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Formulation of a Multivalued Recognition System

Dreba Prasad Mandal., C. A Murthy, and Sankar Ko Pal, Yewier Member, IELE

Abstraci—A recognition svstem bazed on fuzzy set theory and
approximale reasoning hos been described that is capable of han-
dling various imprecise input paiterns and providing o nulural
decision syatem, The input featwre is considered to he of cither
ghiantaiive form or fegaistic form or mixed forwe or sef form, The
entire festore space is decompaesed here inbo seme overlapping
subdomeins depending on the geometric struchure and the relative
position of the patlern ¢classes found in the Irdining samples,
The variows wocertainty (wmbiguity) in the inpul stalement las
heen managed by providing'maedifying membership values o g
areat extent, A relational matrix corvesponding to the subdomainy
and the patiern classes has been considered in the modified
Zadehs compositional rote of inference in ocder e reooghbae
the samples. ‘The lingwistic outpot decision is sssociated with a
confidence factor denating the degree of cerminty of a decision,
The effectiveness of the algorithin has een demonsicated on some
arbiticially pencrated patterns and ulso on the real life speech
data. The recognition seores are described in terms of varions
choices namely, singfe eorneet, first correct, comiined correct,
secand correct and ferfly wreng chefces; thus provides a low rale
of misclassification as compared tn the ennvenlinnal two-stote
RVETEINS.

Lo INTRODUCTION

HE PATTERN CTASSIFTCATTON methods ¢an primar-
iy Te grouped into wo ciegoriss, namely  decision
theqietic [L]. [2] end symuactic [3]. In thosc convensional
classificrs. the input patterns are quantitative (exaet) ip nalare,
They provide crisp (two-stiale) outpul aml we mistly seitable
for the mechamstic tvpe of problems. The panerns having
impreciss or incemplele informatien are wsually dgnersd o
iscarded rom thetr designing anlor festing progesses. The
imprecisenass (o ambiguityd [4]. (3] may arise From various
reasens. For example, instrumental ervor or noise corruption
in the experiment may lewd w0 have partial (incomplele)
infrmation available an oa lzalure measulemenl vz,
i gbout 00 or Fols betwscn 400 and 3000 cte. Azain, in
some cases the capense incurred inexlmacting exscl value ol
fewture may be igh oc il may be dillicelt o decide on the
avtoal saliem featvres o be cximacted. Onothe other hamel, i
muy beoeme convenient o use linguishic variables or hedges
o, small, mediem, high, more ar less, very, cle. in order
deseribe feature information.
A decision theoretic recognition syslem based on Doy se
theary [i], [7] and approximate reasoning [8]-[11] is designed
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o be capable of handling all the aforesaid improciscness.
lwitially, each individual festore range ©s divided o some
domains depending on thy geometnic complexily and the
relative posilions of the pattern classes found in the taining
samples. To handle the imprecisensss of the input feamne
inlavrrrsaticn and o incorparate e portions possibly uneoversd
by the trainieg samples, cech of the domaing s exlemled
[0 S0me using triangular membership functions. As
aozesull, the whole [eature ranps s decomposed ino fow
overlapping subdamains,

The theory of spproximale reasoning [8] hes been inro-
duced by Swdeh in 1977 This theory has the capahility to
Tandle Testhy 20t amd Tard data ws well a8 various types of un-
certainty, Muny aspects of the underlying convepts have heen
ineomuoarsiesd in designing decision making svslems [T1]{17]
alimg weilk their applications.

The proposcd system uses Fadeh’s compositiona] rule of
inference [8] and gives o naturad (hnguistie) mullivalued
ot eginion dasseciated with s certaimiy {or validiy ], The
vilechiveness of the algotithm has been demonstrated on some
artifictally acnerated pattern sets 2% well as speech recognilion
prizhlem,

tn Becticn 1o hrief description of the recognition svstem
is provided. The deseription ot difterenl blocks gre prasvided
in Sections T ond IV, Resolts are discussed in Seclion ¥,
Sectiom ¥V linds the conclusion.

cxtent

1. Mlovrvar e RECOGNITIs Sysresd

A Buspe Ceneepty

The propesed recognition system is capable of handling
vartous input patterns having festure information o grepsns-
fative form, lingolatic forean, mived forne, and set fuem. The
$YSIEM Assumcs that every padtern class is 2 union of zearly
rectangular sets. Thus, inflially the freining sample sel of eversy
patlern class is divided inwo Gew groops of pearly reclangolar
shapes [LH]. Further, depending on the relative positions of
the sample groups in the feature space. the semple proups
arg apgin subdivideld. Aceorndingly each individual feature
space 15 then decomposed into some domains to highlight
the abtained groups of irsining scts so that cach fealre
information caen be cenverled as the helongingress o the
abilzined Jdomaing Lo some degres. To handle the uacertainty
af the inpul informatien and w inecorporate the portions
{af the pattern clgsses) possibly uncovered Ty the raining
samples. cacl of the feature domaing is extended to some
extenl wsing trigmgnlar merhership funcions, Thus the whole
leature space 15 divided into some overlapping subdomains,
The atercmentioned decomposition of the sampls sets and the
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dynamic ranges of the features constitute the preprocessing
part of the recognition system. It is to be noted that the
preprocessing is completely based on the training samples.
Henceforth, the same notations and terminologies, as stated
here, will be followed throughout the paper.

Notations and Terminologies

1) Fi, F»,---, Fx denote the features, where N represents
the number of features.
2) Ci, Cs,---,Cyy denote the classes, where M represents

the number of classes.
3) The variable ¢ stands for the features, ie., 7 =

1,2,---,N.

4) The variable j stands for the classes, ie., j =
1,2,---. M.

5) M denotes the total number of training sample groups,
that is

M

M = ij
j=1

where m; denotes the number of sample groups ob-
tained from the training samples of class C; through
decomposition.

6) N denotes the number of subdomains in the whole
feature space, i.e.,

where n; denotes the number of domains in the :th
feature space.

7) The feature regions in the individual feature spaces are
referred as the domains and the regions in the whole
feature space, which are the combinations of the domains
in the individual feature space, are referred here as the
subdomains. The variables g and h stand for the domains
and subdomains respectively. The domains are denoted
as Dj1, Dio, -+, Dip, (i = 1,2,--- N) and the the
subdomains are denoted as SDy, SDs, ---, SD .

8) CV(X) = (cvi(X),cva(X), -+ .cvz (X)) represents
a characteristic vector where the Ath element cup(X)
denotes the degree of belonging of a feature information
X to the hth subdomain.

9) R represents the relational matrix, which denotes the
compatibility of various pattern classes corresponding
to the subdomains. The order of R is N x M.

10) S(X) = (s1(X),82(X),--,sa(X)) represents a
class similarity vector where the jth element s;(X)
denotes the degree of similarity of a pattern X to the
gth class.

To explain the preprocessing concept, let us consider a 2
class and 2 feature problem (ie., M = 2 and N = 2) as
shown in Fig. 1(a). Based on the geometric structure [18], the
sample set of class A is initially decomposed into two groups
(denoted by A; and A») of nearly rectangular shapes as shown
in Fig. 1(b). Then depending on the relative positions of the
sample groups, the sample group A4; is again subdivided into
2 subgroups A;; and A; and the sample set of B is divided

into two groups B; and B» (Fig. 1(c)). Hence there are five
sample groups, i.e., M = 5. Now in order to distinguish all
the sample groups, the feature spaces F; and F» have been
decomposed into 3 and 2 overlapping domains respectively.
Thus there are 6 (N = 3 x 2) subdomains that highlight all
the five sample groups. The subdomains with the reflected
sample groups are shown in Fig. 1(d).

The relevance of the membership or compatibility functions
for characterizing the subdomains is described in the next
section.

B. Membership Functions

The preprocessing block of the recognition system decom-
poses each individual feature space into some overlapping
domains. For a given pattern point in an individual feature
space, the possibility of its being a member of a feature domain
is maximum if it lies in the centre of the domain. As the
distances of the points from the points in the central portion
increase, the possibilities decrease and ultimately go to zero.
All the triangular functions have the previous property. So any
triangular function may be considered as the representative
membership function for the domain of a feature space. As
the 7 function (which is a quadratic triangular function) is
well established to dictate the previous property [12], [19], it
is considered here to serve the purpose.

Thus the gth domain along ¢th feature axis is characterized
by mig(w, ig, 31,05 Busys Uity [y, ) in which a, is the central
part where the membership value is 1.0; 3;,, and f3,,, are the
lower and upper most ambiguous (crossover) points where the
membership values are 0.5; Ty, and T',,, are the lower and
upper end points beyond which the membership values are
zero. The functional form of such a 7 function is stated here:

) S(z: Ty, B« ifr<a
e { 1(— S(fl‘:(;.ﬂz.ru) it >«
M
where
0 , ifz<a
1(z=e)” ifa<z<b
S(zia.b,e) =< 2 (”“’) ) - )
1-3(3=) dtb<wse
1 otherwise.

Such a 7 function is graphically shown in Fig. 2. Although
the 7 function corresponding to a feature domain in a feature
space ranges between I'; and I',,, it is assumed that only the
portion between [3; and (3, of that feature space is represented
by the training samples. The extented portions of the feature
domain are [I';, §;] and [8,, I',]. These extented portions take
care of the possible uncovered regions by the training samples
and the overlapping between different pattern classes.

Note that the 7 function is a quadratic function. For simplic-
ity, a linear triangular function (7) may also be considered.
The functional form of such a linear triangular function is
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Fig. 1.

stated here:

%(;{—};’) ifT <z <f
h %(ﬁig’z) if § <e<a

T(x:a, B, fu.T1.Ty) = - %((‘::i‘) foc<n
%(;ﬁfﬁ“) if 3, <x<T,
0 otherwise.

(©)
The structure of such a linear triangular function is shown
in Fig. 3. The significants of all the parameters are exactly
same with the previously stated 7 function. All the results in
this paper are shown using the 7 membership functions for
the domains in various feature spaces. Assuming the previous
linear triangular function, similar results are obtained.

C. Block Diagram

The block diagram of the proposed recognition system is
shown in Fig. 4. It consists of two sections, namely Learning
and fuzzy processor. Learning section uses only the training
sample information and finds the representative subdomains
and a relational matrix. The fuzzy processor uses the relational
matrix in the modified compositional rule of inference [8]
to give a natural or linguistic output decision regarding the
class or classes to which an unknown pattern X may belong.
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(a)-(d) Showing the concept of preprocessing.
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Fig. 2. 7 function.
The preprocessing task of the Learning section is explained
previously. It decomposes the whole feature space into some
overlapping subdomains. The relational matrix estimator block
finds a relational matrix K.

The feature extractor block takes a pattern X as input and
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Fig. 4. Block diagram.

outputs a characteristic vector C'V(X). The fuzzy classifier
block uses CV(X) and R in the compositional rule of
inference to find a class similarity vector S(X).

Ambiguity (uncertainty) in the fuzzy decision, provided by
S(X), is then determined by computing CF (confidence or
certainty factor). Higher the value of CF, the stronger is the
validity of the decision. Depending on the value of CF, the
final output of the recognition system is given in linguistic or
natural form.

The recognition system described previously is referred here
as multivalued because it normally gives multiple class choices
with different degree of certainty of the classes. It may also
be viewed as a generalized classifier providing natural (fuzzy
and/or hard) output from both fuzzy and deterministic input.

The overview of the recognition system is provided previ-
ously. Various blocks of Fig. 4 are discussed in the following
sections.

[T1I. LEARNING

The operations of this section are fully dependent on the
training samples. This section decomposes the whole feature
space into some overlapping subdomains in order to handle
the ambiguous information and estimates a relational matrix.
It has two blocks, namely preprocessing and relational matrix
estimator. The domains and subdomains in the feature space

are obtained in the preprocessing block. The relational matrix
estimator block finds a relational matrix .

A. Preprocessing

In this block, geometric complexity [18] and the relative
positions of the given pattern classes are considered one after
another to decompose the training sample set of the pattern
classes into some groups. Accordingly each individual feature
space is divided into some domains to highlight the obtained
sample groups. These concepts are explained in the following
in two-dimensional (2-D) feature space.

Geometric Complexity: The system assumes that every pat-
tern class is a union of nearly rectangular sets. In order to
determine whether a pattern class is of nearly rectangular or
not, an analysis based on overlapping windows is proposed. An
accuracy factor (67 ) based on the number of available training
samples (say.T) is considered for deciding the rectangular
property of the pattern classes. The value of 6 is decided as
(18]

1 1
T0.49 Sor s T0.33 @

so that as T — oc, &7 — 0, and Tér® — oc. Since b7
decreases with the increase of T, the accuracy of the algorithm
also increases with the increase of 7'. The inequality (4) is due
to Grenander [20] who used it for estimation of set or class.
The details are explained in [18].

The procedure is explained for a pattern class in the 2-
D feature space. Here each class is considered separately.
A typical training sample set is shown in a feature space
in Fig. 5(a). To find the boundary variation of the set, four
perpendicular directions (referred by the codes 1,2.3 and 4),
as shown in Fig. 5(b), are considered. Fig. 5(c) shows the
boundaries of the sample set in the coded directions 1 and
2, where the first (F}) and second (F3) axes corresponds
to the base and height respectively. Similarly, the Fig. 5(d)
shows the boundaries of the sample set in the directions 3
and 4 (considering the F; and F) axes as the base and height
respectively).

Formation of Windows: Let (by. h1), (b2, ha).---.(br.hr)
be the sampled points in terms of base and height values.
Initially from all the sampled points, the maximum (say, maxs)
and minimum (say, miny) of the base values are found. A base
coverage factor, say &, is defined as

ey = (maxp — ming )0

®

where &7 is the accuracy factor. All the windows are con-
structed from the training samples using e, so that the base
coverage length of each window is atleast €.

Similarly, the maximum (say, max;) and minimum (say,
miny,) of the height values are found and a height threshold
factor, say ey, is defined as

cp = (maxy — ming }or (6)

where ¢, is used in deciding whether a sample set or group
is of nearly rectangular or not.

Now the training samples are arranged in ascending order
according to the base values. The first window starts with the



MANDAL et al.: FORMULATION OF A MULTIVALUED RECOGNITION SYSTEM

Ffg—

(©)

Fy—————
(d)

Fig. 5. (a){d) Showing the concept of obtaining boundary.

first sample of the ordered training samples and it includes

all those samples one after another in ascending order until its

base coverage length exceeds £,. Assume that the first window

ends with the kth sample. Then the second window will end
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with the (k + 1)th sample and to find the starting point of
this window, it proceeds backward from kth sample until its
base coverage length exceeds e,. Similarly, other windows
are constructed. Thus, some overlapping windows of sample
points are generated utilizing the sample base values and the
base coverage factor c.

The height values in a window are assumed to be the
height coverages for that window area. The maximum and the
minimum height sample values are chosen from each window
to find the upper most and the lower most height coverage
for a window, and these are considered here as the boundary
values.

Calculation of Boundary Variations: To describe the proce-
dure for calculating the boundary variations, let us consider
the boundary in a particular direction, say d. The procedure
to obtain the windows and the boundary values is discussed
previously. Let us assume that there are w windows and
their boundary values are Hy, & = 1,2,---,w. A boundary
variation factor, say Vy, in the direction d is defined as

2} /5z

where ¢, is the height threshold factor for the considered
direction d.

Now let maxy and ming be the maximum and minimum
of the Hy's (k = 1.2, .w) respectively. If (maxy —ming )
< &y, then the variation factor 1 is assumed to be zero, i.e.,
make V; = 0.

Initially, assuming Fj and F5 axes as the base and height
respectively, the boundary variation factors V; and V5 for the
directions 1 and 2 are calculated. Similarly, by reversing the
roles of F} and Fy axes previously, the boundary variation
factor V3 and V) are obtained.

Pattern Class Subdivider: To determine the direction of
decomposition, the algorithm finds the direction in which the
variation is maximum. That is, the direction D € {1.2.3.4}
is obtained where Vp > V), for d = 1.2.3.4. If Vp = 0, the
sample set is assumed to be nearly rectangular in shape and
it is not further decomposable.

Otherwise, i.e., if Vp > 0, it is assumed that the sample set
is not nearly rectangular in shape and it is to be decomposed
into groups. Now from the direction of decomposition (i.e., D)
the windows with their base and boundary (or height) values
and the corresponding height threshold value €, are recalled.
The samples are arranged in ascending order according to the
base values. For making a cluster of windows, the maximum
boundary value is found. The starting window for the cluster
is taken as the window where boundary value is maximum
among all the boundary value. The position of the starting
window is noted. The following windows for the starting
window are arranged one after another in the cluster until the
difference between the boundary values of the current window
and the starting window is less than or equal to ;. Similarly,
the preceding windows are also put in the window cluster. The
samples lying in the previous window cluster are assigned to
the first group of samples.

o
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The previous routine is repeated on the remaining windows
until all the windows are exhausted. This leads to the formation
of window clusters. Every window cluster results in a group
of sample points. Thus the given training sample set is
decomposed into a few groups of sample points.

The decomposition procedure is applied on the sample
groups repeatedly until all the groups are found to be nearly
rectangular in shape.

Relative Position of Pattern Classes: The sample groups
generated in the previous sections are nearly rectangular in
shape. The relative positions of the sample sets in the feature
space are then considered to divide (if necessary) further the
sample sets so that the spans (ranges) of the sample sets
in a group are more or less same in an individual feature
space. This will facilitate (as described in the next section) to
decompose the entire feature space into various subdomains.
This concept of relative position has already been explained
earlier by pattern diagrams in Fig. 1.

Here each feature axis is considered separately. Let us
assume that there are M sample groups (initially M = M).
Let /;; and wu;; be the lower and upper limits of the training
samples corresponding to ith feature and jth sample group.
Now follows an algorithm to decompose the training sample
sets based on the relative positions of the sample groups along
the first feature axis.

Algorithm [

Here two temporary sets of the sample sets namely covered
set cu-set and lower set [-set are used.
Step 1: (Global initialization) cv-set =NULL; M = M;

Step 2: l-set = NULL; L, = ™=}

JEcuTset
l-set = l-set + [j]

ifl;; =Ly forj=1.2..-- M and j & cv-set:
min /;; min u,;
J, = mi ) . /)
Uy = min J=1.20 0T j=1.2. AT
jgco-set jgcr-set
jei-sat :

cv-set =cu-set + [j] if ui; = Uy for j = 1.2.--- M
and j € cv-set;

The sample groups belonging to the [-set and not to
the cv-set are decomposed into two groups. In such
cases, the training samples with first axis value less
than or equal to U; are kept in the original sample
group and include this sample group in the cv-set.
Then a sample group is generated as M = M+1 and
the remaining samples are put in the new group.

If cv-set includes all the sample groups, then the
algorithm terminates. Otherwise go to Step 2.

Step 3:

Step 4:

An algorithm is described previously that decomposes the
training sample set of a pattern class into groups according to
the relative positions of the sample sets along the uth feature
axis. Similarly the sample sets are decomposed depending on
the relative positions of the sample sets along the other feature
axes.

Decomposition of Feature Space: In order to highlight the
generated sample groups, each individual feature space is

divided into some overlapping domains. It is not difficult
to group the sample sets so that the sample sets in each
group correspond to one particular domain along an individual
feature axis under consideration. The obtained domains are
extended to some extent to incorporate the portions (of the
pattern classes) possibly uncovered by the training samples and
to handle the overlapping regions between the pattern classes.
These domains are characterized by different = functions ((1))
of the form ;4(2, ctig, B1,y> Buyy»r Lty Tuiy)-

Each feature axis is considered separately. Let us assume
that there are M sample groups that are obtained from the
training samples of M pattern classes. Recall that the training
samples of the jth class C; is decomposed into m; sample
groups. Suppose l;; and w;; are the lower and upper most
training samples corresponding to ith feature and jth sample
group. Recall also that n; denotes the number of domains in
the ith feature space. An algorithm is described here to find
domains (and hence the corresponding membership functions)
along the ith (¢ = 1,2.---.N) feature axis.

Algorithm 11

Here two temporary sets of the sample sets namely covered
set cu-set and lower set [-set of sample groups are used. Let
ext;, be the extension factor decided based on the accuracy
factor 67 ((4)) for gth domain along the :th feature axis.

Step 1: (Global initialization) cv-set = NULL; g = 0;
min{l;;}

Step 2: l-set =NULL; g =g+ 1; L1 = -, &
JEcr=set .
[-set = l-set + [j]if l;; = Ly forj =1.2.-.-, M and
j ¢ cu-set; Uy = Jmal\{“_ 7\}[ cv-set = cv-set +l-set;
JEL=s

Step 3: (Finding the parameters of w function) ext;y = (U; —
Ly) x 615 ajy = (Uy + L) x 0.5 31, = Ly
Bu,, =Uns Ty, = L1 — eatyy; Ty, = Ur + extiy;

Step 4: 1f cv-set includes all the sample groups, then the

algorithm terminates and assign n; = g. Otherwise
go to Step 2.

The previous algorithm decomposes the «th feature space
into some (n;) domains. This algorithm is repeated for all the
feature axes. As a result, the total feature space is decomposed
into few (N = II;n;) subdomains that incorporates all the
sample groups. Note that M is not in general same with

B. Relational Matrix Estimator

The relational matrix R denotes the compatibility of various
pattern classes corresponding to the subdomains. The order of
Ris N x M, where IV is the number of subdomains and M is
the number of pattern classes. Each column of R corresponds
to a class and each row of that column denotes the degree to
which a class should be characterized (based on the training
samples) by the corresponding subdomains. In other words, for
a 3 class (denoted by Cy, C5 and C3) and 2 feature (denoted by
Fi and F3) problem (i.e., M = 3 and N = 2) with 3 domains
(denoted by a, b and c) corresponding to each feature space
(i.e., with N =3x{3} = 9 subdomains), a relational matrix,
R, can be written as follows.
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(F1 X Fz) Cl C‘Z CS
(a.a) 1 711 T12 13
(a.b) 2 r21 T22 T23

)
(c.c)9 ro1 To2 I'93

If a pattern belongs to the first subdomain, i.e., F} is a and
F5 is a then the entry r1; will denote the possibility value of
the pattern to be in the class C;. Similar is the case for all
other entries of the relational matrix.

Determination of R: The relational matrix R is estimated
from the training samples in the relational matrix estimator
block. Let ry; denotes the (h.j)th element of R, ie., the
element corresponding to the hth subdomain and jth pattern
class. The value of rp; is decided as

0 if hth subdomain does not highlight
Jth pattern class;
1 if Ath subdomain highlights only

- jth pattern class;
Thj = NSy Jihp

(0.8) Y* ™ if hth subdomain highlights
jth pattern class along with

some other classes.
8)
Here NG, is the number of training sample groups highlighted
by the subdomain h; NC;’ is the number of training samples
from the jth class (Cj) in the hth subdomain and NS} is the
total number of training samples in the Ath subdomain, i.e.,

M
NSy =Y NCJ.

J=1

If NG, =0thenr,; =0forall j=1.2.--- .M. If NG, = 1
and hth subdomain highlights the class C; then r,; = 1
and rpp = 0 for k # j. Otherwise, if NGy > 1, then the
subdomain £ is overlapping according to the training samples.
The factor NS;,/(NGhNCJh') is used as a density factor for
the jth pattern class in the hth (overlapping) subdomain.

So the block relational matrix estimator provides R, which
is utilized in the fuzzy classifier block to find the output of
the recognition system.

IV. Fuzzy PROCESSOR

This section consists of three parts, namely feature extractor,
fuzzy classifier and decision maker. The feature extractor gives
a characteristic vector C'V(X') as output corresponding to an
input X. The CV (X)) along with the relational matrix is used
in the fuzzy classifier to determine the degree of similarity of
the input pattern X to the various pattern classes. The decision
maker block gives a linguistic output along with its degree of
certainty.

A. Feature Extractor

Here, the input patterns of the recognition system are in
any of the four forms namely, quantitative form, mixed form,
set form, and linguistic form. First of all, each feature value
is considered separately to determine its membership values
corresponding to various domains of the considered feature
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space. The way it has been done is furnished in the following
subsection.

Quantitative Form: The information in this form are con-
sidered as in exact numerical terms, like “F; is 500.”

The membership functions corresponding to different do-
mains of the individual feature spaces are decided in the
preprocessing block (Section III). So for the information
in exact numerical terms, the membership values to belong
to different domains in the feature range in consideration
are determined directly from the corresponding membership
functions.

Mixed Form: The information are provided in this form as
the mixture of linguistic hedges and quantitative terms such
as “F; is more or less 500.”

As the linguistic hedges increase the impreciseness of
the information, the membership values of a information
in this form as a whole, for different domains should be
lower than that of the membership values of the information
with quantitative term alone. The amount of decrease is
determined according to the linguistic hedges. As an example,
for the information “F; is about 500,” the membership value
corresponding to the gth domain in the ith feature space is
assigned as

j1:9(F; is about 500) = {j;,(F; is 500)}"*° 9)
where ji;4(.) represents the membership value correspond-
ing to the gth (¢ = 1.2.---.n;) domain in the ith ( =

1.2.--- . N) feature space.

The aforementioned modifications of the membership values
will be reflected in the confidence factor (CF), i.e., in the final
output of the recognition system.

Set Form: Like the mixed form, the information in set form
are also a mixture of linguistic hedges and numerical terms.
The basic difference lies with the nature of linguistic hedges
used. The linguistic hedges used in this form are less than,
more than, between etc., such that the data reflected is a set
and at least one boundary of the data set becomes known. The
example of the information in this form are “F; is less than
500,” “F; is between 400 and 500" etc.

Initially, the membership values of the numerical terms
corresponding to various domains are determined directly
from the corresponding membership function that is of the
form 7y (x, g O, ﬂuly, Iy,s I'y,,) (1) where ay, is
the central point of the gth domain in the 7th feature space.
For the statement F; is less than v, the membership value
corresponding to the gth domain of the ith feature space is
decided as (10), shown at the bottom of the next page, where
ftig(.) represents the membership value corresponding to the
gth (g = 1.2.-.- n;) domain in the «th ( = 1,2,--- . N)
feature space.

For the linguistic hedges like greater than or more than
where exactly one boundary of the reflected data set is known,
the membership values are similarly decided.

There may be information with statements using the con-
nectors and, but etc. (e.g., F; is greater than 400 and/but less
than 500) where the reflected data sets are both way bounded.
In such cases, initially the two statements are considered
separately and two membership values are determined. The
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resultant membership value is decided as the geometric mean
of the two membership values, e.g.,

tig(F; greater than vy and less than vo)
= [pig(F; is greater than vy) X ju;4(F; is less than 7/2)]1/2

(1n

There may be statements like “F; is between 400 and 5007
which is equivalent to the statement “F; is greater than 400
and less than 500" and proceed as in the previous case. Hence,
to put it concisely, rules for the calculation of membership
values can be found out if the provided information is in the
set form.

Linguistic Form: The information provided in this form are
completely in linguistic terms such as “F; is small” or “F; is
more or less high.”

To handle linguistic information, the system assumes only
three primary linguistic variables, namely small, medium and
high and the corresponding membership functions considered
as 1 — S, m and S functions respectively. Using the a priori
knowledge, the values of the parameters of the membership
functions are assigned.

As long as the membership functions are chosen properly,
one recovers [21] the entirety of the classical logic for the
designations of true and false. This implies that the system
finds two truth values to indicate the interval of the truth values
corresponding to a linguistic feature information. Here the
system assumes for the two linguistic variables small and high
that true = [0.5. 1], false = [0.0.5] and extend this particular
logic by adding

very true = [0.8.1.0]

more or less true = [0.6.0.8]

[

[
neither true nor false = [0.4.0.6]
more or less false = [0.2.0.4]
[

very false = [0.0.0.2]. (12)
So corresponding to the previous type of interval-based truth
value, one can find an interval of feature values that can be
considered an equivalent of any linguistic information. That
means, corresponding to a linguistic feature information, the
system finds an interval of feature values. In other words,
the system converts the linguistic information in set form.
Then finds the membership value for various domains of
the considered feature space depending on the converted
information in set form from linguistic form.

The previous interval based truth value logic can not be
directly used for the primary linguistic variable medium, whose
membership function is a 7 function. Here the aforemen-
tioned interval based truth value reflects two different data
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sets and, accordingly, two different membership values for
various domains are obtained. Finally, the maximum of these
two membership values is retained as the membership value
corresponding to each domain in the feature space.

It may happen that the information about a particular feature
is fully unavailable or missing. In such cases, it is reasonable to
assign some low (say, 0.2) membership value to all the feature
domains in that particular feature space. It is done to keep the
system’s ability of handling the missing information, i.e., to
decide the output based on the available partial (or incomplete)
information. The logic behind assigning low membership
values for missing information is to bring down the confidence
of the system’s output.

The aforementioned discussion shows the way, how the
impreciseness/ uncertainty in the input feature information has
been handled by providing/ modifying the membership values
heuristically to a great extent. The logic behind the assignment
of membership values is also intuitively appealing.

Characteristic Vector: The membership values correspond-
ing to any input pattern X to be in the obtained subdomains are
denoted by a vector, named as characteristic vector CV (X).
A typical pattern X consists of the individual feature infor-
mation, i.e., X = (£, Fy. -+, Fx). Initially, each individual
feature information is considered separately to find the mem-
bership values to the domains of the individual feature space.
The approaches to determine the membership values from the
feature information are discussed previously.

Let us consider a typical, say hth (h 1.2.---.N),
subdomain that consists of the following domains

h
N

)

(97 .95 gl g (13)

where depending on h, g!' represents a particular domain
in the ith feature space. Suppose ug:,(X) represents the
membership of X to belong in the gPth domain. So the hth
element of CV(X) i.c., the membership value corresponding
to hth subdomain, is defined as the arithmetic mean of the
membership values of individual feature domains, i.e.,

+ Zl\ trgi (X)) if pgn (X) >0
foralli=1,2,.---.N
otherwise
h=1,2,---.N.

cup(X) = 0

(14)

So the block feature extractor finds a characteristic vector

with N elements (for N subdomains) corresponding to each

input pattern X. This CV (X)) along with the relational matrix

R are utilized in the fuzzy classifier to find the degree of
similarity of the input X to the various pattern classes.

Jig(v 12 iy > iy and ;g (v) >0
g\l : g g
11ig(F s less than v) = [ig(0)])”,  if v < ayy and pip(v) > 0 (10)
; 0.2, if v > a;q and pe(v) =0
0, otherwise
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B. Fuzzy Classifier

In 1977, Zadeh [8] suggested the compositional rule of
inference for the fuzzy conditional implication. Although,
other authors [9]-{11] have suggested different methods, we
have restricted to Zadeh’s compositional rule of inference for
developing the system. It is defined here before describing the
classifier.

Definition 1: Let A denote a fuzzy set in X and R denote
a fuzzy relation in X'x). Then the compositional rule of
inference asserts the solution of the relational assignment
equations [19]

R(z)=Aand R(z.y) =B
is given by
C=R(y)=A0OB

= maxmin{ja(z). pus(x.y)} (15)

where A O B is the max — min composition of A and 8.

Note: The min operator finds the minimum of any two
elements, i.e., it provides the connective information. When
the minimum of the two elements is kept same but the value of
the other element is increased, the effect is not reflected by the
min operator. On the other hand, the arithmetic mean (AM)
operator finds the middle most value of any two elements,
i.e., it gives collective information. Any change in any of the
elements is reflected by the AM operator.

The classifier incorporates the previous max —in composi-
tional rule of inference in a modified way. The min operator of
max — min operation in (15) is replaced by AM operator. That
is, the classifier incorporates the max-AM compositional rule
of inference. So the class similarity vector S(.Y') is determined
as (16) (shown at the bottom of the page), where cvp,(X) is
the hth element of CV(X); ry; is the (h.j)th entry of R
and N is the number of subdomains. Hence the block fuzzy
classifier finds a class similarity vector S(.X') corresponding
to an unknown input X.

Example 1: Suppose there are obtained 4 subdomains (de-
noted by SD1, SDa, SD3 and SDy) for a 3 class (denoted
by Cy, Cs and Cs) problem. Let the characteristic vector be
CV(X) = [0.7.0.3.0.0,0.0] for an input pattern X and the
relational matrix R is estimated as follows.

F Cy Cy Cy
5D, 0.0 1.0 0.0
SDs 1.0 0.0 0.0
SDs3 0.6 0.00.9
5Dy 0.0 0.0 1.0

The similarity vector S(X) for the pattern X will be
S(X)=CV(X)OR
= [0.65 0.85 0.0].
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Here S(X) indicates that the unknown pattern X is inclined
to the class Cs.

C. Decision Maker

The similarity vector S(X) is analyzed in the decision-
maker block. The system always tries to provide multiple
output choices for classes with their preferences. That is, the
outputs will be one of the following types:

1) Single Choice: If the entry in S(X) corresponding to
only one class, say (', is positive then the class C; is
considered as the output with single choice.

2) Combined Choice: If the entries in S(X) corresponding
to more than one class are positive and are nearly same
(difference < 0.05) then the said classes are considered
as output with combined choice.

3) First-Second Choice: If the entries in S(X) correspond-
ing to at least two classes are positive and the said
entries do not satisfy the criteria for combined choice
then first-second choice is considered. The highest two
entries in S(X') are taken as the first and second choices
respectively.

4) Null choice: If all the entries in S(X) are zero then
the system refuses to assign the unknown sample to any
class, i.e., null choice is given.

It is to be mentioned here that the single choices estimate
the nonoverlapping regions in the feature space whereas the
combined and first-second choices estimate the overlapping
regions. Null choices estimate the portions uncovered by the
training samples (with extended portions) and also the portions
not represented by any class.

In order to give the final output decision in linguistic form
regarding the class or classes to which the unknown input
pattern .X' may belong, a measurement of confidence factor
(CF) is defined as

1 A

ﬁ Z{v‘imml()&’) — SJ(X)}

J=1

1
CF = -

B S mwl(‘\v) +

0<CF <1 17

where $,,04(X) is the highest entry in S(X); 5;(X) denotes
the jth entry in S(X) and M denotes the number of classes.

For the case of single choice, the linguistic variable surely is
attached to the final output decision. Otherwise the linguistic
variable likely is attached to the output. Based on the CF
values, the linguistic hedges very, more or less, not etc. are

maX,.;o..

S(X)=CV(X)OR={ 0.

..\"{%(m'h(x) + Thj)}- if cvp(X) > 0and 7h; >0

(16)

otherwise
j=12..--.M.
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assigned with the linguistic output decision as follows:

1) very true :
2) true (only) :

if0.8<CF<1.0

if 0.6 <CF <0.8
3) more or less true :  if 0.4 < CF < 0.6
4) not false: if 0.0 < CF < 0.4.

In the case of null choice, the system gives the linguistic output
decision as unable to recognize. The CF values are always
attached along with the linguistic output decision.
Some typical output forms are:
1) This is very surely to be Cy (CF= 0.89).
2) This is likely to be Cy (CF= 0.72) but not unlikely to
be Cy (CF= 0.32).
3) This is more or less likely to be C; (CF= 0.48) but not
unlikely to be Cy (CF= 0.25).
4) This is not unlikely to be C; (CF= 0.28).
5) This is more or less likely to be either Cy or Cy (CF=
0.52).

V. IMPLEMENTATION AND RESULTS

To verify the effectiveness of the proposed recognition sys-
tem, different possible pattern sets were first of all generated
and the previous algorithm was implemented on them. The
recognition scores are found to be quite satisfactory in all
the cases. Figs. 6(a)—(d) show typical pattern sets in two
dimensional feature space. In Fig. 6(a), there are six pattern
classes (denoted by A, B, C, D, E, and F respectively) with
120, 120, 90, 90, 180 and 120 samples respectively. In Fig.
6(b), there are three pattern classes (denoted by A, B, and
C respectively) with 300, 100 and 100 samples respectively.
In Fig. 6(c), there are two pattern classes (denoted by A and
B) with 100 samples in each class. In Fig. 6(d), there are
two pattern classes (denoted by A and B) with 100 and 150
samples respectively.

To implement the proposed algorithm, five different sets
of 10% training samples were chosen randomly from each
of the previous four sets of pattern classes. The recognition
scores for the considered four cases are shown in Tables I-
A through I-D, respectively. The scores shown are obtained
by averaging those corresponding to five different training
sets. The membership functions of various domains along the
feature axes are considered as the 7 functions ((1)). Assuming
the linear triangular membership functions ({3)), more or less
same results are obtained. Note that the recognition scores
are grouped into five categories, namely single correct choice,
first correct choice, combined correct choice, second correct
choice and fully wrong choice. The single correct choice
set includes those samples for which the system’s single
choice corresponds to the actual class. The first correct choice
set includes those samples for which the system provides
first-second choice with first choice as the actual class. The
combined correct choice set includes those samples for which
the classifier provides combined choice and one of the choices
corresponds to the actual class. The second correct choice set
includes those, for which the system considers first-second
choice with second choice as the actual class. Samples not

falling under the aforementioned categories are termed as
misclassification or fully wrong choice. It is to be noticed
that the first-second choices provide the states first correct
and second correct choices. Hence the four output forms of
the recognition system are categorized in the aforementioned
five states.
Observe that the pattern classes in Fig. 6(a) are of regular
(elliptical) shape and there exists overlapping between two or
more classes. On the other hand, the pattern classes in Fig.
6(b)—~(d) are irregular shape and they are mutually nonover-
lapping. In these three cases, most (95.4% to 99.6%) of the
samples are seen to be recognized by single choices and the
remaining samples are recognized either by first or combined
choices. There is no samples falling under the sets second
and fully wrong choices. In case of Fig. 6(a), there are some
samples that are found under the sets second correct and fully
wrong choices. It is to be noted that when the overlapping is
between two classes then the samples are recognized either by
single choice or first choice or combined choice or second
choice and so there will not be any sample falling under
the set fully wrong choice. In case the overlapping exists
between more than two classes, some samples will obviously
fall under fully wrong choice. In such cases, it may be possible
to avoid this situation by providing a higher choice namely,
third choice.
To examine the practical applicability, the algorithm was
then implemented on a set of Indian Telugu Vowel Sounds in a
consonant-vowel-consinant context uttered by three speakers
in the age group 30 to 35 years. Fig. 7 shows the typical
feature space in Fyx [, plane of the six vowels (6, a, i,
u, e, o) containing 871 samples. Fy and F» denote the first
and second formant frequencies that were obtained through
spectrum analysis of the speech data. The boundaries of the
classes are seen to be ill-defined (fuzzy). The details of the
feature extraction procedure is available in [12].
The test set consists of the aforementioned 871 data and 102
imprecise (incomplete) data. These imprecise data on F; and
F5 were coded to various linguistic forms viz., (700, between
1800 to 2200), (about 600, more or less high), (small, —) etc.
by the trained personnel. It is to be mentioned here that these
imprecise samples were ignored in earlier works [22]-[26]
that were incapable of handling them. The recognition score
of the vowel data is shown in Table II where the classifier is
trained with a set of 10% samples drawn randomly from 871
data. The membership functions of various domains along the
feature axes are considered here as the 7 functions. Assuming
the linear triangular membership functions, similar results are
obtained.
A list of some typical output is given for illustration.
1) (300, 900): This is surely to be u (CF= 0.78).
2) (700, 1300): This is more or less likely to be a (CF=
0.55) but not unlikely to be 6 (CF= 0.32).

3) (850, 1300): This is more or less sure to be a (CF=
0.25).

4) (250, 1550): unable to recognize this sample.

5) (between 500 and 650, 1600): This is likely to be i
(CF= 0.63) but not unlikely to be e (CF= 0.32).
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Fig. 6. (a)~(d) Show four sets of pattern classes.

6) (about 350, —): This is likely to be either ¢ or u (CF=
0.28).

These natural outputs confirm the vowel diagram in Fig. 7.
Note that for the input (250, 1550), the system is unable to
recognize the vowel, as this information is having very much
insignificant similarity with the vowel classes. This has been
regarded as misclassification while computing the recognition
score. Further, for the information (about 350, —) (here

“«

”»

indicates that there is no information for F5 feature), the
system finds some similarity with the vowel classes 7 and u,
on the basis of the [} feature information alone.

VI. CONCLUSION
A recognition system having the flexibility of accepting
input in quantitative form, linguistic form, set form and mixed
form, and in providing output decision in natural (linguistic)
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TABLE E-A
RECOGNITION SCORE FOR THE PAITERN CLASSES IN FIG. 6(a)
%Recognition Score
Actual Classes Overall
Various Group of Choices A B C D E F Score
Single Correct Choice 75.00 5038 77.78  66.67 7279  67.50 68.67
First Correct Choice 19.17 2417 1666 17.77 2277 16.67 19.80
Combined Correct Choice 4.17 7.5 1.11 6.67 22 333 4.03
Second Correct Choice 1.66  16.67 3.33 8.89 1.67 1167 6.94
Fully Wrong Choice 0.00 0.83 111 0.00 0.56 0.83 0.56
TABLE I-B 2700 Wir —_—
RECOGNITION SCORE FOR THE PATTERN CLASSES IN FiG. 6(b).
%Recognition Score 1
Actual Classes Overall l“
Various Group of Choices A B C Score 2400 ig il 61
Single Correct Choice 9533 9400  97.00 95.40 i Hilsi
First Correct Choice 300 300 200 2.80 i H e e
Combined Correct Choice 166 3.00 100 2.80 HE RS
Second Correct Choice 0.00 000 0.00 0.00 2100 nr i s
Fully Wrong Choice 0.00 000 000 0.00 g §§§
il scd
TABLE 1-C .
RECOGNITION SCORE FOR THE PATTERN CLASSES IN FiG. 6(c) 1800 R
%Recognition Score ‘?2
Actual Classes Overall ;:
Various Group of Choices A B Score 1500
Single Correct Choice 98.00 100.00 99.00
First Correct Choice 1.00 0.00 0.50
Combined Correct Choice 1.00 0.00 0.50
Second Correct Choice 0.00 0.00 0.00
Fully Wrong Choice 0.00 0.00 0.00 1200
TABLE 1-D
RECOGNITION SCORE FOR THE PATTERN CLAssEs IN Fic. 6(d) 900
%Recognition Score
Actual Classes Overall
Various Group of Choices A B Score
Single Correct Choice 98.00 100.00 99.60 600 ; : . . I——
First Correct Choice 1.00 0.00 0.40 200 100 400 500 600 700 800 900
Combined Correct Choice 0.00 0.00 0.00 F, in Kz
Second Correct Choice 0.00 0.00 0.00
Fully Wrong Choice 0.00 0.00 0.00 Fig. 7. Vowel classes in the I} x F, plane,

form along with its degree of certainty has been formulated.
In order to show the effectiveness of the proposed system,
different artificial pattern sets were considered. Problem of
recognizing vowel sound in consonant-vowel-consonant con-
text has also been considered to demonstrate its practical
applicability to real life data. The results shown in Tables 1
and II using the 7 membership functions. The results obtained
using the linear triangular membership functions ((3)), are
more or less same.

The recognition system always tries to provide multiple
class choices and classify a sample either as single or first-
second or combined or null choices. The recognition system
has the capability of reflecting the overlapping and nonoverlap-
ping regions. The single choices estimate the nonoverlapping
regions. The overlapping regions are estimated by first-second

and combined choices. The null choices reflect the portions
outside the pattern classes and/or the portions uncovered by
the training samples or by the obtained feature domains (with
the extended portions).

The decisions of the existing conventional classifiers can
be categorized into two hard states as correct or wrong. Each
of these classifiers is designed to apply to some particular
situations. If they are applied in the situations, different
from the aimed ones, then satisfactory results, in general, are
not obtained. Moreover the conventional classifiers can not
provide multiple class choices and so they can not estimate the
overlapping or nonoverlapping portions of the pattern classes
in the feature space.

In contrast to the conventional classifiers, the proposed
recognition system can be applied to all possible situations. It
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TABLE [1
RECOGNITION SCORE FOR THE VOWEL CLASSES IN FiG. 7

%Recognition Score

Actual Classes

Various Group of Choices é a i u e 0 Overall Score

Single Correct Choice 40.05 5947 6872 6792 5219 5537 58.92

First Correct Choice 1134 2255 2488 2612 2027 2241 21.76

Combined Correct Choice 2083  11.24 2.91 1.99  13.04 8.33 8.63

Second Correct Choice 19.44 6.74 3.49 397 1256  13.89 9.56

Fully Wrong Choice 834 000 000 000 194  0.00 1.13
is to be observed that the proposed algorithm does not assume Correct Wrong Coventional two siafes
any distribution of the pattern classes. Only assumption it made
is that the training samples more or less should represent the
classes. The effectiveness of most of the existing classifiers Sngle choice  First [ Second roposed flve stales
depends on the distribution of the pattern classes. Bayes EAAPRATIE L
classifier is the most well known and established classifier, choice
and we have tried to apply this on the artificially generated

Fig. 8. Conventional two state versus proposed five state output.

pattern sets for the comparison purpose. If the classes are
of regular shaped and if their distributions can be obtained
nicely, the performance of the Bayes classifier is more or less
same with our system (considering single, first and combined
correct choices). For example, the classes in Fig. 6(a) are of
regular (elliptical) shaped and the recognition score of the
Bayes classifier was found to be 90.64 whereas, the recognition
score for our classifier with single, first and combined correct
choices is 92.50. Again analyzing the results, it has been found
that our output decisions showing multiple choices are more
natural and justified.

When the pattern classes are not of regular shaped, it is
extremely difficult to find their distributions. In such cases,
multivariate normal distributions are assumed. But the Bayes
classifier with multivariate normal distributions gives poor
result, or in other word it may not always be applied on such
pattern classes. For example, we could not apply the Bayes
classifier on the pattern classes in Fig. 6(b)—(d), whereas it is
not difficult to apply the proposed algorithm on these data sets,
and the recognition scores (Tables I-B and I-D) were found to
be very satisfactory.

It is observed from the vowel recognition problem that
the confusion in recognizing a sample considering the single
and first choices lies, in general, only with the neighboring
classes constituting a vowel triangle. The similar findings
were also obtained with the previous investigations [22]-{26],
considering deterministic input/output. The overall recognition
score is quite satisfactory considering the fact that it accepts
approximate feature information and the information relates
only F; and F,. Feature Fj, which were incorporated in
[22]-[26], has not been considered here.

The linguistic output decisions of the recognition system
can be categorized in five states, namely, single correct, first
correct, combined correct, second correct and fully wrong
(null) choices. For a sample with first-second choice, if the first
choice corresponds to the actual class then it is included in the
first correct choice set, and if the second choice corresponds
the correct class then it is included in the second correct
choice set. Hence the considered four output forms of the

system are categorized in the aforementioned five states. This
is explained in Fig. 8. Because of the flexibility, the system
has a provision of improving its efficiency significantly by
incorporating combined and second choices under the control
of a supervisory scheme.
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