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Reflection of water waves by a nearly vertical wall
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The problem of reflection of water waves by g nearly vertical wall is studied, A
simplified perturbational analysis followed by Havelock's expansion of water
wave potential 15 employed to tackle the problem. Assuming some particular
shapes of the nearly vertical walk, Arst-order correction to the refection coeffictent
ia caleulated for deep water as well as for uniform finite depth of water.

1. Introduetion

Kachoyan and Mckee [1] considered the problem of reflection of a two-
dimensional surface wave train by a sloping sea wall, Assuming the slope to be large
they set up & perturbational scheme and calculated the velacity potential and the
force on the wall approximately.

In the present paper, the problem of reflection of a two-dimensional surface
water wave train by a nearly vertical rigid wall is considered, by using a simplified
perturhational analysis followed by an appropriate Havelock’s expansion of water
wave potential, The first-order correction to the reflection coefficient is olxained in
terms of an integral involving the shape function for deep water as well as finite depth
of water. Finally this is calculated explicitly by assuming some typical shapes of the
wall.

2. Formulation of the problem
We assume that the water is bounded on the lefe side by a neatly vertical wall
r=ecfy}h, (6« 1) where ¢{y) is 2 bounded and continuons function and =10, »
being taken vertically downwards and y=0(x >0} is the position of the mean fres
surface, Assuming linear theory and the motion to be irrotational, the velocity
potential ¢ satisfies

Vip=0 in the fluid region f1)
with boundary conditions
- Bp
R-:p-l-[_.l—y=|:l on y=0K=0) (2)
il
P20 onx=uly) @
in

{rn denotes normal to the walf)

V=0 as Yoo (4)
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Here the condition {2) is the linearized free surface condition and K =% /r where g is
the frequency of the incident wave with time dependence exp (—iof) {(suppressed
throughout}, g is the acceleradon due to gravity. in addition to the above boundary
conditions, ¢ is also tequired to satisly the requirement that

p~exp(— Ky —ikx)+ Rexp{— Ky +iKy) as x— + o {5)

where exp({— Kyv—iKx) denotes a normally incident wave train from positive
infnity and R 15 the reflection coefficient.

Assuming the parameter & to be very small, and neglecting (e?) terms, the
boundary condition {3) can be expressed in approximate form on & =0 as Mandal and
Chakrabarti [2]

dip d dip -
E{ﬂ,y}—ﬂa{c{y}a—ytﬂ,}}}—ﬂ for =0 (&)

3. Method of solution
The form of the approximate houndary condition (8) suggests that we may take
the following straightforward perturbational expansion in terms of the small
parameter ¢ for @ and R respectively.

@lx, v, )= glx, ¥} + ey (x, ¥) + Ofe?) ][

1 {(7)
Rig)=Ry+eh, +0(c7)

We shall content ourselves with the determination of @y, Ry and ¢, K.
Substituting the expansion {7} into equations {11, (2), (4}, {5) and {6) we find after
equating the coefficients of identical powers of £° and £! on both sides, the functions
@y and g, must be the solution of the following two independent boundary value

problems (BVI).
BVP I. The functicn (g, satisfies

Vipp=0  »=0,x>0 {8 a)
Koo+ pe,=0 on y=() (85)
%EU on x=f{) (8 ch
dy
po~exp{— Ky —iKx)+ Ryexp ( —Ky+1Kx) 48 A— 00 {8 )
Vi —0 a3 Y=o {82)
Obvinusly
wo=exp{— Ky—1Rx)+exp{— Ky +iKx)
so that By=1.

BVFP If. The function ¢, satisfies
Vip,=0  y20,v>0 ' 94)

Koi+on,=0 ony=0 (24)
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dpy d 9o _

E=ET_}; (t‘(}’}a} =f1:}?] an x=ﬂ,}'}[] (E'c]
0y~ B exp{— Ky+ifx) a8 x—+o0 {9d)

Vi, —0 as V=0 (%e)

We note that the right side f{ 3} of {9 £) is now known. We employ the Havelock’s
expansion (Ursell [3]) of water wave potential to solve for g, (x, ¥). ‘Thus ¢, has the
expansion given by

@ (%, ¥) =Ry exp({— Ky +iKx)
+ J:H(Ic}exp[—kx}[kcusky—-Ksinky} dk x=0 (10}

Using the condition (9 £} we find
S =1KR, exp(—Ky)+ J:{—k}ﬂtk}{kcnsky—Ksin Bydk  y>0 (11)

so that by Havelock's inversion theorem [3]

%R1=I f¥yexp(—Kyldy (12)
and "
-3 =

Thus £, and A{%) are obtained when £fy) is given so that ¢ i3 obtained up to ¢
As an illustration we consider the following two particular shapes of the nearly
vertical chiffs

(1) c(p)y=yexp{—Ayiy=0) {4 i3 a constant)

then
Fiyy=2Kexp{—(A+Kp){A+K)y~1)
g0 that
. 42
ST ot
and

CAK[K{(A+ K + R} + 2287

Atk)=- (k2 o K2R (K + 535

(it) «(yy=asinly

then
F¥1=2aK exp{— Kv) (K sin iy — icos y)
s0 that
_ 4aiK?
ot g
(A +4E%y
and

4al KK R 407
KRN+ (h+ DK+ (k- 1))

Alk)=
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4, Finite depth of water
For finite depth of water we can extend the problem easily. In this case water is
bounded below by a latbottom y= A and an the left by a nearly vertical wall x =2ef ¥},
g1, By h {¢{0)=0). Then the velocity potential ¢ satisfies the following BVP:

Vip=0 x>0y h {14 a)
/)
K¢+%=ﬂ on 3=0 (148)
/)
f{-jfzu on x=uc(y)  O<y<h (14¢)
O
Y0 ony=h (14d)
iy
@~ (2, 1)+ Ripy =2, 00 as x—+ 00 (14¢&)
whure
_cosh kyth—y) ]
{P|nt{xl J"I}“' ‘_CIEIS}[ ‘m CXp (— Iknx}

and &, is the positive root of K =Etanh (&),

Following a similar technigue we find that ¢, and ¢, are the solutions of the
following BVP s,

BVP I. The function gy satisfies

Yip,=0 ¥zl x>0 (15 a)
K‘;ﬂﬂ +¢}ﬂ},=ﬂ on j'zﬂ {156}
Po ™ Pinl® 3+ Roind —2,5) a8 K00 {15¢)
!

o0 anx=0 (15d)

ax
%=ﬂ on y=h {15}

dy

Obwiously
2 cnshﬁ{h -3
Po ST oeh fph &

os %

so that Rp=1.

BFFE II. The function i, satisfies

Vip, =0 =0 Dy (16a)
Kipy g, =0 on ¥y=0 {16 &}
@y~ B (—x,9) as x—+o0 {16c)
& d G
Ll 2l anx=0  o<yp<h (16d)
cx  dy oy
=
el PO oyt (16¢)

By



Reflection of woater waves at a wall 669

From (16 &) we obtain

i d i
%=E{E{y}ﬂi}?}=ﬂy} O<y<h on x=10 (17)

By Havelock's expansion @, has the representation [3]

cosh kylh—v)

P =Rk

exp (ikgx}+3 B, cosk,(h—3)exp(—kx)  (18)

where the summation extends over the real positive roots of K +Etan (kR)=0.
Now using the condition (16 47 we find

cosh kylh—1)

=ik, R
F(y) aity cosh koh

—3 ' k,B,cosk{h—1) (1%}

so that by Havelock’s inversion theorem [3] we find

—4icosh kgh J. Fla) cosh kyla— i) do
o
gk +sinh 2kok

R1=

and

&
—4'[. Fla) cos b (x— k) dot
B = 2
i 2k hi+sin 2k

Thus R, and B, are found when (¥} is given. Hence we find ¢ up to the first order.
As an illustration we consider-the following two particular shapes of the nearly
vertical chiff:

(i) ely)=vexp(—iy),0=sy<h

then

2 —4a ;
Fly)= ——k“—;—ﬁ?ﬂ[smh kot —3) — koy cosh kg{h— y)— Ay sinh kol — )]
so that

—_ —4iki
YT (2koht sinh 2R R4 — 4R2)

[:;_z (A% —4k2)* + BE]

% exp (—AK) — (42 + 4k3) cosh 2o+ 41 kg sinb Ekuh]
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and

_ 4kgexp(—4h) Atky
" cosh koh{2k, A+ sin 2k ) | [(A+ ko) + 1)

X {(A+ RoWh((7. 4+ ko) + k) — 2R3

A—Fk
= {{‘1 . }Z:I:__kj—}z {(; -kujf":{;{ _kg}z +k§:l — Ef{:}
i A
%m [2(A+ kohk, cos ki — ((A+ ko — R} sin & )
i a

_exp{(A—koh}k,
HA—koy + A7)

(i} e{)=asindy O=<y=h
then

(24— ko)kq cos koh— (A — ko) — B2)sin .E.-,,h}]

Fly)=

Elkg . . . .
I = =1 o 1 3 iy —#
SOt A [{A—feq) sinh {{A—kpdy -+ Roh) — (4 + k) sinh ({24 + k) o]

=0 that

R,

—diak, [ Akgcash 2koh A%+ iky—4k3

_ 2 o b A%
(2hoh +sinh 2hgh) Ry LT R J

and

_ Bakoh,

hm e (2Rafitsin 208) T (A — ko) +k7) T H(A+ ko) +ED)
L1}

% [2Eg(cosh Ak —cosh Eoh cos k) + (A2 — 482 + B2 sinh kb sin k4]

Acknowledgment
This work is partially supported by a TWAS research grant, administered
through the Calcutta Mathematical Society.

References
[1]1 Kacuowvan, I, J., and McErr, W, D, 1985, Enge. AMarh., 19, 151,
[2] Manoar, B. M., and CHaxrapartn, A., IMA, T, Appl. Mark., 43, 137,
[3] Unsere, F., 1947, Proc. Camb. Phil. Soc., 43, 374,



	2.jpg
	3.jpg
	4.jpg
	5.jpg
	6.jpg
	7.jpg

