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Introduction. S. Mazur [10] was the first to consider the following
smoothness property in normed linear spaces, called the Mazur Intersection
Property (MIP), or, more briefly, the Property (I):

Every closed bounded convex set is the intersection of closed balls con-

taining it.

Later, R. R. Phelps [11] provided a dual characterization of this property
for finite-dimensional spaces. Nearly two decades later, Phelps’ results were
extended by J. R. Giles, D. A. Gregory and B. Sims [9] to general normed
linear spaces. They also showed that in dual Banach spaces the MIP implies
reflexivity, and considered the weaker property that every weak* compact
convex set in a dual space is the intersection of balls (Property weak*-I).

Subsequently, there appeared several papers dealing with similar inter-
section properties for compact convex sets [14, 12], weakly compact convex
sets [16] and compact convex sets with finite affine dimension [13].

In the present work, we give a unified treatment of the intersection prop-
erties for these diverse classes of sets by considering the MIP for the members
of a general family of closed bounded convex sets in a Banach space, and
show that all the known results follow as special cases of our result. We also
introduce a new condition of separation of convex sets which turns out to be
equivalent to the intersection property in all known cases. This strengthens
the results of Zizler [15]. As another application of our result, we extend
our previous work [1] on lifting the MIP from a Banach space X to the
Lebesgue–Bochner space Lp(µ,X) (1 < p < ∞).

We should point out that our proofs are usually modifications, refine-
ments and adaptations to our very general set-up of arguments for particular
cases to be found in [9], [12] and [14].

1991 Mathematics Subject Classification: Primary 46B20.
Key words and phrases: Mazur Intersection Property, duality map, support mapping,

points of continuity, (w*-) denting points, norming subspaces, Bochner L
p-spaces.



46 P. BANDYOPADHYAYA

Notations. We work only with real Banach spaces. The closed unit
ball and the unit sphere of a Banach space X will be denoted by B(X)
and S(X) respectively. For z ∈ X and r > 0, we denote by Br[z] (resp.
Br(z)) the closed (resp. open) ball of radius r and centre z. For x ∈ S(X),
D(x) = {f ∈ S(X∗) : f(x) = 1}. The set-valued map D is called the duality

map and any selection of D is called a support mapping. For K ⊆ X, f ∈ X∗

and α > 0, the set S(K, f, α) = {x ∈ K : f(x) > sup f(K) − α} is called
the open slice of K determined by f and α. For A ⊆ X, denote by co(A)
(resp. aco(A)) the convex (resp. absolutely convex) hull of A. For A ⊆ X,
f ∈ X∗, ‖f‖A = sup{|f(x)| : x ∈ A}, A◦ = {f ∈ X∗ : ‖f‖A ≤ 1} and
for B ⊆ X∗, A-dia(B) = sup{‖b1 − b2‖A : b1, b2 ∈ B}. For A1, A2 ⊆ X,
dist(A1, A2) = inf{‖x1−x2‖ : xi ∈ Ai, i = 1, 2}. For A ⊆ X, A

σ
denotes the

closure of A for the topology σ. Whenever the topology is not specified, we
mean the norm topology. We identify an element x ∈ X with its canonical
image x̂ in X∗∗.

1. The set-up and main result. Let X be a real Banach space, let
F be a closed norming subspace of X∗ (i.e., ‖x̂‖B(F ) = ‖x‖, for all x ∈ X),
and let C be a family of norm bounded, σ(X, F )-closed convex sets with the
following properties:

(A1) C ∈ C, x ∈ X and α ∈ R ⇒ αC + x ∈ C,

(A2) C1, C2 ∈ C ⇒ acoσ(X,F )(C1 ∪ C2) ∈ C,

(A3) C ∈ C, C absolutely convex and f ∈ F ⇒ C ∩ f−1(0) ∈ C.

Note that (A1) implies that C contains all singletons.

Examples. (i) C = {all closed bounded convex sets in X}, F = X∗.

(ii) X = Y ∗, C = {all w*-compact convex sets in X}, F = Ŷ .

(iii) C = {all compact convex sets in X}, F = any norming subspace.

(iv) C = {all compact convex sets in X with finite affine dimension},
F = any norming subspace.

(v) C = {all weakly compact convex sets in X}, F = any norming
subspace.

Let F = {C◦ : C ∈ C}. Then F is a local base for a locally convex
Hausdorff vector topology τ on X∗, the topology of uniform convergence
on elements of C. Clearly, τ is stronger than the w*-topology on X∗ and
weaker than the norm topology.

Definitions. (1) Denote by Eτ the set of all extreme points of B(X∗)
which are points of continuity of the identity map id : (B(X∗),w∗) →
(B(X∗), τ).
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(2) For C ∈ C, C absolutely convex and ε > 0, we say that a point
x ∈ S(X) belongs to the set MC,ε if there is a δ > 0 such that

sup
y∈C,0<λ<δ

‖x + λy‖+ ‖x− λy‖ − 2

λ
< ε .

(3) Hτ =
⋂
{D(MC,ε)

τ
: C ∈ C, C absolutely convex, C ⊆ B(X) and

ε > 0}.

Lemma 1. For any absolutely convex C ∈ C, C ⊆ B(X), x ∈ S(X) and

ε > 0, the following are equivalent :

(i) x ∈MC,ε.

(ii) There is a δ ∈ (0, 1) such that C-diaS(B(X∗), x̂, δ) < ε.

(iii) There is a δ ∈ (0, 1) such that C-dia[
⋃
{D(y) : y ∈ S(X) ∩ Bδ(x)}]

< ε.

P r o o f. We omit the proof, which is an easy modification of the proof
of Lemma 2.1 in [9].

Now we have our main result:

Theorem 1. If X, F and C are as above, consider the following state-

ments:

(a) F ⊆ R+Eτ
τ
.

(b) F ⊆ R+Hτ
τ
.

(c) If C1, C2 ∈ C are such that there exists f ∈ F with sup f(C1) <
inf f(C2) then there exist disjoint closed balls B1, B2 such that Ci ⊆ Bi,
i = 1, 2.

(d) Every C ∈ C is the intersection of closed balls containing it.

(e) For every norm dense subset A of S(X) and every support mapping

φ : S(X) → S(X∗), F ⊆ R+φ(A)
τ
.

Then we have (a)⇒(b)⇒(c)⇒(d)⇒(e).

(For the converse implications, see corollaries and remarks at the end of this
section.)

P r o o f. (a)⇒(b). It is enough to prove Eτ ⊆ Hτ .

Let f ∈ Eτ . Let C ∈ C, C absolutely convex, C ⊆ B(X) and ε > 0. We

want to prove f ∈ D(MC,ε)
τ
. Let K ∈ C and 0 < η < ε. We may assume

K ⊆ B(X). Let K0 = acoσ(X,F )(K ∪ C). Then K0 ⊆ B(X) as B(X) is
σ(X, F )-closed. Note that K0 ∈ C by (A2).

Since f is an extreme point of the w*-compact convex set B(X∗) and id :
(B(X∗), w*)→ (B(X∗), τ) is continuous at f , it follows from the theorem
on p. 107 of [5] that the w*-slices of B(X∗) containing f form a base for
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the relative τ -topology at f . Thus there exist x ∈ S(X) and 0 < δ < 1 such
that f ∈ S = S(B(X∗), x̂, δ) and K0-dia(S) < η.

Now, by Lemma 1, x ∈ MK0,η ⊆ MC,ε and for any fx ∈ D(x), fx ∈
D(MC,ε) and fx ∈ S, so ‖f − fx‖K ≤ ‖f − fx‖K0

< η.

(b)⇒(c). Let C1, C2 ∈ C and f ∈ S(F ) be such that sup f(C1) <
inf f(C2). Let z ∈ X be such that f(z) = 1

2 (sup f(C1) + inf f(C2)) and
put ε = 1

12 (inf f(C2) − sup f(C1)) > 0. Then inf f(C2 − z) > 5ε and
inf(−f)(C1 − z) > 5ε. We may assume without loss of generality that
z = 0, Ci ⊆ B(X), i = 1, 2, and ‖f‖ = 1. Let K = acoσ(X,F )(C1∪C2); then
K ∈ C,K is absolutely convex and K ⊆ B(X).

By (b), there are λ ≥ 0 and g ∈ Hτ such that ‖f − λg‖K < ε. If λ = 0,
we have ‖f‖K < ε, and hence infC2

f < ε, a contradiction. Thus, λ > 0.

Now, g ∈ Hτ ⊆ D(MK,ε/λ)
τ
. So, we can find x ∈ MK,ε/λ and h ∈ D(x)

such that ‖g − h‖K < ε/λ. By definition, there is a δ > 0 such that

sup
y∈K,0<α<δ

‖x + αy‖+ ‖x− αy‖ − 2

α
<

ε

λ
.

Choose an integer n > λ/(εδ). The proof will be complete once we show
that B1 = B(n−1)ε/λ[−nεx/λ] and B2 = B(n−1)ε/λ[nεx/λ] work.

Clearly, B1 and B2 are disjoint. Suppose, if possible, y ∈ C2 and y 6∈ B2.
Then y ∈ K. Take α = λ/(nε) < δ and observe that

‖x + αy‖+ ‖x− αy‖ − 2

α
=
‖x + αy‖ − ‖x‖

α
+

∥∥∥∥
x

α
− y

∥∥∥∥−
1

α

≥ h(y) +
(n− 1)ε

λ
−

nε

λ
= h(y)−

ε

λ
≥ g(y)−

2ε

λ

=
1

λ
[λg(y)− 2ε] >

1

λ
[f(y)− 3ε] ≥

1

λ
[5ε− 3ε] =

2ε

λ
.

This contradicts the fact that x ∈ MK,ε/λ. The other inclusion follows
similarly once we note that K, and hence MK,ε/λ, is symmetric and h ∈ D(x)
implies (−h) ∈ D(−x).

(c)⇒(d). Since singletons are in C and every C ∈ C is σ(X, F )-closed,
(d) follows from (c).

(d)⇒(e). (We adapt Phelps’ [11] arguments.) Let A be a norm dense
subset of S(X) and let φ be a support mapping. Let f ∈ S(F ), K ∈ C and
0 < ε < 1. We may assume K ⊆ B(X) and further that K is absolutely
convex and ‖f‖K > 1 − ε/2. (Let x ∈ B(X) be such that f(x) > 1 − ε/2.
Let L = acoσ(X,F )[{x} ∪K]. Then L ⊆ B(X), L ∈ C and ‖ · ‖L ≥ ‖ · ‖K .)
Let u ∈ K be such that f(u) > 1− ε/2. Put u′ = 1

4εu and D = K ∩ f−1(0).
Then D ∈ C [by (A3)] and u′ 6∈ D. By (c), there exist z ∈ X and r > 0 such
that D ⊆ Br[z] and ‖u′ − z‖ > r.
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Let µ = ‖u′ − z‖ − r > 0. Put

w =
1

r + µ
(ru′ + µz) .

Then ‖w− z‖ = r. Put x = (1/r)(w− z) ∈ S(X). Let C = co[{u′}∪Br[z]].
Let 0 < δ < µ/(r + µ). If p ∈ Brδ[w], then ‖p− w‖ < rµ/(r + µ), so

p = w +
rµ

r + µ
· y

for some y ∈ X, ‖y‖ < 1. Thus,

p =
r

r + µ
u′ +

µ

r + µ
(z + ry) .

Now, z + ry ∈ Br(z), and hence p ∈ Int(C), the interior of C. So, Brδ[w] ⊆
Int(C).

Let y ∈ Bδ[x] ∩A and g = φ(y). Put v = ry + z. Clearly, ‖v −w‖ ≤ rδ,
hence v ∈ Int(C) and g(v) = sup g(Br[z]). Now, v ∈ Int(C) ⇒ there
exists t ∈ (0, 1) and v′ ∈ Br(z) such that v = tu′ + (1 − t)v′. Thus,
g(v) = tg(u′) + (1− t)g(v′) < tg(u′) + (1− t)g(v). Also, 0 ∈ D ⊆ Br[z] ⇒
0 ≤ g(v) < g(u′) = 1

4εg(u) ≤ 1
4ε‖g‖K . So, 0 < ‖g‖K ≤ ‖g‖ = 1. Put

λ = 1/‖g‖K . Then supλg(D) ≤ supλg(Br[z]) = λg(v) < 1
4ε‖λg‖K = 1

4ε.
By symmetry of D, ‖λg‖D ≤

1
4ε.

Now, by Phelps’ Lemma [11, Lemma 3.1] applied to the linear space
sp(K) spanned by K, equipped with µK , the gauge or Minkowski functional
of K, we have

∥∥∥∥
f

‖f‖K
+ λg

∥∥∥∥
K

≤
ε

2
or

∥∥∥∥
f

‖f‖K
− λg

∥∥∥∥
K

≤
ε

2
.

But u ∈ K and ε < 1 implies f(u)/‖f‖K ≥ f(u) > 1 − ε/2 > ε/2 and
λg(u) > 0. Thus, ‖f/‖f‖K − λg‖K ≤ ε/2. Then we have

‖f − λg‖K ≤
ε

2
+

∥∥∥∥
f

‖f‖K

− f

∥∥∥∥
K

=
ε

2
+ (1− ‖f‖K) ≤

ε

2
+

ε

2
= ε .

Corollary 1. If in the set-up of Theorem 1, the set A = {x ∈ S(X) :
D(x)∩Eτ 6= ∅} is norm dense in S(X), then all the statements in Theorem 1
are equivalent.

P r o o f. We simply note that in this case there is a support mapping
that maps A into Eτ , and hence (e)⇒(a).

Corollary 2 [13, 14, 12]. In the case of examples (iii), i.e., C =
{all compact convex sets in X}, F = any norming subspace, and (iv), i.e.,
C = {all compact convex sets in X with finite affine dimension}, F = any

norming subspace, all the statements in Theorem 1 are equivalent and (c)
can be reformulated as
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(c′) Disjoint members of C can be separated by disjoint closed balls.

P r o o f. In example (iii), τ is the bw* topology (see [7] for more on bw*
topology) and in example (iv), τ is the w*-topology on X∗ and in both
cases F

τ
= X∗, so we may as well take F = X∗. Further, as the bw* topol-

ogy agrees with the w*-topology on bounded sets, in both the cases Eτ =
{extreme points of B(X∗)}. Clearly, in both cases A as in Corollary 1 is
S(X), and so in Theorem 1 all the statements are equivalent.

Since members of C in both cases are σ(X, F )-compact, (c)⇔(c′).

R e m a r k s. 1. In example (v), i.e., C = {all weakly compact convex sets
in X}, F = any norming subspace, τ is the Mackey topology on X∗ (see [5]
for further information), and again F

τ
= X∗.

In this case, we do not know whether any of the implications in Theorem 1
can be reversed. However, we note that (a)⇒(d) in Theorem 1 gives a weaker
sufficiency condition for MIP for weakly compact sets than the one used in
[16]. And in this case, too, (c) and (c′) of Corollary 2 are equivalent.

2. It seems unlikely that, in general, the implications in Theorem 1
can be reversed. Nevertheless, it appears to be an interesting and difficult
problem to find conditions on X, F , and C under which this can be done.

However, there is yet another situation when the statements can actually
be shown to be equivalent. And particular cases of this yield the character-
izations of MIP and w*-MIP, i.e., examples (i) and (ii). This we take up in
the next section.

3. Note that the subspace F ⊆ X∗ was assumed to be norming in
order to ensure that the σ(X, F )-closure of norm bounded sets remains
norm bounded, which is implicit in (A2). However, if (A2) is satisfied, as
in examples (iii), (iv) and (v), for any total subspace F , our results easily
carry through with only minor technical modifications in the proofs.

2. The MIP with respect to a norming subspace F . Our standing
assumption in this section is that F is a closed subspace of X∗ such that
the set TF = {x ∈ S(X) : D(x) ∩ S(F ) 6= ∅} (we shall write simply T when
there is no confusion) is a norm dense subset of S(X). Then F is necessarily
norming. However, one can give examples (see below) of norming subspaces
where this property does not hold. Let C = {all norm bounded, σ(X, F )-
closed convex sets in X}. We say that X has F -MIP if every C ∈ C is the
intersection of closed balls containing it.

Examples. (i) F = X∗, T = S(X) and we have the MIP.

(ii) X = Y ∗, F = Ŷ , T = D(S(Y )), which is dense by the Bishop–Phelps
Theorem [2], and we have the w*-MIP.

Now, since B(X) ∈ C, τ is the norm topology on X∗ and Eτ = {w*-
denting points of B(X∗)}.
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We need the following reformulation of Lemma 1:

Lemma 2. For x ∈ S(X), F, T as above and ε > 0, the following are

equivalent :

(i) x ∈Mε.

(ii) x determines a slice of B(F ) of diameter less than ε.
(iii) There exists δ > 0 such that

dia
[⋃

{D(y) ∩ S(F ) : y ∈ T ∩Bδ(x)}
]

< ε .

P r o o f. (i)⇒(ii)⇒(iii) follows again as easy adjustments of Lemma 2.1
in [9].

(iii)⇒(i). Let δ > 0 be as in (iii). Let d0 = dia[
⋃
{D(y)∩S(F ) : y ∈ T ∩

Bδ(x)}] < ε. Choose δ0 > 0 such that δ2
0 +2δ0 < δ and δ2

0 +2δ0/ε < 1−d0/ε.
Let y ∈ S(X), 0 < λ < δ0. Then

∥∥∥∥
x± λy

‖x± λy‖
− x

∥∥∥∥ ≤
∥∥∥∥

x± λy

‖x± λy‖
− (x± λy)

∥∥∥∥ + λ = |1− ‖x± λy‖ |+ λ

= | ‖x‖ − ‖x± λy‖ |+ λ ≤ 2λ .

Find x1, x2 ∈ T such that
∥∥∥∥

x + λy

‖x + λy‖
− x1

∥∥∥∥ ≤ λ2 and

∥∥∥∥
x + λy

‖x + λy‖
− x2

∥∥∥∥ ≤ λ2 .

Let f1, f2 ∈ S(F ) such that fi ∈ D(xi), i = 1, 2. Observe that ‖xi − x‖ ≤
λ2 + 2λ ≤ δ2

0 + 2δ0 < δ, i.e., x1, x2 ∈ T ∩Bδ(x). Thus ‖f1− f2‖ ≤ d0. Now,

0 ≤ 1− f1

(
x + λy

‖x + λy‖

)
= f1

(
x1 −

x + λy

‖x + λy‖

)
≤

∥∥∥∥
x + λy

‖x + λy‖
− x1

∥∥∥∥ ≤ λ2 .

So, f1(x+λy) ≥ (1−λ2)‖x+λy‖. Similarly, f2(x−λy) ≥ (1−λ2)‖x−λy‖.
So, we have

‖x + λy‖+ ‖x− λy‖ − 2

λ
≤

f1(x + λy) + f2(x− λy)− 2(1− λ2)

λ(1− λ2)

=
(f1 + f2)(x)− 2 + λ(f1 − f2)(y) + 2λ2

λ(1− λ2)

≤
‖f1 − f2‖+ 2λ

1− λ2
≤

d0 + 2λ

1− λ2
≤

d0 + 2δ0

1− δ2
0

(since
d0 + 2λ

1− λ2
is increasing in λ). Thus,

sup
y∈S(X),0<λ<δ0

‖x + λy‖+ ‖x− λy‖ − 2

λ
≤

d0 + 2δ0

1− δ2
0

< ε

by the choice of δ0.
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R e m a r k. In [9], Lemma 3.1, this result was proved for X = Y ∗, F = Ŷ
using Bollobás’ estimates for the Bishop–Phelps Theorem (see [2] and [3]).
Specifically, the authors of [9] used the fact that in this case the following
holds:

(∗) For every x ∈ S(X) and every sequence {fn} ⊆ S(F ) such that

fn(x) → 1, there exists a sequence {xn} ⊆ T and fxn
∈ D(xn)∩S(F )

such that ‖xn − x‖ → 0 and ‖fxn
− fn‖ → 0.

In fact, one can show that in this situation, the following stronger prop-
erty holds (see [8]):

(∗∗) For every x ∈ S(X), f ∈ S(F ) and ε > 0 with f(x) > 1 − ε2

there exist y ∈ T and fy ∈ D(y) ∩ S(F ) such that ‖x − y‖ ≤ ε and

‖f − fy‖ ≤ ε.

Using the fact that (∗∗) holds for F = X∗, one can show that (∗∗) also
holds if F is an L-summand in X∗, i.e., there is a projection P on X∗ with
P (X∗) = F such that for any f ∈ X∗, ‖f‖ = ‖Pf‖+ ‖f − Pf‖. Clearly, if

(∗∗) holds for the pair (X, F ), it also holds for the pair (F, X̂). In particular,
(∗∗) holds for each of the following:

(1) X = C[0, 1], F = {discrete measures on [0, 1]},
(2) X = C[0, 1], F = {absolutely continuous measures on [0, 1]},
(3) X = L1[0, 1], F = C[0, 1].

So, in these cases, (∗) also holds and the proof of [9] can be used to prove
Lemma 2.

However, one can construct examples (see below) to show that (∗∗) does
not, in general, follow from the density of T in S(X). It would be interesting
to know whether (∗) does (in the absence of this information, we were forced
to give a proof of (iii)⇒(i) in Lemma 2 above which depended only on
our standing assumption). Also, it would be interesting to find general
sufficiency conditions for (∗∗) to hold which would cover at least the case

X = Y ∗ and F = Ŷ . In particular, is the following obviously necessary
condition also sufficient for (∗∗) to hold: T is dense in S(X) and D(T )∩S(F )
is dense in S(F )? But these may be difficult problems.

Now, we are in a position to prove

Theorem 2. If X, F and T are as above, the following are equivalent :

(a) The w*-denting points of B(X∗) are norm dense in S(F ).
(b) For every ε > 0, D(Mε) ∩ S(F ) is norm dense in S(F ).
(c) If C1, C2 ∈ C are such that there exists f ∈ F with sup f(C1) <

inf f(C2) then there exist disjoint closed balls B1, B2 such that Ci ⊆ Bi,
i = 1, 2.
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(d) X has the F-MIP.

(e) For every f ∈ S(F ) and ε > 0, there exist x ∈ T and δ > 0 such that

y ∈ Bδ(x) ∩ T implies D(y) ∩ S(F ) ⊆ Bε[f ].
(f) For every support mapping φ that maps T into S(F ) and every norm

dense subset A of T , φ(A) is norm dense in S(F ).

(Observe that since F is norming, {w*-denting points of B(X∗)} ⊆ S(F )
and since Mε is open and T is dense, D(Mε)∩S(F ) is non-empty whenever
Mε is. Following the literature, the condition (e) may be called “quasi-
continuity” of the set-valued map DF : T → S(F ) defined by DF (x) =
D(x) ∩ S(F ).)

P r o o f. (a)⇒(b). Let f be a w*-denting point of B(X∗) and ε > 0.
As noted above, f ∈ S(F ). Proceeding as in Theorem 1 (we may take
K = B(X) and so, K0 = B(X)), for any 0 < η < ε there are x ∈ S(X)
and α > 0 such that f ∈ S = S(B(X∗), x̂, α) and dia(S) < η. Since T is
dense in S(X), by Lemma 1.1 of [9] there are y ∈ T and δ > 0 such that
f ∈ S′ = S(B(X∗), ŷ, δ) and S′ ⊆ S. Again as in Theorem 1, y ∈ Mε ∩ T
and for any fy ∈ D(y) ∩ S(F ), ‖fy − f‖ < η.

(b)⇒(c)⇒(d)⇒(f). Just a simplified version of the implication (b)⇒(c)
⇒(d)⇒(e) in Theorem 1 where we replace K by B(X).

(e)⇔(f). An easy adjustment of the corresponding proof in Theorem 2.1
of [9].

(e)⇒(b). Let f ∈ S(F ) and ε > 0. Let 0 < η < ε/2. By (e), there exist
x ∈ T and δ > 0 such that y ∈ T ∩ Bδ(x) implies D(y) ∩ S(F ) ⊆ Bη[f ].
But then dia[

⋃
{D(y) ∩ S(F ) : y ∈ T ∩ Bδ(x)}] ≤ 2η < ε. So by Lemma 2,

x ∈Mε ∩ T and fx ∈ D(x) ∩ S(F ) implies ‖fx − f‖ < η.
(b)⇒(a). For n ≥ 1, let Dn = {f ∈ S(F ) : f is contained in a w*-open

slice of B(F ) of diameter < 1/n}. By Lemma 2, D(M1/n) ∩ S(F ) ⊆ Dn.
Thus, for all n ≥ 1, Dn is a norm open dense subset of S(F ) and by the
Baire Category Theorem,

⋂
Dn is norm dense in S(F ). But it is easy to see

that
⋂

Dn = {w*-denting points of B(X∗)}.

R e m a r k s. 1. Using techniques of [8], one can directly prove (d)⇒(a).
2. The characterizations of MIP and w*-MIP (Theorems 2.1 and 3.1 of

[9]) follow immediately from Theorem 2, once we observe that {x̂ : x is a
denting point of B(X)} = {w*-denting points of B(X∗∗)}.

Corollary 3. (a) A real Banach space X has the MIP if and only if

whenever C1, C2 are closed bounded convex sets in X with dist(C1, C2) > 0,
there exist disjoint closed balls B1, B2 such that Ci ⊆ Bi, i = 1, 2.

(b) A dual Banach space X∗ has the w*-MIP if and only if disjoint

w*-compact convex sets in X∗ can be separated by disjoint closed balls.

P r o o f. (a) Let dist(C1, C2) = δ > 0. Let K2 = C2 + Bδ/2(0). Then
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C1 and K2 are disjoint closed convex sets and K2 has non-empty interior.
Now, f ∈ X∗ that separates C1 and K2 strictly separates C1 and C2. Thus
(a) follows.

The proof of (b) is immediate.

R e m a r k. Since disjoint closed balls always have positive distance, this
corollary cannot be strengthened. Note that this corollary and Corollary 2
considerably strengthen the corollaries on p. 341 and p. 343 respectively of
[15].

Example. Let X be a non-reflexive Banach space. Let F ⊆ X∗ be a
norming subspace which is an L-summand in X∗. Let P be the correspond-
ing L-projection. Let f0 ∈ (I − P )(X∗) be such that ‖f0‖ = 1 and f0 does
not attain its norm on B(X). Let F1 = F ⊕1 Rf0. Then F1 is a norming
subspace of X∗ and f0 ∈ S(F1). Let 0 < ε < 1/2. Suppose there exist
x ∈ S(X), g ∈ S(F1) such that ‖f0 − g‖ < ε and g(x) = 1.

Now, g = f + αf0 for some f ∈ F , α ∈ R. We have 1 = ‖g‖ =
‖f‖ + ‖αf0‖ = ‖f‖ + |α|. If α = 0, g = f and we have ε > ‖f0 − g‖ ≥
‖Pf0 − Pg‖ = ‖g‖ = 1. So, α 6= 0. Also, f = 0 implies g = αf0 and so
f0(x) = ±1, a contradiction, as f0 does not attain its norm. Thus, f 6= 0.

But then

1 = g(x) = f(x) + αf0(x) = ‖f‖ ·
f

‖f‖
(x) + |α|f0

(
ax

|α|

)
≤ ‖f‖+ |α| = 1

This implies f0(ax/|α|) = 1, again a contradiction.
As noted earlier, the pair (X, F ) satisfies (∗∗), so TF is dense in S(X)

and D(TF ) ∩ S(F ) is dense in S(F ). Now, clearly TF1
⊇ TF , but the above

shows that D(TF1
∩ S(F1) is not dense in S(F1). Consequently, though TF1

is dense in S(X), (∗∗) is not satisfied.
Also, interchanging the roles of X and F1, the above shows that though

X̂ is a norming subspace of F ∗1 , T
X̂

= D(TF1
) ∩ S(F1) is not dense, i.e., our

standing assumption is not satisfied.
Finally, we note that X = C[0, 1], F = {discrete measures on [0, 1]}

and f0 = λ|[0,1/2] − λ|[1/2,1] satisfies the hypothesis of the above example,
where λ|A denotes the restriction of the Lebesgue measure λ to the subset
A ⊆ [0, 1].

3. An application to Bochner Lp-spaces. If Z is a Banach space
and (Ω,Σ, µ) a measure space, let Lp(µ,Z) denote the Lebesgue–Bochner
function space of Z-valued p-integrable functions on Ω, 1 ≤ p < ∞ (see [6]).
Recall (from [6]) that if 1 < p < ∞ and 1/p + 1/q = 1, the space Lq(µ,Z∗)
is isometrically embedded in Lp(µ,Z)∗ and they coincide if and only if Z∗

has the Radon–Nikodým Property (RNP) with respect to µ.
We note the following
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Proposition 1. Let X = Lp(µ,Z) and F = Lq(µ,Z∗), 1 < p < ∞,
1/p + 1/q = 1. Then every simple function in S(X) is in T . So, T is dense

in S(X). Moreover , the pair (X, F ) satisfies (∗∗).

P r o o f. Let x =
∑n

i=1 xiχEi
be any simple function and let φ : S(Z) →

S(Z∗) be any support mapping. Define

Φ(x) =
n∑

i=1

‖xi‖
p−1φ

(
x∗i
‖x∗i ‖

)
χEi

.

Then Φ(x) ∈ D(x) ∩ S(F ). This proves the first part of the proposition.
Now, let x ∈ S(Lp(Z)), f ∈ S(Lq(Z∗)) and ε > 0 be such that f(x) >

1−ε2. Choose 0 < η < ε such that 0 < η[2(ε+1)−η] < f(x)− (1−ε2). Let
z and g be simple functions in S(Lp(Z)) and S(Lq(Z∗)) respectively such
that ‖x − z‖p < η and ‖f − g‖q < η. Refining the partitions if necessary,
we may assume that there is a finite partition {E1, . . . , En} of Ω such that
z =

∑n
i=1 ziχEi

and g =
∑n

i=1 z∗i χEi
where zi ∈ Z, z∗i ∈ Z∗ and χA

denotes the indicator function of A. Hence, g(z) =
∑n

i=1 z∗i (zi)µ(Ei) >
f(x) − 2η > 1 − (ε − η)2, by the choice of η. Now, consider the discrete
measure space Ω′ = {1, . . . , n} with measure P , where P (i) = µ(Ei). Then
z and g can be isometrically identified with elements of S(Lp(P,Z)) and
S(Lq(P,Z∗)) respectively. But as P is discrete, Lp(P,Z)∗ = Lq(P,Z∗) and
so (∗∗) is satisfied, i.e, there exist vectors (y1, . . . , yn) and (y∗1 , . . . , y∗n) in
S(Lp(P,Z)) and S(Lq(P,Z∗)) respectively such that

∑n
i=1 y∗i (yi)P (i) = 1

and [
∑n

i=1 ‖zi − yi‖
pP (i)]1/p ≤ ε− η and [

∑n
i=1 ‖z

∗

i − y∗i ‖
qP (i)]1/q ≤ ε− η.

Put y =
∑n

i=1 yiχEi
and fy =

∑n
i=1 y∗i χEi

. Then y ∈ S(Lp(µ,Z)), fy ∈
S(Lq(µ,Z∗)) and fy(y) = 1. Further, ‖x − y‖p ≤ (ε − η) + η = ε and
‖f − fy‖q ≤ ε.

Here we have

Theorem 3. For any Banach space Z, any finite measure space (Ω,Σ, µ)
and any 1 < p < ∞, the following are equivalent :

(i) Z has the MIP.

(ii) Lp(µ,Z) has the Lq(µ,Z∗)-MIP.

P r o o f. The proof of this theorem is already essentially contained in the
proof of Theorem 8 in [1]. One only has to use (a)⇔(d)⇔(f) of Theorem 2
above, instead of the corresponding equivalence for the MIP (Theorem 2.1
of [9]).

R e m a r k s. 1. Theorem 8 of [1] clearly follows from Theorem 3.
2. As noted in [1], if the MIP implies that the space is Asplund, the

MIP should lift to the Bochner Lp-spaces and that would also prove that
the space is indeed Asplund. But the above theorem indicates the difficulties
inherent in this approach.
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