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Tet { X, ¥) he a randam vector mach that X is @-dimenaional, ¥ is el
vulued and ¥ = (X} + ¢, where X und # ure independent and the «lh
quantile of & iz 0 (o 18 fixed soch thal O < o <0 1) Assume that @ iz a8
smoolly [unction wilth oeder of smoothtess po> 0, and sel F=(p —
m3M2p + d), where s is a nonnegative integer smaller than p, Let T8
denote a derivative of # of order m. [t i3 proved that there exiatz a
pointwine estimate 'f'u of T{#), bared on a st of Lid obeervations
(X, ¥4, &, F.) that achieves the optimal nonpuramelric rube of
convergenee o0 " ahder appropeiate repularity conditions, Further, o local
Bahadur type repregenlalion iz shown to hold for the estimate T,, and this
is uged to obtain gome nseful agymptatic results.

1. Introduction. Suppose that we have ild. ohservations (X, ¥}
(X5, ¥3) .. (X, Y,), where the Y's are real valued and the X's are d-dimen-

e

sional satisfving the model
Y,=0(X)+e, 1l<i<n.

Here # is an unknown function to be estimated from the data, and the &,'s arc
i.id. unobgervable random wvariables, which are assumed Lo be independent of
the X.'s. In the usual regression problems, one assumes that £; has expected
value ) and triez Lo consirucl estimates for 8 using the method of leasl
gquared. The least squares estimaies ceriainly have many optimal propertiea,
particularly when the random error #, follows normal distribution. However, it
is well known [see, [or example, Harler (1974-1375), Huber (1973), ete.] that
the method of least squares does not perform very well when the £ has a
heavy-tailed digtribution because Lhe method iz highly zensilive to extreme
values or outliers among the &,’s. The method of least absolute deviations,
which iz one of Lhe competilors to ithe method of least sguares, has heen
neglected in the past because of the computational difficultics associated with
it and Lthe complexity of Lhe distribution of the resulting statistical estimates.
The possible inetficiency of the method of least squares when the random
errors in the data follow nonnormal probability laws and recent developments
in the robustness studies for statistical procedurea have motivated the search
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for more robust methods than the method of least squares—the method of
least absolute deviations being one potential candidate. Further, recent devel-
opments in efficient algorithms for obtaining least absolute deviation fits
[Barradole and Roberts (1973, 1974), Bartels, Conn and Sinclair (1978),
Bloomfield and Steiger (1980), Gonin and Money (1989), etc.] and rapid
advancements in high-speed computing facilities have played major roles in
motivating people to investigate the method of least absolute deviations as a
way of robustifying the least squares regression.

Koenker and Bassett (1977) [see Stone (1977), Ferguson (1967), etc.] sug-
gested the use of the loss function

H,(t) = It| + (2a — 1)¢

instead of the usual squared error loss to estimate parameters in linear
models. Here « is fixed such that 0 < a < 1. Note that, for a random variable
Z, E{H (Z — t)} is minimized by taking ¢ = the ath quantile of Z [just as
E{(Z - t)*} is minimized by taking ¢ = the mean of Z]. Particularly important
is the case a = 1/2, when the function H_(#) becomes the absolute loss
function, which is an appropriate thing to use if 6 is the conditional median
function of Y given X. Koenker and Bassett (1978) were motivated in part by
Huber’s (1973) observation that outliers are very difficult to identify in the
regression context. Further, it is worth noting here that one can construct
analogs of L-estimates (like the trimmed mean, or other linear combinations
of order statistics in one-sample location problems) for the parameters in a
linear model using the regression quantile estimates [see Ruppert and Carroll
(1980), Koenker and Portnoy (1987), etc.]. Algorithms to compute regression
quantiles have been discussed in Koenker and D’Orey (1987), Narula and
Wellington (1986), etc.

Several people [Koenker and Bassett (1978), Bloomfield and Steiger (1983),
Ruppert and Carroll (1980), Koenker and Portnoy (1987), etc.] have studied
the asymptotic statistical behavior of the estimates constructed using the loss
function H_(t), establishing the V7 -consistency and the asymptotic normality
of the estimates under appropriate regularity conditions. However, all these
people have studied the problem from a linear parametric approach. In other
words, they assumed that the function 8 belongs to a fixed finite-dimensional
linear space of functions, so that the form of 6, as it depends on the regressor
X, is known except for a fixed and finite number (which does not depend on the
sample size) of unknown parameters. So, in their cases, it becomes a problem
of estimating a finite-dimensional Euclidean parameter. Recent developments
in nonparametric regression provide a strong stimulus to investigate the
asymptotic behavior of nonparametric estimates of 6, which are constructed
using the loss function H_(¢), under the assumption that 6 is a suitably
smooth function instead of assuming a finite-dimensional linear parametric
model for 6.

Under appropriate regularity conditions, Stone (1980, 1982) proved the
attainability of the optimal nonparametric rates of convergence in the asymp-
totic minimax sense by constructing estimates for the regression function and
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its derivatives using local polynomial fits minimizing the squared error loss.
With a desire to robustify nonparametric regression, in his 1982 paper he
asked if the same rates of convergence are achievable in the estimation of the
conditional median function of Y given X. It is worth mentioning here that in
his 1980 and 1982 papers he obtained the lower bounds for the rates of
convergence for nonparametric estimates. Although he was mainly talking
there about estimates of the regression function, it is clear that the lower
bounds obtained in these papers also apply to estimates of the conditional
median function. As a matter of fact, the lower bounds are determined by the
local behavior of the Kullback-Leibler divergence of the conditional distribu-
tion [Yatracos (1988)] or, more broadly speaking, by the ‘‘geometry’’ of the
problem [Donoho and Liu (1988)]. Truong (1989) provided a partial answer to
Stone’s question using local median. Earlier efforts to robustify nonparametric
regression were made by Hiardle (1984), Hirdle and Gasser (1984), Hardle and
Luckhaus (1984), Hirdle and Tsybakov (1988), etc. In the present work, a
complete affirmative answer to this question is provided by constructing
pointwise estimates for conditional quantile functions and their derivatives
using local polynomial fits that minimize the loss function H_(¢) and showing
that such estimates achieve the optimal nonparametric rates of convergence in
the asymptotic minimax sense under mild regularity conditions. One of the
main objectives here is to gain theoretical insights into the asymptotic behav-
ior of nonparametric estimates of regression quantiles constructed through
local polynomial fits. A major advantage of working with the squared error loss
is that it yields estimates that are linear functions of Y,,Y,,...,Y,. When one
replaces the squared error loss by the loss function H_(¢) this advantage is
lost. As a result, the standard techniques of asymptotic theory, which are
capable of dealing with sums of independent random variables, cannot be used
directly any more. The local Bahadur type representation obtained in this
paper can be used as an elegant tool to cope with this situation. In addition to
providing several useful asymptotic results, this asymptotic linear representa-
tion helps to get a very good insight into the asymptotic behavior of nonpara-
metric estimates of regression quantiles by making apparent the critical role
played here by the density f of the random error ¢. In particular, it explains
why the inference about regression quantiles is intrinsically different from
that about the usual regression function.

2. Description’ of the estimates for the conditional quantile
function and its derivatives. We assume that, in the model Y; = 6(X;) +
g;, €; is independent of X; and has a distribution with 0 as the ath quantile.
Here a is a fixed number such that 0 < @ < 1. In other words, the conditional
ath quantile of Y; given X, =x; is 6(x;). In this paper, we will discuss
estimates of the function # or its derivatives evaluated at a particular point,
which will be assumed without loss of generality to be 0 € R<.

For u =(u,...,u,), a d-dimensional vector of nonnegative integers,
let D* denote the differential operator d'*1/dx¥1 --- dx4d4, where [u] =
u, + -+ +uy. Let V be some fixed open neighborhood of 0 in R%. We will
write | | to denote the usual Euclidean norm. For a fixed nonnegative integer
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k and real numbers ¢ and y such that ¢ > 0 and 0 < y < 1, let O(c, &, y) be
the collection of all real valued functions 8 on V such that

(i) D“6(x) exists and is continuous in x for all x € V and [u] < &,
(1) |[D*6(x) — D*6(0)| < c|x|” for all x € V and [u] = k.

Thus the functions ®(c, &, y) are continuously differentiable up to order % on
V and their kth derivatives are uniformly Holder continuous at 0 with
exponent y. We will refer to p = & + v as the order of smoothness of the
functions in O(c, k,y) at 0. We assume that the conditional quantile function
of Y given X is an element of O(c, &,y) for some fixed ¢, 2 and vy [see Stone
(1980, 1982), Devroye and Gyorfi (1985), etc.]. For u, a d-dimensional vector
of nonnegative integers such that [u] = m < &, set T(0) = D*6(0). An esti-
mate T', of T'(6) will now be described.

Construction of T,. Consider a sequence of positive real numbers &, =
an~1/@P*d where a is a positive constant. Let C, denote the cube [-§_,5,]¢
in R?. So, for n sufficiently large, this cube will be completely contained in the
open set V. From now on, for the rest of this paper, we will assume that n is
such that C,, C V. Let S, be the collection of all the subscripts of the X,’s (for
1<i<n) that fall in the cube C, and let N, be the number of such
subscripts. So, S, is a random set and N, is a random variable defined in
terms of the data as

S,={i:1<i<n,X,€C,} and N, = #(S,).

Step 1: Let A be the set of all d-dimensional vectors u with nonnegative
integral components such that [x] < & and set s(A) = #(A). Let B = (B,),c 4
be a vector of dimension s(A). Also, given x € R?, define P, (B, x) to be the
rolynomial ¥ , . 8,8, ")x* [here, if z = (z,,...,2,) is an element of R? and
u="_(uy,...,uy)is a vector in A, we set z* = [1% ;2% with the convention
that 0° = 1]. Let 8, be a minimizer of

Z Ha(Yi - Pn(B> Xi)),

€S,

where H_ (t) = |t| + (2a — 1)¢t. Note here that since 0 <a < 1, H (¢) - ® as
|¢] = . So, the above minimization problem always has a solution in view of
the fact that, for any fixed value of N,, this minimization problem becomes
the problem of minimizing a continuous function over a bounded and closed
subset of a linear subspace of R™-. Further, under the conditions of Theorem
3.1 and for k£ > 1, asymptotically (as n — «) the above minimization problem
will almost surely have a unique solution. On the other hand, when & = 0, the
polynomial P, (B, x) reduces to a constant and B becomes a real number. In
this case, as n increases, the solution set for the above minimization problem
will eventually turn out to be a compact interval, and B, can be defined to be
the right endpoint of that interval (see the arguments at the end of the proof
of Theorem 3.1).
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Step 2: Set T, = D*P,(B,,0) = 5;[“][§n,u{u!}. Here, for u € A, we define
u! = T1%_,u,! with the convention that 0! = 1.

3. Main theorems. In order to derive asymptotic results about the esti-
mate T , we need some conditions to be satisfied.

ConpITION 3.1. The distribution of X is absolutely continuous on V with
a density w, which is positive on V and continuous at 0.

CoNDITION 3.2. ¢; has density f that is positive and Hélder continuous
with a positive exponent 7 in an open neighborhood around 0.

Condition 3.1 [see Stone (1980, 1982)] ensures that, as n — «, asymptoti-
cally there will be sufficiently many X,’s that will fall in the cube C,.
Condition 3.2 amounts to assuming that the distribution of the random error
¢; has a density that is positive and Holder continuous in an open neighbor-
hood of its ath quantile. This is satisfied by all classical examples of probabil-
ity density functions.

THEOREM 3.1. Assume that &, has a continuous distribution and that
condition 3.1 is satisfied. Let E denote the event that the minimization
problem in step 2 in the construction of T has a unique solution. Then, there
is a set A,, defined in terms of X, X,,..., X,,, such that

(1) Pr(iminf A)) =1,
(ii) for k =1, there is a positive integer N such that, for n > N, the
conditional probability of E, given that A, has occurred is 1.

THEOREM 3.2. Letr =(p —m)/(2p + d) and assume that the density f of
¢; is positive and continuous (note that this is weaker than Condition 3.2) in a
nezghborhood of 0. Then, under Condition 3.1 and whenever 6 € O(c, k,y),
IT — T(6)| is almost surely of order O(n""ylogn) as n = o,

The next theorem in this section is on a local Bahadur type representation
[Bahadur (1966), Kiefer (1967), Ruppert and Carroll (1980), Koenker and
Portnoy (1987), Bhattacharya and Gangopadhyay (1990) and Dabrowska
(1988)] of the estimate ﬁ But before we state the theorem we need to
introduce some notation. Let w;(x) denote the conditional denSIty of the
vector 81X, given that X, falls in C, so that, for x € [—1,1]%, w; (x) =
w(s, x X [[ 1, I]dLU(3 x)dx)” I’ Given a d- dimensional random vector X, ‘and a
d-dimensional vector u € A ( A is as in step 1 in the construction of T ) write
X.(5,, u) = 86,;1“(X,)* and define an s(A)-dimensional random vector
Xi(Sn, A) = (Xi(ﬁn, u)), ca For u,v €A, let ¢g? denote the conditional ex-
pectation of the product X,(5,,u)X;(5,,v) given that X, € C,. In other
words, q," = [;_1 19% “x"w; (x) dx. If @, denotes the s(A) X s(A) symmetric
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matrix with ¢V as a typical entry, @, is invertible in view of Condition 3.1.
In fact, Condition 3.1 implies that w; (x) converges to the uniform probability
density on [-1,1]¢ as n — ». This convergence is uniform in x € [—1,1]%,
and g*" converges to the corresponding integral with respect to the unlform
probability measure on [—1, 1]%.

Let B, be the s(A)-dimensional vector (B, ,),ca, where B, =
D*6(0)8" ul} 1. Let 65(x) = £, c 4B, 2“8, denote the Taylor polynomial
of 6 around 0 containing terms up to the kth order. So, we can write
6(x) = 6*(x) + r,(x), where, in view of the choice of §,, r,(x) is uniformly of
order O(n p/‘2“‘+d)) forxeC, ,0 < 0O(,k,y)and n - «.

THEOREM 3.3 (Local Bahadur type representation of ﬁn). Under Condi-
tions 3.1 and 3.2 and for 6 € O(c, k,y), one has the following asymptotic
representation:

B =B, =[N, I FO] Q] L X,(8,,A)a—I(¥; < 65(X,))] + R,

ieS,

where I is the standard zero-one valued indicator function and the remainder
term R, satisfies

(i) R,=0([log n](1+")/2n‘p(1+")/(2"+d)) almost surely, asn — o,

if 0 <n<1/2,
and
(ii) R, = O([log n]3/4n_3p/2(2p+d)) almest surely, asn — ®,
if1/2<n < 1.

[Note that when N, = 0, one can define the first term on the right in the
above representation to be 0. It does not matter, since Pr(N, = 0) - 0 as
n — o]

THEOREM 3.4. Let r be as in Theorem 3.2. Then, under Conditions 3.1 and
3.2,

lim limsup sup B[|T, — T(6)| > Kn~"] = 0.
K—o n 0€0(c,k,y)

4. Some useful asymptotic results. Several useful asymptotic results
follow from the linear representation in Theorem 3.3. The results presented
below are quite helpful in understanding the bias-variance trade off in the
estimation of conditional quantiles via local polynomial fits. First note that the
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linear term in the linear representation in Theorem 3.3 can be written as

[NJTAO] Q)T X Xi(8,, A)]a - I(Y, < 63(X)))]
ieS,
= (NI AR
D % T X5, A[F(:(X,) - 0(X,) - I(Y; < 65(X,))]
ieS,
+HINITFO] QT X Xi(8,, A)|a — F(63(X,) - 6(X))],
ieS,

where F is the distribution function corresponding to the density f of ¢;. The
second term on the right-hand side in (4.1), which we will denote by B,,, may
be thought of as a bias term arising due to the polynomial approximation of 6
in a neighborhood of 0.

PropoSITION 4.1. Under Conditions 3.1 and 3.2, B, is uniformly of order
O(n=P/@P*d) g5 n — » and 0 € O(c, k,y). Note that here we have a deter-
ministic bound for the random object B,. (Recall that B, is equal to 0 when
N,=0)

Proor. First note that |X,(5,, A)| < [s(A)]'/2 for X; € C,. Also, by Condi-
tion 3.1, @, tends to a positive definite matrix @ as n — «. So, the Euclidean
norm of the matrix @, ' remains bounded as n — . Also, in view of Condition
3.2, we have

la — F(6%(X;) — 0(X,))| =|F(0) — F(—r(X,))| = O(n~P/@r+d)
as n — o, uniformly for 6 € O(c, k,y)and X; € C,. O

ProPOSITION 4.2. Let V, denote the first term on the right of (4.1). Then,
under Conditions 3.1 and 3.2, [ N,]'/?V, converges weakly to an s(A)-dimen-
sional Gaussian random vector with zero mean and a(l — ) f(0)]72Q ! as
the dispersion matrix. Here Q is the limit of @, as n — », as mentioned in the
proof of Proposition 4.1.

Proor. First note that V, can be written as
[N O] Q]

X ¥ X5, A F(02(X,) - 6(X,)) - I(Y; < 02 (X)) I(X; < C,).

i=1

(4.2)

Now, N, is a binomial random variable with the number of trials = n
and the probability parameter = P(X; € C,). In view of Condition 3.1,
(25,)79Pr(X; € C,) > w(0) as n — . Hence, an application of Bernstein’s
inequality [see Pollard (1984), page 193, or Shorack and Wellner (1986), page
855] implies that [n(25,)?] N, converges almost surely to w(0) as n — .
On the other hand, (4.2) is a sum of n i.i.d. random vectors, each of which is
bounded and has mean 0. The desired result now follows from a simple



NONPARAMETRIC QUANTILE REGRESSION 767

calculation of the dispersion matrix of the sum, Conditions 3.1 and 3.2, and an
application of Lindeberg’s theorem. O

5. Discussion and remarks. 1. The rate of convergence obtained in
Theorem 3.4 is optimal by Stone (1980) and provides an affirmative answer to
question 4 raised by Stone (1982) as far as the pointwise estimation of
conditional quantile functions or their derivatives is concerned. The attainabil-
ity of the optimal nonparametric rates of convergence in the global sense (i.e.,
in L -norms restricted to compacts, with 1 < g < o) will be considered sepa-
rately in another paper [see Stone (1982) and Truong (1989)].

2. The usefulness of conditional quantile functions as good descriptive
statistics has been discussed by Hogg (1975), who called them percentile
regression lines. Janssen and Veraverbeke (1987), Lejeune and Sarda (1988)
and Nahm (1989) explored some nonparametric estimates of regression using
the idea of quantile regression. Koenker and Portnoy (1987) obtained a
uniform Bahadur type representation for regression quantiles in a linear
parametric setup under rather strong assumptions on the density of the error
distribution. In Theorem 3.3, a weaker assumption on the density of the error
distribution has been used and results have been proved in a nonparametric
setup. We have obtained results on the almost sure behavior of the remainder
term R, whereas Koenker and Portnoy (1987) obtained an asymptotic linear
representation that is valid in probability. The arguments used in the proof of
Theorem 3.3 are based in part on considerable simplifications of some of the
ideas in Koenker and Portnoy (1987). Ruppert and Carroll (1987) also obtained
a similar representation in a parametric setup. Both of these two papers may
be viewed as generalizations of earlier work by Bahadur (1966) and Ghosh
(1971).

3. The asymptotic normality of estimators of conditional quantiles has been
proved by Cheng (1983, 1984), who considered kernel estimators in the fixed
design case, and by Stute (1986), who considered nearest-neighbor type esti-
mators in the random design case. The linear representation in Theorem 3.3
can be used as an elegant toll to derive results on the joint asymptotic behavior
of nonparametric estimates of several regression quantiles for different values
of a. One has to carry out calculations similar to those in the proofs of
Propositions 4.1 and 4.2 to get such results. Koenker and Bassett (1978)
looked at a similar problem from the parametric point of view.

4. Bhattacharya and Gangopadhyay (1990) obtained a Bahadur type repre-
sentation of local quantiles under a setup different from but related to the
present one. They restricted their attention to a real valued regressor X and te
kernel and nearest-neighbor estimates. In the special case p =2 and d = 1,
the rates obtained in Theorem 3.3 are comparable with those obtained by
them. Actually the rates obtained in Theorem 3.3 are faster than those
obtained by Bhattacharya and Gangopadhyay (1990). Dabrowska (1987) ob-
tained a Bahadur type representation for nonparametric estimates of condi-
tional quantiles with censored data. However, she worked under a setup that is
very much different from the present one. As a result, the estimates studied by
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her are quite different in nature and so are the rates of convergence obtained
by her.

5. One can prove a weaker version of Theorem 3.3 (with a slower rate of
convergence for the remainder term) under weaker conditions on the density
f. However, then the arguments become quite tedious and complicated [see
Chaudhuri (1988)].

6. Proofs of the theorems in Section 3. In several places in the proofs
that follow, the following simple facts will be used.

Facr 6.1. Let x be a vector in R™ and p(x) be a nonzero polynomial in x.
Then the Lebesgue measure of the set {x|p(x) = 0} is 0.

FacT 6.2. Let X X@® . ., X™ be independent random vectors in R™
with the property that P(X® € H) =0 for any i and any given linear
subspace H of R™ with dim(H) < m — 1. Then the collection
{(XO X XM} is almost surely linearly independent.

We need to introduce some additional notation at this point. Suppose that
we have a matrix (vector) X with rows (components) indexed by the elements
of a nonempty finite set S (e.g., a nonempty finite subset of the set of integers).
Then, for any nonempty subset s of S, we will denote by X(s) the submatrix
(subvector) of X with rows (components) that are indexed by the elements of s
[Koenker and Bassett (1978)]. Let DX, be the matrix of dimension N, X s(A),
whose rows are the vectors X,(§,, A), where i € S,,. So, it is natural to
assume that the rows of DX, are indexed by the elements of S, and its
columns are indexed by the elements of A. Also, we will write VY, to denote
the vector whose components are Y, for i € S,. Let H, be the collection of all
subsets h of S, such that #(h) = s(A) = #(A).

The following two facts, which are essentially restatements of two theorems
from Koenker and Bassett (1978) [see also Theorem 1 in page 7 in Bloomfield
and Steiger (1983)], play crucial roles in the proofs of the theorems stated in
Section 3. In the remaining part of the paper, the minimization problem in

step 1 in the construction of f’n will be referred to as problem (P).

Fact 6.3 [Theorem 3.1 in Koenker and Bassett (1978)]. Suppose that the
matrix DX, has rank = s(A). Then, there is a subset 2 of S, with #(h) =
s(A) such that problem (P) has at least one solution of the form B,
[DX (R)]"WVY, (k). So, for such a B,, we have Y, = P(B,, X,) for all i € h

Fact 6.4 [Theorem 3.3 in Koenker and Bassett (1978)]. Suppose that the
matrix DX, has rank = s(A), and, for » € H,, define

L(h) = ¥ [§- Lsen(¥; - (Xi(5,,4),B.)) —a]

ieh®
X [DX,(h)] 7" X,(3,, 4),
where sgn(x) is +1 or —1 depending on whether x is positive or negative
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respectively, (,) is the usual Euclidean inner product and h° is the set
theoretic complement of % in S,. Then, under the assumption that ¢, has a
continuous distribution and is 1ndependent of X,, B = [DX (h)]" VY, (h) isa
unlque solution to problem (P) if and only if L (k) € (a — 1, a)S(A) Further, if

=[DX (h)]"'VY,(h) is a solution (not necessarily unlque) to problem (P),
we must have L (h) €la - 1,al™. Here (a — 1, @)*® and [a — 1, a]*® are
s(A)-dimensional cubes in RS(A)—the former being an open one and the latter
being a closed one.

Proor or THEOREM 3.1. N, is a binomial random variable, which counts
the number of X;’s that fall in the cube C,. So, in view of Condition 3.1 and
Bernstein’s inequality [see Pollard (1984)], we can choose positive constants
¢1,Co, C3, ¢4 such that, for all n, we have

Pr({c;n8% < N, <¢yn85)) = 1 — czexp(—c,ndg).

Now, define A, to be the event enclosed in { } above. Then, the present choice
of §, ensures that Y, Pr(A¢) < «, and, by an application of the Borel-Cantelli
lemma, we have Pr(liminf A,) = 1.

Recall at this point that, for n suitably large, the conditional distribution of
8,'X;, given that X; € C, is absolutely continuous with respect to the
Lebesgue measure. Also, note that, given the set S, (i.e., given the subscripts
of those X’s which fall in C,), the vectors §,'X; for i € S, are conditionally
independently distributed. So, in view of Facts 6.1 and 6.2, the matrix DX, is
going to have rank = s(A) with conditional probability 1 given the set S,,
provided that N, > s(A). Further, in the case 2 > 1, under Condition 3.1 and
in view of Fact 6.1, the absolute continuity of the conditional distribution of
8,1X, (given that X, € C,) prevents L, (k) from sitting on the boundary of
the cube [a — 1, a]** by making the conditional probability of such an event
0 (given the set S,) whenever N, > s(A).

The proof of the theorem is now complete in view-of Facts 6.3 and 6.4, if we
choose N appropriately large so that n > N implies that ¢,;n8¢ > s(A).

When %k = 0 [which implies s(A) = 1], problem (P) may not in general have
a unique solution (in this case 3, and B become real numbers and the matrix
DX, becomes a vector of 1’s). However, in this case, if c;n8% > 1, the
occurrence of the event A, implies that the solution set for problem (P) is a
compact interval and we can define Bn =Y, for some appropriate i € S,
that ,Bn is the right endpoint of that 1nterval So, here /3 is defined as an ath
quantile (local quantile) of those Y;’s for which X; € C,. O

We will now derive some results that will be used in the proof of Theorem
3.2.

PROPOSITION 6.1. Let F be a distribution function on the real line such that
F(0) = a,0 <a <1, and F has a density that is continuous and positive in a
neighborhood of 0. For x € R?, let x(A) denote the s(A)-dimensional vector
defined as x(A) = (x*), . , (see step 1 in the construction of T). Also, for
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0 <8 <1, let R(6, x) be a real valued function with the property that there is
M, > 0 such that |R(8,x)| < M6 for all x €[—1,1]% For A € R*™, define
an s(A)-dimensional vector valued function G(A, 8) as

G(A,d) =[ {F(<A,x(A)) + R(3,%)) — a}x(A) dx.
[-1,1]
Then, there exist ¢, > 0, €9 >0, ¢5 >0 and M, > 0 such that we have
|G(A, 8)| = minimum of (e, and c5|A|) whenever § < e, and |A| > M8, where
M > M,.

Proor. The proof is somewhat long and therefore we will split it into
several steps.

Step 1: We begin by proving that there exist M; > 0 and ¢, > 0 such that
|G(A, 8)| > &, whenever |A| > M,. Assume that this assertion is false. Then,
we can construct a sequence {A } in R*4 with the property that, as n — «,
|A,l =, A, /IA| - A* € R*“) such that |A*] = 1, and |G(A,, 8)] — 0. Since
IR(8, x)| < M6 <M, for all x €[-1,1]Y and 0 <6 <1, as n — o,
F(A,, x(A)) + R(8, x)) must tend to 1 or 0 depending on whether (A*, x(A))
is positive or negative respectively. Further, in view of Fact 6.1, the region
[—1, 119 N {{(A*, x(A)) = 0} must have Lebesgue measure 0. Hence, if
|G(A,, 8)] = 0as n — «, by a simple application of the dominated convergence
theorem, we get

(1-a) x(A) dx
[—1,1¢Nn{A*, x(A))> 0}
(6.1)
=af x(A)dx.
[—1, 119N {(a*, x(A)) <0}

By taking the inner product of each side of (6.1) with A*, we get

(1-a)f (A%, x(A)) dx
[—1,1)%N{{A*, x(A)) >0}

=af (&%, x(A)) dx.
[—1,119N{{A*, x(A)) <0}

Since 0 <a <1, the above implies that each of the regions [—1,1]¢ N
{¢A*, x(A)) > 0} and [—1,1]¢ N {{A*, x(A)) < 0} must have Lebesgue mea-
sure 0. This is a direct contradiction to Fact 6.1.

Step 2: Write G(A, ) as

G(A,5) = f[_l Hd{F((A,x(A)} +R(8,x)) — F(R(8,x))}x(A) dx
(6.2) ’

i -1 1]d{F(R(5’x)) —~ F(0)}x(A) dx.

Then, for x € [-1,1]%, 0 <8 < 1 and A a nonzero vector in R*“), define a
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real valued function g(A, §, x) as
F({A,x(A)) + R(8,x)) — F(R(5, x))
(&, x(A))

When (A, x(A)) = 0, g(A, 8, x) can be defined arbitrarily because, for nonzero
A, the set [—1,1]% N {{(A, x(A)) = 0} has Lebesgue measure 0. Now, in view of
Condition 3.2, there exists b > 0 such that the density f is continuous and
positive in the interval [-b, b]. Let £, > 0 be chosen in such a way that § < ¢,
implies that |R(8, x)| < M;8 < b. Then, using the function g(A,§,x) and
applying the mean value theorem of differential calculus to the second term on
the right of (6.2), we get

g(A,(S,x) -

G(4,5) = [[ ]g(A,ﬁ,x)x(A)x(A)T dx |A
1d

(6.3)
+[ AF(ER(3,2)R(8,x)}x(4) dx,

where £, is a number lying between 0 and 1 and may depend on x and §. We
have assumed here that x(A) and A are column vectors, and T denotes
transpose.

Step 3: Note at this point that each component of the s(A)-dimensional
vector x(A) is bounded by 1 for x € [—1,1]%. Let sup_; _, ., f(t) = A;. Then,
for the second term on the right of (6.3), we have

2

‘f {f(61R(8,2))R (8, x)}x(A) dx
(6.4) -Lu

< ;\21[3(14)]201[[_1 Hle(&, x)|? dx < A2[s(A)]22¢M 282,

Step 4: Since the density f is bounded away from 0 on the compact interval
[-b, b], we can determine a positive constant A, such that g(A,§,x) > A, > 0
for all 8 <&, |Al <M, and x €[—1,1]? such that (A, x(A)) is nonzero.
Let p > 0 be the smallest eigenvalue of the s(A) X s(A) matrix
Ji—1,1%(A)x(A)T dx. Then, for the first term on the right of (6.3), we have

(6.5) H[ £(4,5,2)x(A)x(A)" dxlA > AyplAl
[-1,1]
whenever 8 < ¢, and |A| < M.
Now, using (6.4) and (6.5), the assertion in the proposition follows by
setting ¢; = A,p/2 and choosing M, > 2A,[s(A)'/22M, /A,p. O

For x € [—1, 1]%, recall from Section 3 that w; (x) denotes the conditional
density of &, 1X given that X, € C, and it unlformly converges to the
uniform probablhty density on [— 1, l]d Hence, some minor modifications of
the arguments in the proof above lead to the following fact.
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Fact 6.5. Let G,(A, 8) be defined as
G,(A,d) = f[ . 1]d{F(<A,x(A)> + R(8,x)) — a}x(A)w; (x) dx,

where F, A, 5, R and x(A) are exactly the same as in Proposition 6.1.
Then, there exist positive constants e, &3, c¢¥ and MJ such that we have
|G, (A, )| > minimum of (¢ and c}|A|) whenever § < &% and |A| > M$, where
M= M.

Proor oF THEOREM 3.2. For some positive constant K, let U, be the
event defined as

= {8, - B.| = K82 /logn }.

Now, in view of the definition of §, and Tn, the assertion in the theorem will
follow (by an application of the Borel-Cantelli lemma) if K; > 0 can be
appropriately chosen so that
(6.6) Y sup Py (U, <.
n 6€0(c,k,y)

In view of the construction of A, in the proof of Theorem 3.1, (6.6) is
equivalent to
(6.7) Y sup P(U,NA,) <.

n 6€0(c,k,y)

We will now try to get an upper bound for P, (U, N A,). To this end, given
A, € R*™), set

i =3 — 3sen(e; — (A, X,(8,, A)) + (X)) — a] X,(8,, A).

Obv10usly, the norm of the random vector Z, ; is bounded by [s(A)/2
whenever i € S,. Hence, using Facts 6.3 and 6.4, we get that there is a
positive constant ¢, [which depends only on s(A)] such that the event
U, N A, is contained in the event

Z Zn,i

ieh

{for some h € H,, < ¢,, where A = én — Bas

B, = [DX,(h)] "'VY,(h) and |A,| > K,87/log n } NA,.

Now, given the set S, and the X,’s and Y}’s for i € h (where h is some fixed
element of H,), the vectors Z for i € h° are conditionally indepen-
dently and 1dentlca11y d1str1buted each with conditional mean G,(A,, §2),
where we can have A, = [DX,(h)]"'VY,(h) — B, [take A = A,, § = 67 and
R(8,x) = —r,(8,x) in the statement of Fact 6.5]. Using Fact 6.5, for K,
(which behaves like M in the statement of Fact 6.5) and n appropriately large,
and for |A,| > K,82y/logn, we have (since §7ylogn — 0 as n — ) that
|G, (A, 8P)| > ctK,67y/log n . Further, note that #(h°) =N, — #(h) =N, —

s(A), and the occurrence of the event A, implies that clnﬁd <N, < c2n5d
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and #(H,) < (c,n89)*“. Hence, we can choose constants ¢z > 0, ¢, > 0 and
an integer N; > 0 so that, by applying Bernstein’s inequality [see Pollard
(1984)] to the sum ¥, . . Z, ;, it follows that

P(U,NA,) < cﬁ(naff)sm) exp(—c,nd2*?P log n)

= cs(nég)sm

whenever n > N, 6 € O(c, k,y) and K, is appropriately large. Further, in
view of Fact 6.5, by choosing K, suitably, ¢, can be chosen as large as desired.
Finally, a suitable choice of K, giving an appropriate value of ¢, (depending on
p and d) ensures (6.7). O

(6.8) )
exp( —ac; log n)

Proor oF THEOREM 3.3. The main arguments in the proof will be split into
several steps.
Step 1: Let use define

H,(5,,8,) = f[_l (B 2(A)) = 0(8,2))x(A)ws () dx

= [ F(63(3,%) - 0(8,2))x(A)w, () da
[-1,1]

- [-1, 1]dF(—r”(8nx))x(A)wan(x) dx,

H(0,,8,) = [ | F((Buyx(A)) = 0(8,2))x(A)w; () d

= [ ]F(én(Snx) - (9(‘6,1:)5))x(A)w5 (x)dx
1,1 "

and

R(nl) = I_?n(én’ BAn) - ﬁn(an’ Bn) - [ f(O)]Qn(lén - Bn)
If we assume that all the 8’s and x(A)’s are column vectors, the third term in
the expression defining R{" can be written as

[F(O1Qu(B, = £.) = LFOL [ [=([=(A] (B, = Br)ws () dx.
So, RV can be rewritten as
BY= | _l’ﬂd[x(A>]{[F(<Bn,x£A>> - 0(5,%))]
~[F(B,, 2(A)) = 6(5,2))]
~(x(A), B, — BOLF(0)] }w; () dx

= |, LU () = 1(8,2))]
—[F(=r(8,%))] = [¥a(0)][ F(O)]}w; () dx,
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where ¢,(x) = §,(5,x) — 6*(5,x). Hence, under Conditions 3.1 and 3.2 and
using Theorem 3.2, we have

@ — A+m)/2  —p(1+n)/@p+d)
(6.9) R O([logn] n )

almost surely as n — «. Further, in view of the proof of Theorem 3.1 and the
definition of O(c, %, y), this rate of convergence must be uniform for 6 €
O(c, &, y).

Step 2: Define an s(A)-dimensional random vector y, as

Xn= X [Xi(8,, ALY, < 6(X,)) - H,(5,,8,)]

€S,
- X [ X6, AI(Y; < 65(X,)) — Hu(3,,8,)],
1€8,

where I is the standard zero—one valued indicator function. For some constant
K, > 0, let W, be the event defined as

Wn — {anI > Kznp/2(2p+d)[logn]3/4}.
Also, for h € H,, define (assuming that n is appropriately large)
Br = [DX, ()] T'VY,(h),  O}(X:) = Bk, X,(5,, A))
and

xt= ¥ [Xi(8,, A)I(Y; < 01(X,)) - H,(5,, )]

ieh
= L [ X0 )I(Y: < €:(X) = H,(5,.8,)]

Then, in view of the definition of the events A, (proof of Theorem 3.1) and U,
(proof of Theorem 3.2) and using Fact 6.3, the event W, N A N US is
contained in the event

x'| > K,[log n]>*np/2@r+d) gnd

|BA,ff - ,Bnl < Kl[\/logn ]n_P/(2p+d)} NA,

for n sufficiently large. Here K; = K,/2 and K, is as in the proof of Theo-
rem 3.2 ensuring (6.6). Note that here we are using the fact that
[log n]3/4nP/2@P+d) 5 © a5 n — o, whereas #(h) = s(A) stays bounded. Now,
given the set S, and also the X,’s and Y;’s for which i € h (h € H,, is fixed),
the terms in the sum defining x! are conditionally independently and identi-
cally distributed and each of them has conditional mean 0. Further, in view of
Condition 8.2, each term in the sum has a conditional dispersion matrix whose
Euclidean norm is of order O(n~7/®P*%\/log n) provided that |8 — B,| <
K, [ylog n]n~P/@P+d) gand n is suitably large. Now, since the occurrence of the
event A, implies ¢;n87 < N, < c,n8%, we can choose a positive integer N,

{for some h € H,,
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and positive constants cg and cg so that an application of Bernstein’s inequal-
ity [see Pollard (1984)] to the sum defining x” gives

sup Po(W,NnA,NUS) < cg(nég)S(A) exp(—cg log n)
6€0(c, k,v)

for all n > N,. Further, ¢y can be chosen as large as desired by choosing K,
sufficiently large and thereby making K, sufficiently large. Now, by making an
appropriate choice of ¢4 (depending on p and d) we have

Y sup Py(W,nA,NUS) <.
n 6€0(c,k,y)

This, in view of the definition of A, and U, ensures that
(6.10) Xn = O([log n]**nr/%2p+d))

almost surely as n — «. Also, note that this asymptotic order of y,, is uniform
for 0 € BO(c, &, v).

Step 3: Note at this point that for n sufficiently large (as argued in the
proof of Theorem 3.2 using Facts 6.3 and 6.4)

Y X,(5,, A)[I(Y, < 8,(X,)) -«

€S,

= Z Zn,i

€8S,

=< d’z,

where ¢, is a positive constant that depends only on s(A). Hence, for the
summand in the linear term in the linear representation in Theorem 3.3, we
can write

[N, X Xi(8,, A)[a = I(Y; < 63 (X)))]
(6.11) ieS,
= [Nn]—an + ﬁn(anuén) - ﬁn((sn’ Bn) + Rg),

where on the event A (the occurrence of which implies ¢;n8¢ < N, < c,n82),
we have
(6.12) R® <« ﬁz_n—Zp/(2p+d).

Finally, the assertion in the theorem follows by using (6.9), (6.10), (6.11),
(6.12) and the fact that @, tends to a positive definite matrix @ as n — . O

Proor oF THEOREM 3.4. First note that, in view of the arguments in the
proof of Proposition 4.2, the conditional mean of n2P/@P*d|V |2 given the
occurrence of the event A, (A, is as in Theorem 3.1) remains uniformly
bounded for 8 € O(c, k,y) and n — «. The proof is now complete in view of
the proofs of Theorem 3.3 and Proposition 4.1. O
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