) > ;-’E-)
k=1 n

< pr( Y080 - E1(K0) > w

k=1
2 cne
> . :
+Pr(kz=;EI,,(Xk) B 4hn) (4.9)

Note that

E(I(Xy)) = Pr(Xk > ”;)

nT
S PI‘(|Xk| > 7)

v n™
= Pr(lel > -2—_’)

i
< EQxm2

< —c;(%) (using (2.2)) (4.10)

where ¢(v) is a constant depending on v and f.
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Choose T to be so large that Ty—1 > 0. The sequence (cne/4h,,)
tends to infinity by (2.8). Therefore

Pr(iE],,(Xk) > ﬂ‘i) =0 (4.11)
— = 4h,
for large n.
Furthermore,
c(v)

For0 < A; < 1/4,

Pr(g(ln(xk) _EL(X) > Zh—)

E(eN 3 I X) = ED(X:)

cne
= eMncne/4h,

(4.13)

Now

E(e® Z:=1<1n<xk>—E1n<Xk))) = E(e" Z;,(ln(xk)—ﬂn(xk)))
n

[ E(exo-2nere)
k=1
n
i H E(e/\;(ln(xk)—EIn(Xk)))_ (4.14)
k=1
Therefore, for 0 < A; < 1/4 and using the inequality e“<1 + u +u
for |u] <1/2, we get

I"I (M h(X0)-En(X0))

k=1
< T + 25U (X0) — B (X0) + (32U (X5 — LX)
k=1

= f[[] + (A Var(I,(Xx))]
Pl

< et/ (4.15)
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since (1 + x,)" = (1 + nx,/n)" & ™. Applying Lemma 3.1 for the asso-
ciated random variables Y3,..., Y,, we get

E(eA,‘,ZZ=1(I,,(X1,)—EI,,(X1¢))) _ fIE(eA;(In(Xk)—EIn(Xk>))

=t (4.16)
<S5 3 Cov((X), In(X)).

1<i<jsn

Then, for 0 < A; < 1/4 and any ¢ > 0, we get that

fIE(e)\;(In(Xk)—EIn(Xk)))‘
k=1

<c(aye™ > (tzCov(X,-, X,-)-l-%)

1<i<j<n

(X‘)2 X, (tznZCov X, X)) + )

]—
(by using the stationarity of {X;})

(/\*)2 213, 2 (tze—ne + %) (by using (2.15))

< c(/\;)2n2e2n/\; e—-né’/}

E(e® Z;lun(xk)—ﬂn(xk))) =

(by choosing ¢t = €"/3).  (4.17)

Using (4.15) and (4.17) in (4.13), we get that for 0 < A} < l

4,

Pr(;(l (Xe) — EL(Xx)) > j’,’f)

2 CRALE E
< e—:%Tl' 22,, a4 C(/\*)Z 2 2n)\,,e £ e‘T
<e B e (by using(2.8))

k(e)n

<e TR, (4.18)

Substituting (4.11) and (4.18) in (4.9) we get an estimate for
Pr(3 i1 In(Xk) > §F). Similarly, we can get an estimate for
Pr> i I(Xe) > ;ZE) Combining the two we can get an estimate
for the expression on the left hand side of (4.8).
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Finally for T > v and by (2.10) and (2.11), we get

Pr( —_— > 1nlx, Xi)| = %) < Pr(s,, >§>

[K2nT P e
xkgs(x,ﬂz—T)

(4.19)

=0,

for large n. Using (4.8) and (4.19) in (4.6) we get an estimate for (4.5).

Choose T > max (v, 1/). Then, for large », and from (2.6), (4.4) and
the estimate of (4.5) given by (4.19) we have the following inequality
proving the theorem:

Pr( sup  1u(x) — ()| )

a+6<x<b—6

<P s UG- B 2

a+6<x<b-b

+Pr< sup  |Efa(x) —f(x)| 2 2)

a+é<x<b-§

P swp 1) - BL 2

a+6<x<b-6

2, (4.20)

Remarks 4.1 Various examples of the estimator f,(x) have been
discussed by Foldes and Revesz (1974) in the ii.d. case. Similar
examples can be given for the associated case. For instance the
standard normal density is a kernal which is a function of bounded
variation and it can be checked that it satisfies all the conditions of
Theorem 2.1 and we obtain exponential rates for uniform convergence
of the kernel type density estimator.
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