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Waves due to small rolling oscillations of a thin plate either partially immersed or
completely submerged in deep water is studied in this paper by an integral equation
formulation based on Green'’s integral theorem in the fluid region. The expressions
for the amplitudes of the wave motion at large distances from the plate and the velocity
potential are obtained explicitly for both the cases.

1. InTrRODUCTION

The problem of generation of waves due to rolling of a thin vertical plate is among
the few problems in the linearised theory which admits of closed form solution.
Ursell! first considered this problem while studying the motion due to rolling of a
ship wherein the ship was modelled as a thin vertical plate, partially immersed in
deep water and is constrained to oscillate about a horizontal axis through it. He used
Havelock’s expansion of water wave potential and obtained the amplitude of the
radiated waves at infinity. The velocity potential was not given explicitly in Ursell’
but can be obtained from there (cf. Mandal Banerjea?). Later Evans® used a tailored
version of Green’s integral theorem to obtain the amplitude at infinity of the wave
motion produced by the general motion of a partially immersed thin vertical plate
without obtaining the velocity potential explicitly and deduced Ursell’s result as a
special case. Using this idea of Evans®, recently Mandal* obtained the amplitude at
infinity of the radiated waves due to small oscillations of a thin vertical plate submerg-
ed in deep water and deduced as a special case the results for rolling oscillations of
the plate. In his analysis, the expression for velocity potential was also not obtained
explicitly.

In the present paper the problems of generation of waves due to rolling oscilla-
tions of a thin vertical plate which is either partially immersed or completely submerged
in deep water are investigated by an integral equation formulation based on Green’s
integral theorem in the fluid region. For both the problems, the mathematical analysis
depends on the solution of a singular integral equation of first kind with a Cauchy
type kernel. The expressions for the amplitudes of wave motion at infinity and the
velocity potential for both the problems are obtained explicitly. To the best of our
knowledge this method was not used in the literature for solving these two problems.
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2. FormurLaTioN oF THE PROBLEMS

We consider a thin rigid vertical plate x = 0, y € L either partially immersed
(for which L = [0, a]) or completely submerged (for which L = [a, b]) in an
incompressible inviscid deep fluid occupying the region y = 0 with y = 0 as the mean
free surface. The plate is hinged at (0, s) and is forced to perform simple harmonic
oscillations of amplitude 8§ = Re (8 - e') about its mean vertical position, o being
the frequency of oscillation. Assuming the motion to be irrotational, it can be
described by a velocity potential Re [¢(x, y) e ], where ¢ satisfies

v2¢ = 0 in the fluid region ..2.D
the linearised free surface condition k
d¢
K¢+ — =0ony =290 ...(2.2)
ay
where K = ¢%/g, g being the acceleration due to gravity, the condition on the plate
d¢ )
— =gy (y-s)onx =0, y€L .(2.3)
ax
the edge condition that
r'’2 ¥ ¢ is bounded as r — 0 2.9

where r is the distance from the point (0, @) for L = [0, a] and from the points (0, a)
and (0, ) for L = [a, b], the bottom condition

Vo — 0asy — oo, ...(2.5)
Also, ¢ is required to satisfy the radiation condition that
Aexp (-Ky + iKx) as x —
- { Bexp (-Ky - iKx) as x — - » ...(2.6)

where A and B are the amplitudes (unknown) of the wave motion at large distances
from the plate on its two sides.

3. MetHop oF SoLutioN

By an appropriate use of Green’s integral theorem in the fluid region to ¢ (x,
y) and the two dimensional source potential G(x, y,; &, n) where G is given by
(cf. Thorne®).

G(x, y; €&, 1) = 2miexp (-K(y+9) + iK |x - £])

oo

+2 M(k, y) M(k, 1)
k (k2 + K?)

exp (-K|x - &}) dk ...(3.D
0

M(k, y) = k cos ky - K sin ky ...(3.2)
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we find

2r¢ (€, 1) = S S S() G (0, y; &, ) dy -.(3.3)

where L L
JO) = 6(+0,y) - o6(-0, y), ye L ...(3.9)

is the difference of potential across the plate,
Now using the condition (2.3) and noting that

fo (01 B 0) 7’) = G"W (0, Vs 0; 7])

we obtain the integral equation for f(y) as
2

d .
a2 S S J() GO, y; 0, 1) dy = 2mioly (n - 5), n € L. -..(3.5)
n
L L
Integrating (3.5) with respect to n and adding K times the result with (3.5) we obtain

the following singular integral equation

1 S 2y y)
yi-n?

dy = 2iofy(n) + ¢, m €L ...(3.6)
m
L

where ¢ is an unknown constant of integration,

K
g = 7% + (1 - Ks) - s (3.

and

ANy = Kf(y) + S O). ...(3.8)

We now treat the cases L = [0, a] and L = [a, b] separately.
4. Roiiing oF A Parmiatry Immersen Prate

In this case, L = [0, a] and the solution of the integral equation (3.6) satisfying
AY) = O((*-a>) " asy ~a
is given by (cf. Mikhlin®)

4
AY) = () - ;’ A ..(4.1)
where,  A(y) = y(a*-yH) 2
L2 212
M) = ya® - yH)2 g g——z_"—)z—— g(n)dy. ..(4.2)
0

Thus, from (3.8)

b4
S(»y) = exp (-Ky) S exp(Kt) (1) dt. ...(4.3)
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To determine the unknown constant ¢, f(y) from (4.3) is substituted in the
original integral equation (3.5). This gives
a

iraly (n - s5) = —7;—1 K exp (-K7n) S A(y) exp (-Ky) dy

-a

[ a

kM (k, _

+ S % <§ A(y) sin ky dy> dk, for 0<n<a.
k“+ K

0 ...(4.9)

The y-integral in the second term on the right side of (4.4) can be simplified by
using the results obtained by a simple application of Cauchy’s integral theorem with
an appropriate choice of contour

S N (¥) sinkydy = g cos ky dy - g <(_y?_y_§7 - 1) cos ky dy
-a
0 0 a
F ]
S AN () sinkydy = —g Scos ky g(y) dy - S% cos ky dy
-a
0 0 a
...(4.5)
where
(aZ _ 2)'/2
F(a, y) = S 7_-”;2—g(n) dn. ..(4.6)

0
Using these results in (4.4) it is found that after further simplification, the term wig8,
(n - s) cancels from both sides giving rise to an identity in n as

exp (-Kn) [—iacA + i (a) - iﬁl)} =0, 0<np<a ...(4.7)
¥y

where

A = n I, (Ka) + iK, (Ka)

- 2
a = of, [—waz 1, (Ka) - 4al, (Ka) <- Kra” 21— ks) + %’r)
+2(1 - Ks) ”?" (I, (Ka) Ly (Ka) - Lo (Ka) 1, (Ka))}

and

-Kra?

61 = 0'00 [—asz(Kﬂ) + 'fﬁ- Kl (Ka) < _a(] ‘-KS) + s%)
.3

+ o (1= K9) 4201 - Ks) (Ko(Ka)Ll(Ka)+L0(Ka)K,(Ka))]
...(4.8)
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Iy (Ka), I} (Ka), Ky (Ka), K; (Ka) being the modified Bessel functions and L,
(Ka), L, (Ka) being modified struve function.

Equation (4.7) results in an equation for ¢ from which it is found that
arA \! )
- (—4 ) B + iay). ...(4.9)

To obtain the amplitude of the radiated waves at infinity, we make ¢ — + o
in (3.3) and it is found that

c

A=-B=

(N

S exp (-Ky) A(y) dy.

Using (4.1), (4.2), (4.8) and (4.9) this is simplified as
4= nofoa’ LiJr Ks -1

AKa 2

This expression coincides with the result given by Evans® obtained by a different
method. This can also be identified with the result given by Ursell! (also see Mandal
and Banerjea?). Finally from (3.3), the velocity potential is obtained as

@

(I, (Ka) + L,(Ka))]. ...(4.10)

k
Bk M = A exp (Kn + iKE) + S 55 exp (k) dk, £ > 0
0
d(E 1) = -¢(- ) forf <0 ...(4.11)
where .
x (k) = - _]_ g A(y) sin ky dy. ...(4.12)
s

0
Using (4.1), (4.2), (4.5) and (4.6), (4.12) can be simplified as (cf Gradshyteyn and

Ryzhik ") )

K
x (k) = - ot [pJ‘ (ka) - —— 1, (ka)

+ flg (Ks - 1) (Hy(ka)Jy(ka) - Hl(ka)JO(ka))J

L (4.13)
where, . a> 1 - Ks
p = (Kz(Ka) + Iﬂ'lz (Ka)) —iz— - AKZ
. ﬁ (1 - Ks) L (Ka) (Ko(Ka) + inly (Ka))
+ i(1 - Ks) “7'” L, (Ka) ..(4.18)

Jo (ka), J, (ka), J, (ka) are Bessel function and Hy (ka), H, (ka) are the Struve
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functions. These results can be identified with the results given by Ursell! (cf.
Mandal and Banerjea?).

5. RorLuing oF a SusMerGep Prate

In this case L = [a, b] and the solution of the integral equation (3.5) satisfying
) = {0 (*-a)") asy—a
0 ((b*-y)"%) asy—b
is given by (cf. Mikhlin®)

1 4
A(y) = —— [—’ F(a, b, y) + D - csz ...(5.1)
o) | 7
where ¢ and D are unknown constants and
b
Je(n)d
F(a, b, y) = S ng(nlo(n)dn (5.2)
Yy -
p(y) = (VP -d¥)” (b7 - yH "
Hence from (3.7)
y
S(») = exp (-Ky) S A(t) exp (Kt) dt. ...(5.3)
To find the unknown constants, we make use of the fact that
Sf(b) = 0.
This gives a relation between ¢ and D as
4
Do, (-K) - caf (-K) + il o (-K, F) =0 ...(5.4)
T
where
b
-K
o« (K, F) = S exp (-Ku) F(a, b, u) du
p(u)
‘ 2
o) (K) = oy (K, 1) and af (K) = — o (K). ...(5.5)
dK
Let us write
”n _K
gt = 2K ...(5.6)
a; (-K)
Then from (5.4)
2=d2_5’_i_al("K)F)
¢

- R . (5.7)
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Using (5.7) in (5.1) we obtain A(y) as

4
AY) - A(P) + ;1 A\ (OY) ..(5.8)
2 _ 2
where Ny = -y
p(y)
o (-K, F)) 1
M) = )F(a, b, y) - (5.9
Y { 2 T K Kp(y) ©-9)

Having expressed D in terms of ¢ by (5.7), it now remains to find ¢. To find it, f(y)
from (5.3) is substituted in (3.5) to obtain fora < 5 < b

b
2

d _
miofy (n - 5) = E;_Z [wi exp (-Kn) g exp (-Ky) A(y) dy
@ b

M(k, ) .
B LAL LA 7% ky \N(») dy|.
S k (k¥ + K?) S sm A y} -..(5.10)

a

Using Cauchy’s integral theorem with appropriate choice of contour the following
results can be derived.
b

22
g )\o()’)sinkydy=§ <d 24 —l>coskydy

Ry (¥)
. 2 2 4
Tor + 1) |
- + 1) cos ky dy - cos ky dy
S < Ri(y)
b a
b a oo
S sin ky dy = g cos ky dy - § cos ky dy
p(») Ro(y) R, (y)
4 a
> » . F tl bl .
S M sin ky dy = S M sin ky dy
p(y) Ro(y)
a 0
o b
N S a5 7 Gnkydy + * g g(y) cos ky dy  ...(5.11)
Ry(y 2
where g ¢
Ro(y) = (@*-y)" (b*-)y)", y<a
R = (P -a)" 0P -bH" y > b n(5.12)
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Using (5.8), (5.9), (5.11), (5.12), the y-integral in (5.10) is simplified and it is found
that the term wigfy(n - s) cancels from both sides of the results thus derived to obtain
an identity in n for @ < n < b. This identity gives rise to an equation from which
the constant ¢ is determined as

i [4
c= - (— Ay - 2S(K)> ...(5.13)
AT

where

g d2__ 2
ay = S “ exp (-Ku) du

Ry(u)
J d* - u?
Bo = § R () exp (-Ku) du
b
g 2 2
Yo = S d - u exp (-Ku) du
p(u)

A= oy~ By -y ...(5.14)
o (K, F) = § F(T‘f’:;—)ﬁ’— exp (-Ku) du

0
ay (K, F) = S F(;,—(I:)u)_ exp (-Ku) du

1

b

o (K) = o; (K, 1),

Ay = | a; (K) 1
o (k, F) 2K B
a; (-K)

Ay = Ap - Ay -iby, i = 1,23,
b

2
S(K) = S exp (-Kt) g(1) di - aby exp (Ka) <i;— - as). ..(5.15)
a
The amplitude at infinity is obtained by making ¢ — + o in (3.2) and it is found that
A= -
where
2i 4i
A=20 S(K) + —— (v (An - Ap) - By (a0 - Bo).  ---(5.16)
A x4y
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The above result can be further simplified in terms of complete elliptic functions
to coincide with the results of Mandal* who however used a different method to
obtain it. It may be noted that the function F(a, b, y) in (5.2) with g(») given by
(3.7) can be expressed as combination of complete elliptic integrals (cf. Evans®). It
can be shown by making p (= a/b) — 0 in (5.16) that A coincides with the
corresponding expression for amplitude at infinity due to rolling of partially immersed
plate as given in (4.10).

Finally the expression for velocity potential can be obtained explicitly from (3.2)
after using (5.3), (5.8) and (5.9).

6. Concrusion

The method based on Green’s integral theorem is used here to obtain the closed
form solution of the problem of rolling of a vertical plate which is either partially
immersed or submerged in deep water. The amplitude of the radiated waves at infinity
for the rolling of a partially immersed plate agrees with the known results obtained
by Ursell! and Evans® earlier using different methods. Explicit expressions for the
velocity potential is also obtained. For the submerged plate, similar results are also
obtained.
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