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Abstract

A texture segmentation technique which employs a multilayer perceptron (MLP) and does not consider the selection of features is
presented in this paper. Thus, users can avoid selection and computation of the feature set and hence real-time segmentation may be
possible. The technique apparently works in a fashion similar to our visual system whereby we do not consciously compute any feature
for texture discrimination. A detailed study has been made for the selection of the network size. A newly proposed variant of the back-
propagation algorithm has been used for more efficient training of the network. An edge-preserving noise-smoothing approach has been

proposed to remove noise from the segmented image. '
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1. Introduction

Texture plays an important role in image processing
and computer vision problems because most objects
encountered in real life have textured surfaces. An image
may contain regions of different textures where it may be
necessary to segment the region according to the textural
signature. This process, known as texture segmentation, is
useful in various applications such as remote sensing,
surface inspection, geology, biomedical imaging, etc.

Texture segmentation is different from conventional
object and region segmentation because of the large varia-
tion of gray value and existence of edges over a region of
uniform texture. Thus, texture homogeneity is different
from gray level homogeneity and the boundary between
two different textured regions is not a conventional edge.
A wide variety of texture segmentation approaches is
available in the literature (Haralick [1], Gool et al. [2],
Tuceryan and Jain [3] and Reed and du Buf [4] made
comprehensive surveys on texture analysis techniques).
These segmentation approaches can be loosely classified
as feature-based, model-based and structural methods [4].
The first category involves various statistical moments [5],
co-occurrence matrix based features [6], fractal features [7],
etc. Texture classification on the basis of these features
is usually expensive in terms of computation. The second

category is based on autoregressive models [8], Markov
random field models [9] etc., and the last category is
based on specific primitives and certain placement rules
governing their spatial interactions [4].

Recently, there has been considerable interest in using
artificial neural networks (ANN) for solving computer
vision problems—the main reasons being the parallel archi-
tecture of a connectionist network model and its learning
capability in an adaptive manner. Moreover, an ANN-based
segmentation approach has some biological plausibility
because the computational models of the brain are largely
characterized by highly interconnected information pro-
cessing units.

The ANN model used for texture segmentation in the
supervised framework is normally the multilayer perceptron
(MLP) network model. Shang and Brown [10] described a
texture classification system using MLP networks—they
used features extracted by some conventional way such as
the co-occurrence matrix method and then employed prin-
cipal component transformation to reduce the number of
features. Farrokhnia [11] used a single hidden layer network
and backpropagation (BP) algorithm with Gabor transform
features for texture segmentation. Haddon and Boyce [12]
have used MLP neural networks together with the BP learn-
ing algorithm for texture segmentation where a subset of
Hermite feature space is presented to the network as the
input feature vector. An MLP network-based two-stage
multiresolution approach to texture segmentation was pro-
posed by Yhann and Young [13] using line and edge features.
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One common aspect of the methods described above is
the presence of a set of predefined features (or a set of
primitives along with a set of placement rules) that should
be selected and computed before segmentation. But the
human visual system does not seem to distinguish textures
by consciously using a predetermined feature set. In child-
hood a human being learns to classify different objects just
by examples and the determination of the feature set in the
visual cortex, if any, is not transparent to him.

In the present paper, we describe an MLP-based texture
segmentation method that tries to act like a human observer,
in that it is not necessary to select and compute a set of
features before classification. Thus, the image is presented
to the input layer of the MLP network and we obtain a
texture segmentation mapping at the output, without bother-
ing about what features are extracted in the intermediate
layers. Our study is to the best of our knowledge distinct
from all other studies of MLP-based texture segmentation in
this respect. Another contribution in this paper is a refine-
ment of the original BP algorithm for better convergence
performance of the training of an MLP network. Using the
original BP algorithm the training process quite often either
oscillates or converges extremely slowly. The robustness of
the proposed method, described in the next section, will be
clear from the simulation results.

2. Texture segmentation using multilayer perceptrons

In the proposed approach to texture segmentation the
pixel gray values within certain windows are presented to
the single hidden layer MLP network. The network itself
calculates the distinguishing feature values in its hidden
nodes that are not transparent to the user.

The structure of the proposed system is shown in Fig. 1.
Here a small window of n X n pixels is presented to the
network at a time. Thus, the input layer of the MLP network
has n X n nodes. These nodes are fully connected to m
hidden layer nodes which are in turn fully connected to
the k output nodes, where k is the number of texture classes
under consideration. The network is initially trained using a
training set of patterns (or windows). Once trained, it is used
for classifying unknown scenes.

Suppose a window U is presented to the network for
classification. If the gth output node has maximum value,
then the central pixel of U is assigned to the gth texture
class. The process is repeated for windows at all positions
of the given textured image and a classification mapping is
thus obtained. The mapping sometimes contains small
isolated regions of misclassified pixels, which is called clas-
sification noise. Hence the mapping is smoothed and
artifacts are removed to get the final segmentation mapping.

The MLP network is trained using a modified back-
propagation algorithm. We have studied the selection of
network size and learning parameter values in details. For
removal of classification noise in the segmented image, we
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Fig. 1. An MLP-based texture classifier.

have considered the edge-preserving noise-smoothing
octant (EPNSO) technique, which is very similar to the
well-known edge-preserving noise-smoothing quadrant
(EPNSQ) filtering approach. Moreover, we have used a
component labelling based approach to remove the false
boundaries.

2.1. Selection of training samples

A training sample consists of a window of size n X n, and
for a proper choice of training samples, the following points
are noted:

l. texture primitives may be randomly or regularly
arranged;

2. there may be uneven and slow tonal variation over the
texture field;

3. there seems to be a minimum area over which the texture
should be viewed for recognition and this area seems to
be different for different textures.

These factors make the choice of representative samples
an extremely difficult task. Keeping them in mind, we have
selected 150 training examples from each texture class in
the following way. From the photograph of each texture
class (from the Brodatz album [14]), we have manually
selected three 100 X 100 sub-images with maximum,
moderate and minimum homogeneity respectively. From
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each of these sub-images, 50 pixels have been selected ran-
domly using uniform distribution. Around each of these
randomly selected pixels, a window of size n X n is chosen
as a training sample. Each training sample is normalized
with respect to the maximum possible gray value 255.

2.2. The backpropagation algorithm and its modifications

The training of an MLP network is usually done using BP
algorithm [15]. This algorithm performs a gradient descent,
corresponding to each pattern p in the training set, in the
connection weight space on an error surface defined by

|
Ep= 32 (e =y’ (1)
3
where {t,},{yx]} are, respectively, the target and output

vectors corresponding to the pth input pattern. The system
error £ is defined as

1
E=;§@ (2)

where P is the total number of patterns in the training set. In
the BP algorithm, weight modification rules are given by

IE, (1)
wi (1 + l)—‘-ij(f)—??aw_k(t) (3)
j
AE(t
wiit+ 1) =wy(1) —n Hw[iit)) (4)
ij

where w(f) is the weight connecting a hidden node j with
an output node k while w(r) is the weight connecting an
input node ; with a hidden node j at time 7 and 7 is a positive
constant, called the learning rate.

As the BP algorithm performs a gradient descent on a
hyper surface, called error surface, in the weight space,
there is no guarantee that the global minimum of that sur-
face will be reached (even approximately) after a moderate
number of sweeps, and the algorithm may get stuck at a
local minimum. The difficulty in reaching the global mini-
mum on the error surface from a random initial position is
dependent on the nature of the surface. To tackle the pro-
blem Rumethart et al. [15] suggested modification of the
above weight modification rule by including a momentum
term.

Though this suggestion is effective in solving different
benchmark problems, we have observed that a non-zero
momentum term in the weight modification rule is counter-
productive in the texture segmentation problem. Below we
present a modification of the BP algorithm in order to
achieve faster and more robust convergence.

2.2.1. Self-adapration of learning rates
The selection of a suitable step size (learning rate) is an
issue common to all steepest-descent methods. A large

value of the learning rate often leads to oscillation whereas
a small value causes very slow convergence to the desired
minimum on the error surface. Bhattacharya and Parui [16]
observed that the single layer perceptron learning algorithm
can show improved performance if the learning rate is
varied over time under some constraints. This observation
is also valid for the multilayer perceptron [17]. During our
extensive study on the convergence of the BP algorithm we
have made the following inferences, the first four of which
were first made by Jacobs [17].

1. Every weight of the network should have its own indi-
vidual learning rate.

2. Every learning rate should be allowed to vary over time.

3. When the error derivative with respect to a weight pos-
sesses the same sign for several consecutive steps, the
learning rate for that weight should be increased.

4. When the sign of the derivative with respect to a weight
alternates for several consecutive steps, the learning rate
for that weight should be decreased.

5. The modifications to the learning rates at any time should
be entirely based on the shape of error surface at the
present position.

6. The overall convergence performance of the algorithm
should not depend much on the choice of the parameter
values involved in the modification rule for the learning
rates.

7. The values of the learning rates should nat be allowed to
increase indefinitely so that the weight values do not
explode.

A newly suggested method for the self-adaptation of
learning rates consists of performing a gradient-descent on
the surface defined by Eq. (1). Using the self-adaptive learn-
ing rates, the weight modification rules given by Egs. (3)
and (4) become
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where 8 = h(n;) and 8, = hin,); h(x) =d/(1 + e *T %) is
called the effective value function and d > 0 is a constant.
This effective value function has been considered to avoid
the danger of self-adaptive learning rates growing very large
[18].

The modification rules for learning rates are:

Nt + 1) =0 (0) + A0 (7
and

Nyt + 1) =n;(0) + Ayn,;(2) (8)
where
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where v is a constant of proportionality.

It has been observed that the learning performance of an
MLP network using this modified BP algorithm does not
depend much on the choice of +. In the present study, the
value of v is always taken as 0.1. The constant d determines
the maximum value that can be assumed by a learning rate.
In the present problem of texture segmentation, the proper
value of # has always been found to be less than 1.0 and
values more than 1.0 almost always lead to oscillation.
Consequently, the value of d is always taken to be 1.0. In
problems where a larger range for 7 is needed, d is assigned
a larger value.

2.2.2. Termination of the learning session

Overlearning is a common problem of the BP algorithm
and setting up of an appropriate condition for the termina-
tion of the learning session is very important. To avoid
overlearning, we have considered a different set of patterns,
called the test set, and fed it also to the network during
learning. The test set has been constructed independently
in a manner similar to the training set described earlier.

The test set has been used to determine the termination
point of the learning session. During the learning session,
the average system error is computed after each sweep, for
both the training and test sets. Initially, it is found that this
error on both the training and test sets is decreasing. But
after some number of sweeps, the error on the test set goes
on increasing though the error on the training set still
decreases. The point of time when the error on the test set
increases for at least 3 consecutive sweeps for the first
instance is noted and the weight values before the error
started increasing is stored. This behavior of the learning
of the connection weights in an MLP is shown in Fig. 2.
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2.3. Network architecture selection

As mentioned before, we used one hidden layer in the
MLP network for texture segmentation. The reason for
using only one hidden layer is that we have observed that
the use of multiple hidden layers deteriorates the training
performance in terms of rate of convergence. As described
below we have studied in detail the selection of the number
of nodes in the input and hidden layers of the network. The
input pattern to the network consists of the pixel gray values
within a square window and hence the number of input
nodes is specified by the size of such a window. The number
of output nodes is the number of texture classes considered.

2.3.1. Selection of window size

Using input windows of smaller size can reduce the
computational burden. But in many situations small-sized
windows may not capture the properties of a texture. A large
window size contains sufficient texture information, but
demands huge computation. The choice of optimal window
size is an important aspect of the proposed segmentation
method. In fact, we have studied the effect of various
window sizes on the performance of the system using dif-
ferent texture mosaics from the Brodatz album [14]. The
window sizes considered are 3 X 3,7 X 7, 11 X 11 and
15 X 15. In most cases, the 15 X 15 window size provided
good training performance with respect to the rate of con-
vergence. But the approximation of real boundaries in the
texture mosaic is not very satisfactory for such a large
window. Moreover, for such a large-sized input layer the
computational load also increases. Though the optimum
window size depends on the nature of the textures under
consideration, we have observed that in most of the cases
considered by us, 11 X 11 windows provide minimum seg-
mentation error among all four different choices of window
size and the number of sweeps required for the training is
also moderate (Table 1).

g Avg. system error

0.3
0.2 1
0.1 1
0 ! J ' T T T T T T T
120 125 130 135 140 145 150 156 160 165 170 175 180

Sweep number
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Fig. 2. The behavior of the training of an MLP on training and test sets of patterns (here the segmentation task of Fig. 7(a) is considered with optimal parameter

values).
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Table 1

Input window size effect on the performance of the proposed segmentation technique (when texture mosaic in Fig. 7(a) is used)

Window size Segmentation Average mean Average classification Average no. of
mapping square error (%) accuracy (%) on the sweeps required
on the training set test image
3IX3 7(by) 0.27 73.18 385
7X7 7(by) 0.19 95.10 305
11 X 11 7(b3) 0.09 95.93 175
15 X 15 7(bs) 0.07 94.0 85

2.3.2. Selection of the number of hidden nodes

The capacity of a multilayer perceptron to approximate a
given mapping has been investigated by Hornik et al. [19].
But in almost all of the real-life applications of such a net-
work, the minimum number of hidden units required to
accomplish the underlying mapping cannot be obtained in
a straightforward manner, and the selection of this number
involves conflicting interests [20]. After conducting experi-
ments on several texture mosaics of four textures with dif-
ferent hidden layer sizes, we found that for an 11 X 11 input
layer a hidden layer of size 12 is optimum in terms of
learning and classification performances (Table 2). We
have noted that mosaics of 2 and 6 textures can be effec-
tively tackled using 4 and 20 nodes in the hidden layer.
However, for larger number of textures in a scene the
number of nodes should be increased. A rule of thumb
about the minimum number of nodes in the hidden layer
may be 4(r — 1) where r is the number of different textures
in the scene.

3. Segmented image space smoothing

The proposed texture segmentation technique may result
in considerable misclassification in some cases and the
misclassified pixels usually occur in the form of speckles
scattered here and there. A segmented image space smooth-
ing can reduce the misclassification to a large extent and an
edge-preserving smoothing technique such as in [21,22]
appears suitable.

Jiang and Sawchuk [22] suggested the EPNSQ filtering
method. In this method quadrant windows around each pixel
are used to estimate local statistics and the average value of

Table 2

the gray levels of the pixels belonging to the most
homogeneous window is used to replace the pixel under
consideration.

The proposed smoothing technique is similar to the
EPNSQ filtering method but, unlike the EPNSQ method,
it is suitable for application on a segmented image. To
implement the algorithm, the segmentation mapping is
given distinct class labels. If the scene contains k texture
classes, then a pixel may be assigned a class label from
{1,2,...,k}. Now, the segmentation mapping may be con-
sidered as an image in which the gray value of a pixel is
its class label. Let f{ij) denote the gray value (class label)
of the pixel having coordinates (i) in the segmentation
mapping image. We shall smooth such an image using the
following approach.

Consider all eight octants within a QU + 1) X QU + 1)
neighborhood around the candidate pixel at (i,j) (see Fig. 3).
The variances on each of the octants are computed as
follows:
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Hidden layer size effect on the performance of the proposed segmentation technique (when texture mosaic in Fig. 7(a) is used)

Hidden layer size Segmentation

Average mean

Average classification Average no. of

mapping square error (%) accuracy (%) on the sweeps required
on the training set test image
4 7(bs) 0.33 87.55 527
8 7(be) 0.21 95.26 211
12 7(b) 0.09 95.93 175
16 7(by) 0.08 95.50 164
20 7(by) 0.08 95.14 112
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Fig. 3. Schematic representation of the octants of the EPNSO technique.
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where N = (1/2)(U + 1)(U + 2) and Vy, (i,j), n = 1,2,...,8,
represent the variance computed on the octant U, around the
(i,)Hth pixel.

If Vy,(i,j) is the minimum among all the Vy, (i,j), n =
1,2,...,8, then according to the present method, called the
edge-preserving noise-smoothing octant (EPNSO) filtering
approach, the modal value of the class labels of the pixels in
U, is found and the gray value of the (i,/)th pixel is replaced
by this modal gray value. We have observed that the
EPNSO method performs better than the EPNSQ in preser-
ving edges. Moreover, this smoothing technique has been
proposed specifically to be applied on the segmented image,
not on the original image.

This smoothing technique with a certain fixed window
size can be applied on the segmented image repeatedly
until no further improvement is observed in two successive
applications of the technique. This method is very effective
at reducing the noise in the segmented image by keeping the
real edges unaffected. But sometimes it may not be able to
remove patches of small area. To remove them, at first such
small patches are identified by component labelling and the
label of the pixels in such a patch is changed to the label of
the pixels maximally surrounding the patch. The EPNSO
method followed by component labelling provides very
good segmentation results. This post-processing method
has resulted in improvement of correct classification of
textures by about 4% on average in our study.

4. Simulation results

We have simulated the proposed MLP-based texture seg-
mentation technique on a set of texture-mosaic images taken
from the Brodatz album [14]. As per our experience a region
of reasonable size usually consists of at most four different
textures in its surroundings. It is clear that with the increase
in the number of texture classes, the complexity of learning
tasks increases. To obtain the simulation results described
below, we have trained the respective MLP networks using
the BP algorithm with self-adaptive learning rates. The
mosaics considered in the simulation consist of test images
selected from the respective texture classes [14]. These test
images are different from the training and test data (which
have been used for learning of the respective MLP net-
works). The statistics on the classification performance
reported later are based on such additional test images.

In each of the segmentation tasks considered in the pre-
sent paper, the respective networks have been separately
trained. It is to be noted that a suitably chosen network
architecture can learn a good number of texture classes
although the complexity of the learning task increases
with a larger number of different classes.

In Fig. 4(a,—ag) eight mosaics each consisting of two
different textures are shown. Each mosaic is of size
128 X 128 pixels so that the textured image from each
class is of size 128 X 64 pixels. The images are quantized
in 256 gray levels. In Table 3, we present the learning
statistics corresponding to each of these eight two-class
segmentation tasks. The input window size and the number
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(a,)

of hidden nodes in this table correspond to approximately
the best selections of the minimal network sizes in
respective cases. The corresponding results of segmenta-
tion are shown in Fig. 4(b,—bg), respectively. In most
cases the segmented image space smoothing technique

Table 3

(ag) (bs)

Fig. 4. (a,~ag) Different mosaics of natural textures taking two at a time; (b;—bsg) the corresponding segmentation mappings.

EPNSO is performed on windows of size 9 X 9 two to
three times.

It is noted that misclassifications occur mainly at the
border of two adjoining texture classes. However, tolerance
to boundary curvature is depicted in Fig. 5 while correct

Learning and network statistics corresponding to segmentation tasks for mosaics in Fig. 4

Texture mosaic Input window No. of No. of Initial value Final system % of correct
size hidden nodes sweeps of error classification

4(ay) TX7T 4 52 0.1 015 98.72

4(a,) 7 X7 4 76 0.1 019 97.84

4(ay) 7 X7 4 96 0.1 018 99.30

4(ay) 7 X7 4 188 0.1 .033 98.34

Has) 7 X7 4 146 0.1 .039 97.95

4ag) 7 x17 8 115 0.1 .023 97.87

4(as) I x 11 8 128 0.1 .057 96.59

4(ag) H X 11 8 165 0.1 036 97.98
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() bJ
Fig. 5. (a;—as) Four mosaics of natural textures depicting different
boundary shapes; (b,~b,) the corresponding segmentation mappings.

classification percentages are shown in Table 4. In these
cases too the EPNSO technique has been performed two
to three times.

In Fig. 6(a;—as) five mosaics consisting of four, five, six,
nine and twelve different textures, respectively, are shown.
The learning statistics and percentages of correct classifica-
tion in these segmentation tasks are presented in Table 5.
The corresponding final segmentation mappings are shown

Table 4
Percentage of correct classification for mosaics in Fig. 5

in Fig. 6(b;-bs). In each of these cases the EPNSO (using
windows of size 9 X 9) smoothing technique is applied three
to four times.

For the purpose of demonstrating the effect of input win-
dow size and the number of hidden nodes we have chosen
the texture mosaic in Fig. 7(a). The segmentation mapping
using different window sizes are shown in Fig. 7(b;-by). In
these simulations 12 hidden nodes have been used. Various
results related to this study are summarized in Table 1.

In this table, the averages are taken over ten different
random initializations of connection weights. It is seen
from this table that a window of 11 X 11 pixels can be
accepted as the optimal window size because in this case
the minimum average segmentation error could be achieved
after moderate average sweep numbers. Also, for this
window size the average mean square error on the training
set of data is moderate. In fact, in most of the mosaics we
have experimented with, 11 X 11 is found to be the optimal
window size with respect to the average segmentation error
on the test image among the four choices we considered.

Also, the segmentation mappings of the above set of
mosaics using different number of hidden nodes are
shown in Fig. 7(bs—bg). In all of these segmentations,
11 X 11 input windows have been used. The results obtained
are given in Table 2.

In most 4-class texture segmentation problems, it has
been observed that 12 nodes in the hidden layer give the
optimal choice. For 2-class and 6-class problems, 4 and 20
hidden nodes, respectively, are found (assuming 11 X 11
input windows) to be good choices.

To compare the performance of the proposed technique
with one of the existing methods of texture segmentation,
we have considered the technique using four fractal geome-
try based features [23]. In Table 6 we use the classification
accuracy statistics given in [23] and compare them with
those obtained using our method. The texture mosaics
used for this study are shown in Fig. 8(a;—a,4) and the corre-
sponding segmentation mappings obtained using the pro-
posed approach are shown in Fig. 8(b;—b,) (the results are
obtained after applying the EPNSO smoothing followed by
the component labelling technique for removing noise).
Fifty training samples were used for computing the centroid
for the minimum distance (Min-dist) classifier. In the k-
nearest neighbor (kNN) technique, the chosen values of
k were 1 and 5 while the numbers of training samples
were 25 and 50 (denoted by A and B respectively). From
this table it is seen that the performance of the proposed
MLP-based segmentation technique is comparable with

Texture mosaic

5@ap) 5(a2)

5(az) 5(aq)

% of correct classification 97.52 97.18

92.40 94.98
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(a;)

(by)
Fig. 6. (a;) Mosaic of 4 textures; (a,) mosaic of 5 textures; (a3) mosaic of 6
textures; (ay) mosaic of 9 textures; (as) mosaic of 12 textures; (b,-bs) the
respective segmentation mappings of mosaics in (a;—as).

the segmentation results using fractal geometry based
features. Moreover, Hsiao and Sawchuk [24] reported an
average classification accuracy of 88.1% for textures of
size 128 X 128 and the results of the proposed segmentation
technique, as discussed above, are slightly better.

In all of the simulation results described above we have
used self-adaptive learning rates (with the initial values of g
as 0.1) during training. That a fixed value of 5 (as in the
original BP algorithm) fails to provide the desired result has
been observed in a good number of segmentation tasks.
During our extensive study of the present approach, it
has been noted that if the value of the learning rate in the
original BP algorithm is not set to a very small value (say,
less than 0.1) the learning process often oscillates with
respect to the system error. A smaller value of 7 (say,
0.01) may ensure convergence but becomes extremely

e
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{bs)

(b} {be)

(b}

(b3

(b.) (bg)

Fig. 7. (a) A mosaic of 4 textures; (b;—b,) the segmentation mappings
corresponding to different window sizes as in Table 1; (bs—bs) the segmen-
tation mappings corresponding to various hidden layer sizes as in Table 2.

slow. This behavior of the BP algorithm has been reported
earlier [25]. Moreover, we have compared the training per-
formance of our BP algorithm using self-adaptive learning
rates with that using a simple rule [25] for learning rate
adaptation. We have seen that, in general, the BP algorithm
with self-adaptive learning rates performs better in terms of

@) e by

(a) o {bs)

(a,) | {ba)
Fig. 8. (a;—a,) Four mosaics of different sets of four textures; (b,—b,) the
corresponding segmentation mappings using the MLP-based method.

convergence rate. The learning performance corresponding
to these two different schemes of learning rate (L.R.) adap-
tation have been compared using texture classes in Fig. 7(a)
and the results are plotted in Fig. 9.

5. Conclusions

The most interesting aspect of the proposed segmentation
technique is that it does not require consideration of any
feature set. The computational load of the training process
in the proposed MLP-based segmentation method is signifi-
cant. But once the network is trained, real-time segmenta-
tion is possible, whereas in the feature-based segmentation
methods computation of features is time-consuming, Also, a
modification of the BP algorithm has been proposed that can
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Table §

Learning and network statistics corresponding to segmentation tasks in Fig. 6

Texture mosaic Input window No. of No. of Initial value Final system % of correct
size hidden nodes sweeps of n error classification
6(a;) 1 x11 12 215 0.1 0.075 95.56
6(az) 11 x11 12 270 0.1 0.069 94.54
6(as) 11X 11 20 320 0.1 0.077 94.45
6(as) 11 X 11 32 585 0.1 0.135 90.05
6(as) 15 %15 44 1060 0.1 0.167 89.16
Table 6
Comparison of the proposed segmentation technique with an existing technique using fractal features
Texture mosaic % of correct classification using fractal features % of correct
classification using
proposed method
INN Min-dist
A B A B
8(a,) 87.00 §7.00 85.81 86.90 85.28 95.72
8(ay) 96.60 96.66 96.62 96.95 96.97 95.35
8(a;) 94.68 94.68 94.65 94.72 94.68 93.82
8(as) 92.55 92.55 91.60 92.26 91.40 94.63
Average 92.71 92.72 92.17 92.71 92.08 94.88

efficiently avoid the convergence problem of the original
algorithm in a real-life task such as texture segmentation.
Finally, the robustness of the technique is established on the
basis of the good number of examples considered in our
simulation runs.

Universality is also an important aspect of the present
technique. We have observed that minor pattern variations
due to rotation. scaling or blurring do not have much effect
on the segmentation results. For example, in Fig. 10 two
textures have been rotated at different angles, blurred,
stretched or scaled down using different factors, and the
corresponding mosaics are shown in Fig. 10(a,—ay),
respectively. The segmentation mappings are shown in

0.2+

Fig. 10(b,;-by). For these segmentation tasks, no separate
training of the MLP network has been undertaken. The same
network trained for the segmentation tasks of Fig. 5(a;—as)
has been used. Also, the segmentation results do not depend
on the type of boundary between different textures. For
example, for segmentation of Fig. 5(a,-a;), the network
has been trained only once.

Acknowledgements

One of the authors (U. Bhattacharya) wishes to thank
the University Grants Commission (UGC) of India for

0 - , ; :
0 25 50 75

T T T
100 125 150

—T T T T T

176 200 225 250 275 300

Sweep number

—8— Heuristic L.R.

—6— Self-adaptive L.R.

Fig. 9. The superior convergence performance of the training of the MLP-based texture classifier, when self-adaptive learning rates are used, compared to the
use of learning rates adapted following certain rules based on heuristics (the segmentation task of Fig. 7(a) has been considered with the optimal choices of

parameter values).



948 U. Bhattacharya et al./Image and Vision Computing 15 (1997) 937-948

-

(b))
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