


acknowledged by these methods the total coverage depends

upon the threshold. If the threshold value is set higher/lower,

less/more partially covered pixels are counted as cloudy/clear

sky pixels. Several clustering methods, such as Dynamic

clustering method (Desbois et al., 1981) and the Asymmetric

Gaussian method (Simmer et al., 1982), are also used for

identifying clouds in satellite images. These clustering methods

being unsupervised, may not (usually will not) give the desired

partitioning of the data. In a supervised mode, since we can use

experts’ knowledge to label the training data, we are likely to

get better estimates. In the recent years, artificial intelligence

tools are increasingly being used for classification. Different

artificial intelligent approaches for cloud classification are

outlined by Tovinkere et al. (1993). Neural network (Lee et al.,

1990) and fuzzy expert system (Baum et al., 1995; 1997, Key

et al., 1989; Tovinkere et al., 1993) have also been used for

classification of geophysical data.

The present study takes a very different approach,

demonstrating the application of fuzzy rule based classifiers

to cloud cover estimation from METEOSAT-5 imageries. The

problem is defined with three classes: cloudy, partially cloudy

and clear sky. Owing to the fact that the partially cloudy class,

which is neither purely cloudy nor purely clear (e.g., thin

cirrus, some sub-pixel cumulus, thin clouds at the edge of a

cloud system, etc.), overlaps with both cloudy and clear sky

classes, the situation becomes quite complex. The present

approach makes use of the ability of fuzzy rule based system

to classify data in a complex decision space. The problem is

addressed in the following ways: (1) experts (meteorologists)

label some pixels for these three classes and features are

computed from the images obtained by the VIS and IR

channels of METEOSAT-5. (2) A supervised scheme for

identifying a set of fuzzy rules using the training data is then

developed. (3) The misclassifications during training are

analyzed and few more rules are extracted for modeling the

typical mistakes. These rules are then augmented to the initial

rule base to improve its performance. (4) To further improve

the classifier accuracy, a post-processing scheme is designed

which utilize the ‘‘false firing’’ information detected by

experts on examining the classified (test) image(s). The system

enhances its performance from its mistakes (typical mistakes

and false firing), this is a unique characteristic of the proposed

system. (5) The scheme is finally applied on a set of test

images and the results are visually compared with the

multispectral threshold tests, surface synoptic observations,

and NCEP/NCAR reanalysis ‘‘tcdc’’ data (Kalnay et al., 1996).

Results show that proposed fuzzy system detects cloudy,

partially cloudy, and clear sky classes with high accuracy (96–

99%). Consideration of partially cloudy pixels reduces the

threshold dependent overestimate/underestimate of cloudy

pixels.

The next section outlines the proposed classification

methodology. The data used in this study are described in

Section 3, results (without post-processing) are discussed in

Section 4, the post-processing scheme and corresponding

results are presented in Section 5, comparison with the

multispectral threshold tests, surface synoptic observations,

and NCEP/NCAR reanalyzed Ftcdc_ data is discussed in

Section 6 and the conclusions are given in Section 7.

2. Proposed methodology: fuzzy rule based approach

The fuzzy logic approach, a different conceptual model to

classify objects, is based on approximate reasoning. The fuzzy

set theoretic framework provides a degree of support to each of

the potential classes. A set of fuzzy rules is used to define

(describe) the class label of each data point. The rules are

defined on some attributes which are computed for each pixel.

After the rule base is obtained, for every pixel, the attributes are

computed and the degree of match of these attributes with each

fuzzy rule is computed. The class label associated with the rule

having the strongest match defines the class of the pixel.

The complete methodology consists of six steps: collection

of samples or training data for each class (discussed in Section

2.1), computation of features that can discriminate between

classes (discussed in Section 2.2), generation of a fuzzy rule

base (discussed in Section 2.3), refining (tuning and pruning)

of the rule base (discussed in Section 2.4), finding ambiguous

decisions (discussed in Section 2.5), and finally adding extra

rules to model the typical misclassifications (discussed in

Section 2.6).

2.1. Deciding on training data set

Given a set of N images, we select a set of n images. From

each of these n images we identify a set of patches

corresponding to cloudy, partially cloudy, and clear sky. We

consider only a few patches where we are confident about their

types. In other words, we pick up a few areas which are

definitely cloudy, some areas which definitely belong to clear

sky and a few areas corresponding to partially cloudy sky. We

acknowledge the fact that there could be different extents of

partially cloudy conditions. In the training sample we include

only pixels for which we do not have any doubt. Deviation

from this will produce a graceful degradation in the rule firing

strength and even then we should be able to detect partially

cloudy condition. While selecting training samples, we

carefully excluded sunglint areas and coastal region. Later,

we analyze the performance of the system on such areas too

and propose corrective actions. We have N =31 images and we

select only n =1 image. Each of these images is of size

2300�1900. Table 1 shows the number of pixels considered

for designing and testing the system. However, more images

can be used to generate the training data set and this is likely to

improve further the performance of the system. Here our

Table 1

Distribution of labeled data for land and water

Class No. of pixels

Over land Over Water

Cloudy 23,884 65,490

Partially cloudy 25,339 81,417

Clear sky 52,447 80,012

Total 101,670 226,919

A. Ghosh et al. / Remote Sensing of Environment 100 (2006) 531–549532



objective is to demonstrate the effectiveness of our system, so

we restrict ourselves to a small data set.

2.2. Extraction of features

A set of features is extracted for each pixel taking into account

its temporal as well as spatial context (Seze & Desbois, 1987).

Here we use five features; three features are from the VIS

channel image: mean, standard deviation, and mean difference

from the cloud free background calculated using a 3�3 window

around each pixel, and two features from the IR channel images:

mean and standard deviation of brightness temperature calcu-

lated using a 3�3 window around each pixel. The third feature

represents the temporal properties while the rest are associated

with the spatial properties of the VIS count and IR brightness

temperature data. In order to get the cloud free background

image, we find the second darkest gray value at every pixel

location over a large number of VIS channel images taken at a

particular hour at least for a period of 1 month (discussed in

Section 3.2).

2.3. Generation of the fuzzy rule base

Generation of an initial fuzzy rule base is done using

exploratory data analysis. In particular, we use the k-means

clustering algorithm to find a few clusters in the data

corresponding to each class separately. Let X =X1–X2–X3,

Xq7Xr =U, r mq=1, 2, 3 be the training data, Xq be the

training data corresponding to class q. Here the three classes

are cloudy ( q =1), partially cloudy ( q =2), and clear sky

( q =3). We cluster each Xq^Rp using the k-means algorithm.

Each cluster represents a dense/important area in the input

space. Each such cluster is converted into a fuzzy rule of the

form: if x is CLOSE TO v then the pixel is cloudy. Here x is a

feature vector in p-dimension and v is the centroid of a cluster

obtained from the data corresponding to the cloudy class. The

fuzzy set CLOSE TO v is represented by a set of p simpler

atomic clauses: x1 is CLOSE TO v1 and x2 is CLOSE TO v2
and . . . and xp is CLOSE TO vp. Here v =(v1, v2, . . ., vp)

T and

x =(x1, x2, . . ., xp)
T. In this way we get a set of initial rules. In

general, the ith rule representing one of the c classes takes the

form: x1 CLOSE TO vi1 and . . . and xp CLOSE TO vip then the

class is h. Here p is the number of features and hence the

number of atomic clauses. The fuzzy set CLOSE TO vij is

modeled by a Gaussian membership function: lij(xj: vij,

rij)=exp(ÿ (xjÿvij)
2/rij

2), although, other choices are possible.

Fig. 1. The region of study: Indian subcontinent and Indian Ocean.

Fig. 2. METEOSAT-5 VIS (0.5–0.9 Am) image for the Indian subcontinent and in surrounding Indian Ocean, 0500 UTC 9th February 2003 (*2003 EUMETSAT);

(a) histogram equalized image and (b) samples of cloudy, partially cloudy and clear sky classes labeled by meteorologists. The labeled data are summarized in

Table 1.
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Let there be M rules. So there will be M membership

functions for each feature. We propose a simple, yet effective

scheme to initialize the spread rij of the Gaussian functions.

From training data for each feature ( j=1, 2, . . ., p) the

maximum (maxj) and minimum (minj) values are calculated.

Within the interval [maxj, minj], vijs are then arranged in

increasing order. Here vijs are the jth component of the cluster

centers. Let the ordered values be vi1,j, vi2,j, . . ., viM,j and the

maximum and minimum values are vi0,j=minj and viM+1,j=

maxj, respectively. The kth membership function, k =1, 2,

. . .M, on the jth feature will have the center vik,j and its spread

is taken as:

rik;j ¼
1

3
max vikþ1;j ÿ vik;j

ÿ �
; vik;j ÿ vikÿ1;j

ÿ �� 	
:

Since the response of a Gaussian membership function

beyond T3r is negligible, we divide by 3. This choice will

ensure sufficient overlaps with adjacent membership functions.

In this way the initial rule base is defined. Sometimes this

initialization may have a problem. It may take large values for

the spreads, particularly at the class boundaries where the

difference (vik+1,jÿvik,j) may be large. To overcome this

problem, for each feature ( j =1, 2, . . ., p) the spread can be

initialized with the standard deviation (S.D.) of the jth

components of the training data included in the associated

cluster. This is just the initial choice. Since, the spreads are

tuned, either initialization would be fine.

For a given data point x, we first find the firing strength of

each rule using the product T-norm (Klir & Yuan, 2001):

ai xð Þ ¼
Yj¼p

j¼1

lij xj : vij; rij
ÿ �

:

Here ai(x) is the firing strength of the ith rule on a data point

x. This gives the degree of match between the data point x

and the antecedent of the ith rule. Now class label of the rule

having the maximum firing strength determines the class of

the data point x. Let l ¼
argmax
|fflfflfflffl{zfflfflfflffl}

i
ai xð Þ, and suppose the lth

rule represents class c, then x is assigned to class c.

2.4. Tuning and pruning of the rule base

2.4.1. Tuning of rule base

We now refine the rules to minimize the training error using

gradient descent technique. Let xZX be from the class c and

Rc be the rule from class c giving the maximum firing strength

Table 2

Initial fuzzy rule base over land surface

Class Rule no. Feature no.

1 2 3 4 5

Centroid Spread Centroid Spread Centroid Spread Centroid Spread Centroid Spread

Cloudy 1 174.76 11.18 5.04 2.72 122.64 11.60 225.41 8.79 1.56 1.06

2 151.73 10.17 9.59 5.25 109.71 10.45 257.63 12.49 1.17 0.97

3 143.69 7.74 2.34 1.62 71.32 6.28 267.94 3.87 0.28 0.17

4 120.51 10.17 13.11 6.16 82.80 9.51 264.61 10.02 1.70 1.41

5 181.99 11.78 7.24 3.82 143.87 12.11 256.73 8.42 0.97 0.81

Partially cloudy 6 71.74 5.89 8.70 4.35 25.75 6.03 264.82 6.08 2.82 1.74

7 84.05 5.34 6.01 3.30 28.27 6.38 253.28 7.32 2.32 1.49

8 57.45 5.39 8.73 4.22 19.37 4.58 273.29 4.92 2.71 1.72

9 53.76 4.05 4.27 2.58 14.13 3.06 286.55 5.59 1.27 1.21

Clear sky 10 63.23 5.24 1.23 0.74 6.89 3.71 288.36 5.03 0.26 0.18

11 38.35 2.51 0.96 0.46 1.49 1.40 298.70 2.72 0.38 0.26

12 82.63 6.49 2.63 1.68 20.17 5.38 279.03 2.21 0.46 0.29

Table 3

Initial fuzzy rule base over water surface

Class Rule no. Feature no.

1 2 3 4 5

Centroid Spread Centroid Spread Centroid Spread Centroid Spread Centroid Spread

Cloudy 1 160.84 12.92 5.94 4.82 135.39 10.04 232.35 16.34 1.54 1.11

2 214.70 8.74 3.77 2.94 187.13 7.52 209.74 5.79 1.06 0.79

3 189.15 8.60 4.16 3.12 161.82 8.88 218.47 7.07 1.23 0.84

4 105.88 13.03 13.51 7.80 89.88 13.05 266.36 16.38 2.09 2.21

5 67.75 10.90 12.48 6.94 51.85 10.36 274.05 13.71 1.88 1.73

Partially cloudy 6 24.20 2.26 2.77 1.51 8.73 2.01 290.14 2.60 0.36 0.42

7 29.03 3.32 3.52 1.90 14.11 3.37 277.41 4.18 2.13 1.27

8 43.30 5.36 14.40 6.09 25.76 4.89 288.63 2.59 0.96 0.57

9 32.36 2.89 6.15 2.99 15.86 2.62 290.64 1.80 0.43 0.35

Clear sky 10 15.39 0.63 0.73 0.33 ÿ0.12 0.54 292.24 0.54 0.16 0.12

11 26.36 2.54 0.81 0.38 4.72 1.62 289.79 0.87 0.16 0.12

12 20.93 1.15 0.79 0.39 2.05 0.86 291.60 0.75 0.15 0.12
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ac for x. Also let Rÿc be the rule from the incorrect classes

having the maximum firing strength aÿc for x. We use an error

function E.

E ¼
X

xaX

1ÿ ac þ aÿcð Þ2:

This error function has been used by Chiu (1994) in the

context of designing a fuzzy rule based classifier. The rules are

refined by minimizing E with respect to the centroids and

spreads associated with Rc and Rÿc. This may be viewed as

refining the rules with respect to their contexts in the feature

space. The details of the rule refinement algorithm are given in

the Appendix.

2.4.2. Pruning of bad rules

At the end of the rule base tuning we get the refined rule

base which is expected to give a low error rate. Since we have

derived these rules from the training data, without using any

expert knowledge, there may be some poor rules which should

be pruned out of the rule base. We consider two kinds of bad

rules: rules not adequately represented by training data and

rules that make more wrong decisions. A rule is said to be bad

if it is fired only for a few training data points (here, if it is

fired for �3 times). A rule is also bad if it makes more

misclassifications than the number of correct classification.

2.5. Finding ambiguous decisions

We make a decision whether a pixel represents cloudy,

partially cloudy or clear sky condition depending on the firing

strengths of the rules. The rule with the maximum firing

strength is assumed to make the correct decision. For both land

and water surface most of the correct decisions (>96%, in some

cases it is about 99%) are made with high firing strength,

whereas in a few cases the maximum rule-firing strengths are

very low (on the order of 10ÿ14). These low firing strength

decisions may or may not be correct, one cannot be sure. So a

threshold on the firing strength is defined for finding such

ambiguous or weak decisions. Suppose a rule has p atomic

clauses in its antecedent. Each atomic clause is modeled by a

Gaussian membership function. Let ri, i =1, 2, . . ., p, be the

spread of the Gaussian involved in a rule. For a Gaussian

function 96% of the area under the curve lies between

meanT2ri. So the membership values beyond T2ri would

be negligibly small. The membership value at T2ri is

lth=e
ÿ4=1.8315639�10ÿ2. If an atomic clause is not

satisfied at least to the extent lth, definitely that clause is very

weakly satisfied. If none of the atomic clauses is satisfied at

least to the extent lth, then the firing strength of that rule would

be less than athres where athres is the result obtained by applying

the T-norm on a set of p values each equal to lth. If we use min

as the T-norm, then athres=lth. On the other hand, if we use

product as the T-norm then athres=(lth)
p. We shall call a

decision ambiguous or weak, if the firing strength of the rule

making the decision is less than athres.

2.6. Adding extra rules for typical mistakes

We start with 5 rules for cloudy class, 4 rules for partially

cloudy class, and 3 rules for clear sky class, i.e., we begin with

Table 4

Refined fuzzy rule base for land surface

Class Rule no. Feature no.

1 2 3 4 5

Centroid Spread Centroid Spread Centroid Spread Centroid Spread Centroid Spread

Cloudy 1 175.21 15.56 4.91 7.94 123.82 15.70 225.19 14.37 1.62 5.31

2 150.25 14.07 10.08 10.24 112.23 14.21 263.24 14.80 0.90 3.90

3 143.36 10.28 2.19 5.16 72.20 10.97 268.70 5.20 0.28 1.88

4 124.02 14.14 12.54 11.14 86.86 13.70 266.77 13.12 1.30 4.49

5 176.02 14.68 6.79 8.44 138.71 15.41 259.62 12.22 0.72 3.37

Partially cloudy 6 67.16 13.98 9.66 11.20 25.51 13.03 265.88 13.05 2.91 6.93

7 83.45 12.34 6.02 9.61 27.39 13.37 254.59 15.30 2.36 6.77

8 53.35 11.49 7.37 10.21 16.89 9.90 277.30 12.55 2.65 7.11

9 54.46 7.29 3.14 4.92 16.22 6.02 293.13 7.29 0.36 2.49

Clear sky 10 63.95 16.06 1.03 4.44 6.14 13.15 287.41 15.91 0.23 0.98

11 38.07 7.43 0.96 3.66 1.41 4.89 298.21 9.10 0.39 2.82

12 85.47 9.01 2.20 4.14 22.32 8.02 279.07 5.47 0.45 2.02

Table 5

Classification results over land

Class Correct classification (%)

Set 1 Set 2

Training Testing Training Testing

Cloudy 99.73 99.82 98.37 98.56

Partially cloudy 98.3 98.25 97.22 98.43

Clear sky 97.93 99.02 96.87 97.1

Overall 98.65 99.01 97.48 97.75

Table 6

Classification results over water

Class Correct classification (%)

Set 1 Set 2

Training Testing Training Testing

Cloudy 99.43 99.27 98.71 98.69

Partially cloudy 97.6 97.67 97.1 97.33

Clear sky 99.2 99.74 98.63 99.01

Overall 98.74 98.86 98.15 98.42
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a total of 12 rules. Although it is debatable, often designers use

some cluster validity index to decide on the optimal number of

rules (Bezdek & Pal, 1998; Pal et al., 2002). During rule

refining some of the bad rules are pruned out and as a result the

recognition score may be improved. But as we do not know the

optimal number of rules for each class, it may be possible that

our rule based system has missed some important rules. If that

happens, some of the misclassified points should form clusters.

Such misclassified points will share some common character-

istics (we call such mistakes typical mistakes). In other words,

if there are subclusters among the misclassified points, it is

likely that some rules are missed by the rule extraction scheme.

To fill this gap, a few extra rules, if required, are generated by

analyzing the behavior of misclassifications (during training)

made for a particular class. Possible clusters within the

misclassified points are found by the k-means algorithm and

each such cluster is converted into a fuzzy rule (as discussed in

Section 2.3). These rules are added to the previous rule base

which is then again tuned.

3. Data preparation

3.1. METEOSAT-5 imagery data

For the present study, we use the METEOSAT-5 VIS (0.5–

0.9 Am) and IR (10.5–12.5 Am) images taken at 0500 UTC

over the Indian subcontinent and in surrounding Indian Ocean

(Fig. 1).

These high resolution raw METEOSAT-5 images are taken

during the period 7th February–9th March 2003, a total of 31

days, and are provided by the European Organisation for the

Exploration of Meteorological Satellites (EUMETSAT). The

normal subsatellite resolutions for VIS and IR channels on the

METEOSAT-5 images are 2.5 km and 5.0 km, respectively. All

these images have a common center (over equator 63-E) and

cover the same area. So an IR pixel corresponds to 4 VIS

pixels. Since the VIS channel has the higher resolution, it

contains more spatial details than the IR channel imageries. So

we decided to apply the fuzzy rule base method at the

resolution of VIS channel. To match the resolution of VIS

image each IR pixel is divided into 4 pixels and all these 4

pixels are assumed to have the same brightness temperature of

the original IR pixel. This allows us to use both the VIS and IR

channels without loosing any information.

The effects of solar illumination geometries on the VIS

channel radiance (i.e., on VIS pixel value) is reduced using a

standard Lambertian correction model, i.e., dividing all VIS

pixel count by cosine of the solar zenith angle. The IR count is

converted to brightness temperatures using the coefficients

stored in the calibration block of the image header. Hereafter,

VIS data will refer to corrected VIS image and IR data will

refer to brightness temperature computed from IR gray level.

3.2. Computing the cloud-free background for visible channel

images

Clouds are assumed to perturb the clear sky radiance

(Connell et al., 2001; Kidder & Velder Haar, 1995; Reinke et

al., 1992). A set of 31 images, each taken at 0500 UTC on 31

consecutive days, is analyzed to select the second darkest gray

value to generate a background image for that particular hour.

The assumption is that dark pixels will not contain aerosols

or clouds which would increase the reflectivity. We select the

second darkest gray value for computing the composite clear

sky background image. This will reduce the effect of possible

contaminations by cloud shadows, highly dense pollutants, etc.,

which can cause a reduction in the satellite detected reflectivity.

Except in very unusual situations, for any region we are not

likely to have cloudy or snow-covered images for the entire

period. Consequently, the background image thus produced will

represent a clear sky condition with a high confidence. Any

image acquisition system is subject to different types of

uncertainty. Moreover, there are random variations in environ-

mental conditions. So, it is quite possible that this background

image may contain some noise. We use the median filter to

reduce such noises in the background image. The mean

difference from cloud-free background calculated using a

3�3 window around each pixel is used as a feature.

3.3. Creating the training and test data

To generate the data, we used a PC based image processing (IP)

software for labeling of pixels. Since accurate labeling is the key

to accurate classification, it is important to provide the analyst

Table 7

Confusion matrix on the training data over land

Class Cloudy Partially cloudy Clear sky

Cloudy 99.73 0.27 0.0

Partially cloudy 0.0 98.3 1.7

Clear sky 0.0 2.07 97.93

Table 8

Confusion matrix on the training data over water

Class Cloudy Partially cloudy Clear sky

Cloudy 99.43 0.57 0.0

Partially cloudy 1.03 97.6 1.37

Clear sky 0.00 0.8 99.2

Table 9

Confusion matrix on the testing data over land

Class Cloudy Partially cloudy Clear sky

Cloudy 99.82 0.18 0.00

Partially cloudy 0.0 98.26 1.74

Clear sky 0.0 0.98 99.2

Table 10

Confusion matrix on the testing data over water

Class Cloudy Partially cloudy Clear sky

Cloudy 99.27 0.73 0.0

Partially cloudy 0.89 97.67 1.44

Clear sky 0.00 0.25 99.75

A. Ghosh et al. / Remote Sensing of Environment 100 (2006) 531–549536



(meteorologist) with as much information as possible. A series of

inbuilt image-processing functions are available to the analyst.

For enhancement of the visual quality, images are histogram

equalized. Since it is very easy to make labeling error, in

particular, while labeling partially cloudy pixels, we took special

care to examine wide variety of information before labeling.

This is a three-class problem. The selection of areas

representing the two extreme classes, cloudy and clear sky, is

not difficult. We have selected samples from those regions

where there is no ambiguity, i.e., we have high confidence

about whether it is cloudy or clear sky. The third class, partially

cloudy, is comparatively difficult to label; in particular, when it

is over the land. Mean brightness of partially cloudy pixels lie

in between that of cloudy and clear sky. We choose samples for

the partially cloudy class from those regions where we are sure

about the fact that it is neither clear nor cloudy (e.g., thin cloud

at the edge of a cloud deck, etc.). To be more accurate, a lower

cut off, Plow, from clear sky and an upper level cut off, Pup,

from cloudy region are defined as follows:

Pup ¼ PC ÿ rC

Plow ¼ PNC þ rNC

Here PC and PNC are the mean brightness of cloudy and clear

sky regions, while rC and rNC are the corresponding standard

deviations for these classes. rC is almost the same over land

and water surfaces, but rNC is low over water and high over

land. We have considered only those areas which visually

appear as partially cloudy and where pixels lie within the range

defined by Pup and Plow.

Out of 31 images we select only one image (Fig. 2(a))

where the three classes appear distinctly. Some areas of this

image are labeled for each of the three classes. As the

radiative properties of land and water surfaces are distinctly

different from each other, two separate rule based systems

are designed for land and water, respectively, i.e., the

labeled data are separated for land and water, respectively.

Labeled samples contain a wide variety of cloudy, partially

cloudy, and clear sky conditions over both the land and the

ocean (Fig. 2(b)). The labeled data are summarized in

Table 1.

A small percentage of the labeled data is randomly selected

from each of the three classes over land and water to constitute

the training data set. The remaining data constitute the test set.

Let X be the entire data set, Xl
–Xw=X. Here Xl and Xw are

the data sets corresponding to land (l) and water (w),

respectively. Now each of Xl and Xw is divided into training

and test partition as Xtr*–Xte*=X, Xtr*7Xte*=U, * corre-

sponds to either l or w, Xtr* and Xte* are the training and test

sets. Note that while applying the classifier using the latitude–

Table 11

Ambiguous decisions during training and testing

Firing strength

threshold

Class

no.a
Ambiguous decision (%)

Over land Over water

Training Testing Training Testing

Correct

classification

Misclassification Correct

classification

Misclassification Correct

classification

Misclassification Correct

classification

Misclassification

a thres 1 0.03 0.00 0.02 0.00 0.03 0.00 0.06 0.00

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

a 1=Cloudy, 2=partially cloudy, and 3=clear sky.

Table 12

Refined fuzzy rule base after adding extra rules for land surface

Class Rule no. Feature no.

1 2 3 4 5

Centroid Spread Centroid Spread Centroid Spread Centroid Spread Centroid Spread

Cloudy 1 174.73 16.15 4.94 8.31 123.37 16.27 225.63 15.01 1.63 5.53

2 150.12 14.48 10.17 10.64 112.10 14.62 263.22 15.06 0.91 4.07

3 143.24 10.56 2.20 5.35 72.01 11.37 268.68 5.33 0.28 1.94

4 123.75 14.61 12.64 11.58 86.57 14.17 266.66 13.51 1.32 4.69

5 175.87 15.05 6.90 8.82 138.48 15.80 259.53 12.60 0.73 3.51

Partially cloudy 6 66.49 14.59 9.83 11.75 25.37 13.58 266.24 13.71 2.94 7.27

7 83.19 12.99 6.09 10.11 27.46 14.08 254.68 15.97 2.37 7.09

8 52.95 11.76 7.36 10.51 16.78 9.99 277.40 12.91 2.66 7.33

9 54.44 7.51 3.14 5.07 16.26 6.17 293.19 7.34 0.35 2.53

Clear sky 10 63.96 16.53 1.00 4.40 6.06 13.49 287.37 16.48 0.22 0.98

11 38.07 7.63 0.97 3.77 1.42 5.03 298.16 9.44 0.39 2.90

12 85.53 9.27 2.17 4.32 22.33 8.28 279.09 5.67 0.45 2.07

13 73.43 4.30 4.91 2.41 17.36 3.10 276.89 2.18 0.28 0.75

14 51.93 2.68 1.42 1.04 12.28 1.47 293.15 2.88 0.60 0.40
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longitude information we can easily find whether the pixels are

over land or water.

4. Classification results

For the present study we used 3000 randomly selected

pixels from each class to generate the training set. Two such

training–test partitions are prepared for each of land and water.

For both land and water portions of the image we used 5

features (i.e., p =5) and generated 5 rules for cloudy class, 4

rules for partially cloudy class, and 3 rules for clear sky class.

The initial fuzzy rules are summarized in Table 2 (for land

surface) and Table 3 (for water surface). As an illustration, in

Table 4 we show the refined rule base for land. The pruning

phase could not remove any rule. Comparison of the initial

rules in Table 2 with the refined rules base in Table 4 shows

that refinement makes noticeable changes in the rules. The

initial centroids do not change much indicating that the

clustering algorithm places the centroids in the right places.

But the refinement algorithm makes significant changes in the

spreads to reduce the training error. Similar changes are

observed in the refined rule base for water also.

The classification results on the training and test data are

summarized in Tables 5 and 6 for land and water, respectively.

Table 5 shows that both training and test accuracies of

classification over land for the cloudy pixels are very high

(98–99%). The recognition score for partially cloudy is about

98%, while for the clear sky both the training and test

accuracies are about 97% and 99%, respectively. The overall

accuracy over land is about 98%. Similarly, over the ocean

portion of the image, during refinement, none of the rules are

pruned out. Table 6 shows that both training and test accuracies

of classification for all three classes over water are also very

high (97–99%). The overall accuracy is also about 98%.

Another interesting observation is that for both land and water

surfaces, the performance of the rule base on the training and

test data is very consistent. The conclusion derived for the first

training–test partition remains more or less the same for the

second partition. This establishes the consistency and reliability

of the proposed design methodology. The confusion matrices

for training data are shown in Tables 7 and 8 for land and

water, respectively.

Most of the misclassifications over land is made by the rules

for the partially cloudy group: 0.27% cloudy pixels are being

misclassified as partially cloudy whereas 2.07% clear sky cases

are treated as partially cloudy. For cloudy and clear sky classes

we have very few misclassifications. In 1.7% cases partially

cloudy pixels are misclassified as clear sky (Table 7). Over

water, the correct classification rate is very high: partially

cloudy pixels are misclassified as cloudy and clear sky only in

1.03% and 1.37% cases, respectively; whereas 0.57% cloudy

cases and 0.8% clear sky cases are being treated as partially

cloudy (Table 8). Interestingly, over both land and water no

cloudy pixel is misclassified as clear sky or vice versa; all

misclassifications are limited to either the pair cloudy and

partially cloudy or partially and clear sky (Tables 7 and 8). The

confusion matrices over the test data exhibit the same pattern as

that of the training data (Tables 9 and 10). This demonstrates

the consistency of the rules extracted by our system.

Next we analyze the ambiguous or weak decisions. As

explained in Section 2.5, we use the threshold, athres, for

deciding on weak or ambiguous decision. An ambiguous

decision may be correct or wrong. Table 11 summarizes the

percentage of ambiguous decisions that are correct and

wrong. Both over land and water the overall percentage of

ambiguous decisions is very low. Over land, for class 1 only

0.02% decisions on the test data are ambiguous and all of

them are correct. Similarly, over water only 0.06% decisions

on the test data are ambiguous and all are correct decisions.

For the other two classes practically, there is no ambiguous

decisions. Thus, Table 11 reveals that both for land and water

no ambiguous decision is misclassified. The observation also

suggests that weak (ambiguous) decisions happen very rarely.

However, this information on cloud will be very useful in

detecting clouds over complex regions (e.g., sunglint region,

snow-covered Himalayan region—such regions were not

included in the data discussed above), which will be

discussed latter in Section 5.

We now add a few extra rules to model typical

misclassifications as discussed in Section 2.6. During training,

Table 13

Classification results over land after adding extra rules

Class Correct classification (%)

Training Testing

Cloudy 99.73 99.8

Partially cloudy 98.43 98.28

Clear sky 98.5 99.06

Overall 98.88 99.04

Table 14

Confusion matrix on the training data over land after adding extra rules

Class Cloudy Partially cloudy Clear sky

Cloudy 99.73 0.27 0.0

Partially cloudy 0.00 98.43 1.57

Clear sky 0.0 1.5 98.5

Table 15

Classification results over water after adding extra rules

Class Correct classification (%)

Training Testing

Cloudy 99.2 99.07

Partially cloudy 98.93 98.63

Clear sky 99.36 99.78

Overall 99.17 99.16

Table 16

Confusion matrix on the training data over water after adding extra rules

Class Cloudy Partially cloudy Clear sky

Cloudy 99.2 0.8 0.0

Partially cloudy 0.33 98.93 0.74

Clear sky 0.0 0.64 99.36
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in 2.07% cases, clear sky pixels over land are misclassified as

partially cloudy (Table 7). Two extra rules are generated

analyzing these misclassifications, which are then added to

the previous rule base. Thus, the rule base now contains 5

rules from cloudy class, 4 from partially cloudy, and 5 (3+2)

from the clear sky class. The extended rule base after

refinement is given in Table 12. Inspection of Table 12

shows that for each of the new rules (rules 13 and 14) the

spread of each membership function is much smaller than the

corresponding spreads of other rules. Thus, these new rules

have higher specificity and do not interfere with other rules

which is revealed by the fact that inclusion of these new rules

does not cause much changes to the performance of other

rules (Table 12).

The classification results and confusion matrix obtained

during training over land are summarized in Tables 13 and 14,

respectively. The enhanced rule base shows a considerable

improvement in classification result; particularly for clear sky

class. For the clear sky class the percentage of correct

classification is increased from 97.93% to 98.5% (Tables 5

and 13).

For the rule base corresponding to the areas over water

again two rules are generated analyzing the misclassifications

for partially cloudy class. Thus, the rule base now contains 5

rules from cloudy class, 6 (4+2) from partially cloudy, and 3

from clear sky class. The basic characteristics of the new rules

are similar to rules 13 and 14 in Table 12. In other words, these

new rules have higher specificity and do not interfere much

Fig. 3. False color images combining VIS and IR channels data (*2003 EUMET-SAT); (a) 0500 UTC 9th February 2003 and (b) 0500 UTC 20th February 2003.

Fig. 4. Classification results without post-processing; (a) 0500 UTC 9th February 2003 and (b) 0500 UTC 20th February 2003.
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with other rules. The classification results and confusion matrix

obtained during training over water are summarized in Tables

15 and 16, respectively.

For a visual assessment of the results a set of false color

images (combining VIS and IR data) for the dates 9th and 20th

February 2003 are shown in Fig. 3, while Fig. 4 shows the

corresponding classified images.

Note that, we have used only a part of the image taken on

9th February 2003 (Fig. 3(a)) for designing the rule base and

tested it with images taken on the same as well as other dates

(here 20th February 2003 (Fig. 3(b))). A careful analysis of the

classified images by domain experts reveals that most of the

ambiguous and wrong decisions correspond to snow-covered

Himalayan region or near to the sunglint region, and few of

them also belong to coastline (Fig. 4(a) and (b)). To overcome

these problems we propose a post-processing scheme as

discussed in the next section.

5. Post-processing

5.1. Post-processing scheme

Although the classifier works nicely over most part of the

images, there are few regions where the partially cloudy class is

being overestimated. This mostly happens over the region near

the land–water boundary (e.g., coastal region or small water

body within land) or at the boundary of different types of land

cover where there is a high gradient in VIS/IR image. It also

happens for the sunglint region where the mean VIS pixel

intensity is quite higher than that of the normal clear sky region

over water surface. Besides these, the snow-covered Himalayan

region is mostly treated as ambiguous cloudy or ambiguous

partially cloudy or sometimes wrongly classified (‘‘false

firing’’) as cloudy or partially cloudy. The possible reasons

for these ‘‘false firing’’ may be the ineffectiveness of the used

features/data for some areas (e.g., VIS data within sunglint

region) or the lack of representative samples in the training data

(e.g., lack of samples from the coastal region and snow-

covered Himalayan region). To overcome these problems, a

post-processing scheme is proposed. The basic goal of this

additional step is to reduce the ‘‘false firing’’ over several

complex regions, specially at the boundaries of different land

covers and coastal region, sunglint over water, and snow-

covered mountain region.

During the post-processing of the classified image(s)

experts detect some misclassified areas and label them for

their correct class(es). Some of the ‘‘false firing’’ at the

boundaries of different land covers and coastal region on the

classified image(s) are labeled as clear sky class. Over the

sunglint region, the problem is quite complicated. Due to

specular reflections a large portion in this region is wrongly

classified as partially cloudy when actually this region

contains the sunglint pixels. To discriminate the partially

cloudy pixels from the sunglint pixels a separate class named

‘‘sunglint’’ is added to the previous rule base for water surface.

Domain experts label sunglint pixels within an approximate

boundary of the sunglint region on the classified image(s). The

approximate location of the sunglint region on the satellite

image is found out with the scheme suggested by Giglio et al.

(2003). It uses the angle hg between the vector pointing the

Fig. 5. Label data used in post-processing scheme; (a) samples of clear sky and snow classes, 0500 UTC 9th February 2003, (b) samples of sunglint class, 0500 UTC

9th February 2003, and (c) samples of sunglint class, 0500 UTC 20th February 2003.

Table 17

Distribution of additional data points over land and water labeled by experts for

post-processing

Class No. of pixels

Over land Over water

Cloudy 0 0

Partially cloudy 0 0

Clear sky 2170 725

Snow 1115 –

Sunglint – 6147

Total 3285 6872
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pixel-to-satellite direction and the specular reflection direction.

The angle hg can be computed as

coshg ¼ coshvcoshs ÿ sinhvsinhscos/;

where hv and hs are the satellite view angle and solar zenith

angle, respectively, and / is the relative azimuth angle. The

area defined by hg<19- over water is taken as the approximate

boundary of the sunglint region. Similarly, over the snow-

covered Himalayan region it is necessary to discriminate the

cloudy/partially cloudy pixels from the snow-covered ones.

Some of the ambiguous cloudy/partially cloudy and false

firings over that region are labeled by the domain experts as a

new class named ‘‘snow’’.

These extra labeled data are divided into training–test data

sets, and then some more fuzzy rules (as discussed in Section

2.3) are generated particularly for these problematic regions.

The rules for coastal region (over land) and for boundaries of

different land cover types are augmented to the clear sky class

of the land module while the rules for ‘‘snow’’ are added as a

new class (4th class) to the land module. Similarly, for the

water module, the rules for coastal region (over water) are

augmented to the clear sky class while the rules for ‘‘sunglint’’

are added as a new class (4th class) to the water module. The

rules for the sunglint class are used only for the pixels within

the approximate boundary of sunglint region. The previous

training–test data for both land and water surfaces are also

augmented with these additional training–test data sets for the

respective surfaces. Finally, the updated rule base for both land

and water surfaces are tuned with respective updated training–

test data sets. The classification results of post-processing are

discussed in Section 5.2.

5.2. Results of post-processing

As discussed earlier, during post-processing of the classified

image(s) some of the possible false fired regions are detected

by experts and are labeled for their actual classes. The

additional labeled samples are selected from the classified

images taken on 9th and 20th February 2003 (Fig. 5).

The distribution of these additional data over different

classes are shown in Table 17. For land and water surfaces the

number of such labeled pixels are 3285 and 6872, respectively.

For land surface, out of 3285 points only 650 pixels are

randomly selected for training and the rest are treated as test

data set. Four (4) rules for clear sky class and 2 rules for snow

are generated using these 650 points and added to the previous

rule base. The original training–test data are augmented using

these additional data points and the entire data set is used in

refining the updated rule base. The updated rule base now

contains 5 rules for cloudy class, 4 rules for partially cloudy

Table 18

Refined fuzzy rule base after post-processing for land surface

Class Rule no. Feature no.

1 2 3 4 5

Centroid Spread Centroid Spread Centroid Spread Centroid Spread Centroid Spread

Cloudy 1 173.33 21.55 5.06 10.99 121.78 21.66 226.77 20.07 1.64 7.15

2 149.84 17.83 10.59 13.65 111.88 17.99 263.18 17.29 0.98 5.32

3 142.71 12.88 2.24 6.68 71.28 14.34 268.54 6.37 0.28 2.35

4 122.43 18.67 12.97 15.04 85.19 18.24 265.93 17.17 1.46 6.29

5 176.61 18.35 7.27 11.61 139.07 19.31 259.13 15.52 0.77 4.53

Partially cloudy 6 63.07 18.12 10.81 14.77 26.24 15.79 266.45 16.80 3.34 9.05

7 81.82 17.75 6.55 13.55 27.45 18.98 254.68 19.99 2.53 9.24

8 51.12 12.02 7.24 11.58 16.13 8.16 278.75 14.69 3.13 8.01

9 54.41 8.45 3.14 6.09 16.60 6.69 293.53 7.20 0.27 1.80

Clear sky 10 64.54 19.45 1.20 8.15 6.30 16.57 285.84 20.87 0.24 0.91

11 38.08 8.99 0.98 4.51 1.45 5.98 297.98 11.62 0.39 3.42

12 86.24 11.31 2.05 5.24 22.69 10.17 279.28 6.94 0.44 2.33

13 74.06 4.75 2.33 3.55 19.62 3.97 275.65 3.04 0.45 1.60

14 51.26 2.86 1.10 1.69 11.61 2.09 293.44 3.11 0.72 0.96

15 54.68 7.19 8.97 4.31 3.70 4.13 275.49 3.18 0.37 1.42

16 64.37 5.11 6.18 3.85 11.88 4.42 277.70 3.28 0.52 1.14

17 54.18 7.65 9.11 5.63 6.07 5.30 289.83 3.80 0.79 1.95

18 76.81 7.64 6.97 5.18 16.87 6.79 278.74 6.28 0.34 1.61

Snow 19 168.35 14.39 22.76 8.34 22.12 13.11 255.24 4.05 1.32 2.19

20 197.75 10.07 15.43 6.55 31.12 8.14 253.92 3.73 1.17 2.27

Table 19

Classification results over land with updated rule base and labeled data

Class Correct classification (%)

Training Testing

Cloudy 99.73 99.8

Partially cloudy 97.2 96.98

Clear sky 96.45 98.7

Snow 96.67 96.68

Overall 97.7 98.52

Table 20

Confusion matrix on the updated training data over land with updated rule base

Class Cloudy Partially cloudy Clear sky Snow

Cloudy 99.73 0.27 0.0 0.0

Partially cloudy 0.0 97.2 2.8 0.0

Clear sky 0.0 3.55 96.45 0.0

Snow 2.0 1.33 0.0 96.67
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class, 9 (3+2+4) rules for clear sky class, and 2 rules for snow

class; Table 18. Comparing Table 18 with Table 12 we find that

the new six rules do not alter much the description of the

previous 14 rules. Unlike neural network type systems, this is a

beauty of fuzzy rule base that it can be easily augmented by

new rules. The classification results and the confusion matrix

obtained on the training set over land are summarized in Tables

19 and 20, respectively. Similarly, for water surface 740 points

are used for training and the rest are added to test set. This time

only 1 rule is added to the clear sky class to eliminate the

coastal false firings (similar to land surface post-processing)

and 4 rules for the sunglint class are used to discriminate

partially cloudy pixels from the sunglint pixels.

In this case also the new five rules do not change much of

the 14 rules. For two rules, minor changes in the parameters are

noticed, indicating that the average performance of the

previous rule base will not change much. The classification

results and the confusion matrix obtained on the training set

over water are summarized in Tables 21 and 22, respectively.

Fig. 6 demonstrates the effectiveness of the post-processing

scheme, on the images in Fig. 4 to account for the complex

regions such as coastline, boundaries of different land covers,

sunglint area over water, and snow-covered mountain region.

The wrongly classified areas near the coastline and boundaries

of different land covers are significantly reduced. The extra

rules for sunglint further discriminate between partially cloudy

and sunglint over sunglint region. Similarly, the additional

rules for snow help to discriminate between cloudy/partially

cloudy and snow over the snow-covered Himalayan region.

Comparison of the classification results before (Tables 13 and

15) and after the post-processing (Tables 19 and 21) shows that

the extra rules added for clear sky class, sunglint, and snow

during post-processing do not influence much the performance

of the rules for the partially cloudy class (96.98–98.6%; Tables

13, 15, 19, and 21). The overall accuracy of the rules for clear sky

is quite consistent over the water surface (99%; Tables 15 and

21), while over land surface it is reduced slightly (falls from

98.5% to 96.45%; Tables 13 and 19). Analysis of the

performance of each rule for the clear sky class for land module

reveals that during post-processing it exhibits a comparatively

lower accuracy (84–88%) on the additional training–test data

set of Table 17 than the initial rules (97–99%; Table 1). Besides

these, rules for sunglint and snow have lower accuracy

compared to other 3 classes (Tables 20 and 22). Consequently,

the overall accuracy falls a little bit (Tables 13, 15, 19, and 21).

These observations demonstrate that the post-processing pri-

marily influences performances over those specific regions that

they are designed for and does not lead to any noticeable change

on the performance of the previous rule base. This can also be

seen from Fig. 6.

6. Comparisons

We have validated our method analyzing the results obtained

on the test set. It shows a very high accuracy rate. However, there

are otherways of validating these classification results. It is useful

to see how they compare with the results of threshold techniques.

It is also important to assess the validity of these results relative to

conventional measurements or numerical model outputs. We

discuss this next. A comparison with threshold techniques is

presented in Section 6.1, and the possibility of verifications using

other data is discussed in Section 6.2.

6.1. Comparison of classification results with multispectral

threshold tests

To provide an alternative method of validation, the classi-

fication results on a test image taken at 0600 UTC, 1st March

2003 (Fig. 7(a) and (b)) are compared with those obtained from

the multispectral threshold tests on the same image (Connell et

al., 2001; Reinke et al., 1992; Rossow et al., 1985, 1996).

The threshold method classifies all image (VIS or IR) pixels

as clear or cloudy according to whether the measured radiance

differs from a reference ‘‘clear sky value’’ by more than a

predefined ‘‘threshold value’’. The clear sky and cloudy radiance

are assumed to form a monotonic distribution with clear sky as

an extremum (minimum brightness on the VIS image or

maximum brightness temperature on the IR channel). The ‘‘clear

sky value’’ for VIS channel is represented by the ‘‘cloud-free

background’’ image (Section 3.2). Similarly, for the IR channel a

maximum brightness temperature composite is computed by

examining the 31 IR images taken during the period of our study.

The threshold tests are performed using the VIS and IR channels

individually as well as combining both of them together. The

results are also compared with the International Satellite Cloud

Climatology Project DX cloud data from METEOSAT-5

(ISCCPDXMET-5) (Rossow et al., 1996). Table 23 summarizes

the different thresholds that are used and the corresponding

results are shown in Figs. 8–10.

Comparison of the results of our classification scheme (Fig.

7(b)) and the multispectral threshold tests (Figs. 8–10) reveals

the following:

& For VIS 10 count threshold (Fig. 8(a)) the cloud cover over

water surface is underestimated, while over the land surface

Table 21

Classification results over water with updated rule base and labeled data

Class Correct classification (%)

Training Testing

Cloudy 99.27 99.11

Partially cloudy 98.6 98.4

Clear sky 99.32 99.82

Sunglint 94.53 94.31

Overall 98.77 98.99

Table 22

Confusion matrix on the updated training data over water with updated rule

base

Class Cloudy Partially cloudy Clear sky Sunglint

Cloudy 99.27 0.73 0.0 0.0

Partially cloudy 0.53 98.6 0.63 0.24

Clear sky 0.03 0.55 99.32 0.01

Sunglint 0.0 5.47 0.0 94.53

A. Ghosh et al. / Remote Sensing of Environment 100 (2006) 531–549542



it is overestimated compared to our classification results.

The sunglint region is overestimated with clouds, and the

snow-covered Himalayan region is also treated as cloudy.

& For VIS 20 count threshold (Fig. 8(b)) the cloud cover,

over both land and water surfaces, is underestimated

compared to our classification results. This threshold test

fails to detect many low clouds and the thin cirrus clouds.

The sunglint region is underestimated with clouds, and the

snow-covered Himalayan region is mostly treated as

cloudy.

Fig. 6. Classified images after post-processing; (a) 0500 UTC 9th February 2003 and (b) 0500 UTC 20th February 2003. The approximate boundary of sunglint

region is represented by the white curve drawn over the ocean portion of the classified images (near the lower right corner).

Fig. 7. Test image for comparison of classification results; (a) false color image combining VIS and IR channels data, 0600 UTC 1st March 2003 (*2003

EUMETSAT) and (b) classified image after post-processing, 0600 UTC 1st March 2003.

A. Ghosh et al. / Remote Sensing of Environment 100 (2006) 531–549 543



& For IR 6 K threshold (Fig. 8(c)) the clear sky pixels over

water are overestimated, while over the land surface it has

resulted in a huge overestimation of clouds compared to our

classification results. Over the sunglint region the threshold

test produces results that are, to some extent, comparable to

our classification results. The snow-covered Himalayan

region is mostly treated as cloudy.

& For IR 10 K threshold (Fig. 8(d)) the clouds over water are

underestimated much more relative to our classification

results. Over the sunglint region cloud cover is less

compared to our results. Over the land surface, in general,

this threshold produces an overestimation of clouds. Over

the snow-covered Himalayan region clouds are under-

estimated.

& In general, for all the four VIS and IR combined thresholds

(Fig. 9), there are underestimation of cloud cover over both

land and water surfaces. The similar trend follows in the

sunglint and the snow-covered Himalayan region (Figs. 7(b)

and 9).

Table 23

Threshold tests

Image/data Threshold used

VIS 10 VIS count (Reinke et al., 1992)

20 VIS count (Connell et al., 2001)

IR 6 K brightness temperature (Rossow et al., 1985)

10 K brightness temperature (Connell et al., 2001)

VIS and IR

combined

10 VIS count and 6 K brightness temperature

10 VIS count and 10 K brightness temperature

20 VIS count and 6 K brightness temperature

20 VIS count and 10 K brightness temperature

ISCCP DX MET-5

cloud data

Bispectral threshold method (Rossow et al., 1996)

Fig. 8. Threshold tests on VIS and IR channels, 0600 UTC 1st March 2003; (a) VIS threshold 10 count, (b) VIS threshold 20 count, (c) IR threshold 6 K brightness

temperature, and (d) IR threshold 10 K brightness temperature.
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& Typically, for ISCCP DX MET-5 cloud data (Fig. 10) the

overall pattern of cloud is quite similar to our classification

results. However, ISCCP DX MET-5 data show an

overestimation (underestimation) of clouds compared to

our classification results over land (water). For both the land

and water, the difference in cloud cover between ISCCP DX

MET-5 data and our results is mainly due to the difference in

detecting partially cloudy pixels. Within the sunglint region,

in few cases, ISCCP DX MET-5 data overestimate the

cloudy class. On the other hand, over the snow-covered

Himalayan region, results are quite similar, and the ‘‘snow’’

pixels detected by our classifier mostly correspond to clear

but snow flagged pixels of ISCCP DX MET-5 data.

It appears from the above comparison that the results of

multispectral threshold tests are very much sensitive to the

thresholds used, and the situation becomes more complicated

when there is a mixed/broken type of clouds (which we call

partially cloudy). Consequently, the overestimation/underestima-

tion of cloud results depends upon the thresholds. On the other

hand, the proposed classification system extracts human

interpretable linguistic rules for cloud cover estimation. The

fuzzy rules can find the nonlinear class boundaries. This helps

the classifier to accommodate partially cloudy pixels in a better

way. Hence the threshold dependent underestimation/overesti-

mation of cloudy pixels is reduced and the classifier shows an

overall better performance compared to the multispectral

threshold tests. Besides this, the critical analysis of errors, the

ambiguity tests, and the post-processing scheme give the users

some useful information as well as some interesting options to

improve its performance further. Threshold tests do not provide

such options to the users.

Fig. 9. Combined threshold tests on VIS and IR channels, 0600 UTC 1st March 2003; (a) VIS threshold 10 count and IR threshold 6 K brightness temperature, (b)

VIS threshold 10 count and IR threshold 10 K brightness temperature, (c) VIS threshold 20 count and IR threshold 6 K brightness temperature, and (d) VIS threshold

20 count and IR threshold 10 K brightness temperature.
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6.2. Comparison of classification results with synoptic surface

observations and NCEP/NCAR reanalyzed total cloud cover

data

6.2.1. Synoptic surface observations (SYNOP) data

Synoptic surface observations (SYNOP) are made by human

experts at most operational weather stations. They provide an

estimation of cloud cover in octas (unit of 1/8) and the type of the

most dominant cloud. Zero octa corresponds to a clear sky and

eight octas corresponds to a completely overcast sky. These

synoptic observations are estimated to be representative for an

area with radius 20–30 km (Rossow et al., 1993).

To compare the classification results on the same test image

in Fig. 7 with the SYNOP data on the same date and same time,

we selected 11 surface stations in West Bengal and Tripura,

India (shown in Fig. 11(a)). The SYNOP data for the 11 surface

stations are provided by Regional Meteorological Center, India

Meteorological Department, Calcutta, India. The circle in Fig.

11(b) covers an area of radius 25 km around each station,

which approximately represents the field of view (FOV) of the

observer.

The comparison is summarized in Table 24. The results

indicate that almost all the cases which are detected as clear by

the fuzzy rule based classifier correspond to low octa

measurements (WMO station nos. 42811, 42503, 42403,

42206, and 42724) while the higher octa values (WMO station

nos. 42807, 42809, 42707, 42708, and 42810) are associated

with more number of cloudy and partially cloudy pixels

detected within the circle of FOV. However, the agreement for

the station 42901 is quite poor. So we can say that there is a

general agreement between surface observations and satellite

derived cloudiness. But, as indicated by Tuinder et al. (2004), it

is very difficult to make general statements about the level of

agreement between surface and satellite observations of cloud

amount. The difficulties arise due to the completely different

ways of observing the clouds: from above at a larger scale for

the satellite, and from below with a restricted FOV for the

ground observers. Taking into account these reasons, the

Fig. 10. ISCCP DX MET-5 cloud data, 0600 UTC 1st March 2003.

Fig. 11. Comparison with surface (SYNOP) observations; (a) location of surface stations denoted by ? and (b) surface stations with FOV circles on the classified

image, 0600 UTC 1st March 2003.
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agreement between surface and satellite observations is

considered to be reasonable.

6.2.2. NCEP/NCAR reanalyzed total cloud cover data

The NCEP/NCAR reanalyzed model data provide one of the

best estimations of different meteorological parameters at a

given instant of time over the globe (Kalnay et al., 1996) and

these are being used by the meteorological community

throughout the globe for initializing numerical models,

proximity analysis for thunderstorms, climate studies, etc.

(Brooks et al., 2003; Shea et al., 1994).

Here we also compare the classification results on the same

test image in Fig. 7 with NCEP/NCAR reanalyzed total cloud

cover (tcdc) data on the same date and time in a qualitative

manner (Fig. 12).

The visual comparison shows that the gross pattern of

distribution of clouds is quite similar. Most of the cloudy,

partially cloudy, and clear regions in the classified image (Fig.

7(b)) correspond to high, medium, and low cloud covered (%)

regions in the NCEP/NCAR tcdc data (Fig. 12), respectively.

It only compares overall large-scale cloud structure in the

classified satellite images. In case of the regions where the

ground observations are hardly available, this comparison

may be used as an alternative way of validation of the

performance of the classifier. However, the resolution of

NCEP/NCAR tcdc data is very low compared to that of the

satellite images, and the detailed comparison at the lower

scale is not possible.

7. Conclusions

We proposed a system for automatic extraction of human

interpretable linguistic rules for cloud cover estimation with

high accuracy. Unlike earlier attempts, which are mostly

threshold based, it can find nonlinear class boundaries using

fuzzy rules. It also can accommodate for partially cloudy areas,

and hence, the threshold dependent overestimate/underestimate

of cloudy pixels is reduced. Two separate classification

modules, one for land and one for water are derived primarily

based on surface radiative properties. If the system makes

similar mistakes repeatedly then new rules are added to model

such typical mistakes. This is a very interesting property of the

proposed system. The present study is limited to daytime

analysis (as the VIS channel images are used) and no direct

meteorological information is used except experts’ (meteorol-

ogists) knowledge during labeling of the training data and post-

processing of classified images.

The scheme is tested on images other than the training

image(s). The performance of the system is found to be quite

satisfactory; cloudy, partially cloudy, and clear sky over land

and water are all classified with high accuracy.

However, the classifier initially could not produce very

satisfactory results in detecting cloud over snow-covered

surroundings or near the boundaries of different types of land

cover. It also could not do a very good job on coast or

shorelines, in areas with cloud shadows, and in extreme

sunglint conditions. A post-processing scheme is then proposed

which reduces the wrongly classified areas near the coastline,

within sunglint area, and snow-covered Himalayan region quite

effectively. Further, for the present study, we do not have

information about aerosols, dust or smoke for the labeled data

set. Dry aerosols may not create much of a problem. But the

situation may become complicated when aerosols absorb

moisture, start growing in size and finally form clouds.

If these swollen aerosols are present our classifier may treat

them either partially cloudy or ambiguous partially cloudy or

ambiguous cloudy depending upon its state of transition from

aerosols to cloud formation. Similarly, dust or smoke may be

classified as either clear sky or ambiguous clear sky or partially

Table 24

Comparison with surface observations (SYNOP)

WMO

station

no.

Cloud cover

Ground

observation

in octas

Satellite observations within the circle

of FOV (Fig. 11(b))

No. of

cloudy

pixels

No. of partially

cloudy pixels

No. of

clear

pixels

Total no.

of pixels

42807 2 13 89 271 373

42809 3 15 193 165 373

42811 0 0 0 373 373

42503 0 0 0 373 373

42707 3 0 47 326 373

42708 4 55 254 59 373

42403 0 0 0 373 373

42206 0 0 24 349 373

42901 5 3 78 292 373

42724 0 0 3 370 373

42810 4 34 192 147 373

Fig. 12. NCEP/NCAR reanalyzed tcdc %, 0600 UTC 1st March 2003.
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cloudy or ambiguous partially cloudy. In the future we plan to

study the effect of aerosols, dust, smoke on the classifier.

Investigation will also be carried out in identifying different

types of clouds present within the cloudy and partially cloudy

classes.
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Appendix A. The rule refinement algorithm

The tuning process is repeated until the rate of decrease in E

becomes negligible. When product is used to compute the

firing strength, the rule refinement algorithm is as follows:

Begin

Choose learning parameters gm and gs.

Choose a parameter reduction factor 0<( <1.

Choose the maximum number of iterations, maxiter.

Compute the error E0 for the initial rule base R0.

Compute the misclassification M0 corresponding to initial

rule base R0.

t@1

While (t�maxiter) do

For each vector xZX

Find the rules Rc and Rÿc.

Modify the parameters of rules and as follows.

For k =1 to p

vnewck ¼ voldck ÿ gm
BE

Bvoldck

¼ voldck þ gm 1ÿ ac þ aÿcð Þ
ac

roldck

xk ÿ voldck

ÿ �

vnewÿck ¼ voldÿck ÿ gm
BE

Bvoldÿck

¼ voldÿck ÿ gm 1ÿ ac þ aÿcð Þ
aÿc

rold 2
ÿck

xk ÿ voldÿck

ÿ �

rnewck ¼ roldck ÿ gs
BE

Broldck

¼ roldck þ gs 1ÿ ac þ aÿcð Þ
ac

rold 3
ck

xk ÿ voldck

ÿ �2

rnewÿck ¼ roldÿck ÿ gs
BE

Broldÿck

¼ roldÿck ÿ gs 1ÿ ac þ aÿcð Þ
aÿc

rold 3
ÿck

xk ÿ voldÿck

ÿ �2

End For

End For

Compute the error Et for the new rule base Rt.

Compute the misclassification Mt for R
t.

If Mt >Mtÿ1 or Et >Etÿ1

then

gm@(1ÿ()gm
gs@(1ÿ()gs
Rt
@Rtÿ1

/* If the error is increased, then possibly the learning

coefficients are too large. So, decrease the learning

coefficients and restore the rule base to Rt. */

If Mt =0 or Et =0

then Stop

t@t +1

End while

End
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