


jaw. The reduction in the thickness of plaque for subjects are usually recorded as belonging to four different

categories, viz., no reduction, slight reduction, moderate reduction and vast reduction. One of the objects of

the study was to evaluate effectiveness of brushing. In such cases natural question can be: Is it possible to

reduce the number of records per individual per day? If there is some sort of dependence, it may be possible to

reduce the dimension of the data. Das and Chattopadhyay (2004) developed a latent mixture regression model

to study this categorical multivariate data.

Canonical correlation factor analysis are the tools used for non-longitudinal measurable data. To deal with

reliability data Barlow and Proschan (1975) defined various concepts of bivariate and multivariate dependence

and studied their relationships. For sake of completeness we give definitions of dependence concepts needed in

sequence. Given random variables S and T following are some of the concepts of bivariate dependence.

Definition 1.1 (Right-tail increasing). A random variable T is RTI in a random variable S if P½T4t jS4s� is

increasing in s for all t.

Definition 1.2 (Stochastically increasing). A random variable T is SI in a random variable S if P½T4t jS ¼ s�

is increasing in s for all t.

Definition 1.3 (Multivariate stochastically increasing). A random variable T is stochastically increasing in

random variables S1;S2; . . . ;Sk if P½T4t jS1 ¼ s1;S2 ¼ s2; . . . ;Sk ¼ sk� is increasing in s1; s2; . . . ; sk.

Definition 1.4 (Conditionally increasing in sequence). Random variables T1;T2; . . . ;Tn are conditionally

increasing in sequence if P½T i4ti jT iÿ1 ¼ tiÿ1; . . . ;T1 ¼ t1� is increasing in t1; t2; . . . ; tiÿ1 for i ¼ 1; 2; . . . ; n,

that is, T i is stochastically increasing in T1;T2; . . . ;T iÿ1.

Definition 1.5 (Associated). Random variables T1;T2; . . . ;Tn are associated if CovðGðTÞ;DðTÞÞX0 for all

pairs of co-ordinatewise increasing functions G and D.

Remark 1.6. An infinite sequence of random variables fTn; nX1g is said to be associated if it is associated for

every finite n.

Barlow and Proschan (1975) showed that SIðT jSÞ implies RTIðT jSÞ and if T1;T2; . . . ;Tn are conditionally

increasing in sequence then they are associated. Associated random variables arise in reliability, statistical

mechanics, percolation theory, etc. For a detailed review see Roussas (1999) and Prakasa Rao and Dewan

(2001). The concept of association in time was defined by Hjort et al. (1985).

Definition 1.7 (Associated in time). The stochastic process X is said to be associated in time iff, for any integer

m and ft1; . . . ; tmg, the random variables in the above array are associated.

Hjort et al. (1985) and Kuber and Dharamadikari (1996) discuss sufficient conditions under which

association in time for Markov and semi-Markov processes holds.

We model a vector valued stochastic process, recognize its multivariate structure for a specific time, and

longitudinal aspects over the period of time and identify sufficient conditions for such a process to be

associated in time. In Section 2 we discuss the discrete case with special reference to multivariate Bernoulli

random vectors. In Section 3 we discuss the continuous case with special reference to multivariate normal

random vectors.

2. The discrete case

Consider the stochastic process ffX iðmÞ;mX1g; 1pipkg. For i; j 2 E, let

P½X 1ð1Þ ¼ i� ¼ pi; i ¼ 1; 2; . . . ; n,

P½X aðbÞ ¼ j jX aÿ1ðbÞ ¼ i� ¼ Pi;j ; 82papk,

P½X 1ðbÞ ¼ j jX kðbÿ 1Þ ¼ i� ¼ Li;j ; bX1. (2.1)

Note that pi is the initial probability, Pi;j are the usual one step transition probabilities, Li;j link two vectors

X ðbÞ and X ðbÿ 1Þ in terms of the first entry of the bth column and the last entry of the ðbÿ 1Þth column.
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Hence we call them linkage probabilities. Assume that 82papk, bX1;

A1 : P½X aðbÞ ¼ ib;a jX aÿ1ðbÞ ¼ ib;aÿ1; . . . ;X 1ðbÞ ¼ ib1�

¼ P½X aðbÞ ¼ ib;a jX aÿ1ðbÞ ¼ ib;aÿ1� ¼ Pib;aÿ1;ib;aðbÞ. ð2:2Þ

Further, suppose that

A2 : P½X 1ðbÞ ¼ ib1 jX bÿ1 ¼ ibÿ1� ¼ P½X 1ðbÞ ¼ ib;1 jX kðbÿ 1Þ ¼ iðbÿ1Þ;k�. (2.3)

Note that A1 is a Markov-like assumption for a finite collection of chronologically ordered random variables

and A2 is a Markov-like assumption for the probabilities which link a component of a vector with the last

component of the previous vector.

For b ¼ 1, the joint distribution of fX 1ðbÞ; . . . ;X kðbÞg will be determined by fpi;Pi;j ; i; j ¼ 1; 2; . . . ; ng. For

s ¼ 1; 2; . . . ;m, let is ¼ ðis;1; is;2; . . . ; is;kÞ. Then from assumption ðA1;A2Þ it follows that

P½X kð1Þ ¼ i1;k;X kÿ1ð1Þ ¼ i1;kÿ1; . . . ;X 1ð1Þ ¼ i1;1�

XP½X kð1Þ ¼ i1;k jX kÿ1ð1Þ ¼ i1;kÿ1; . . . ;X 1ð1Þ ¼ i1;1�

¼ P½X kÿ1ð1Þ ¼ i1;kÿ1 jX kÿ2ð1Þ ¼ i1;kÿ2; . . . ;X 1ð1Þ ¼ i1;1� . . .P½X 1ð1Þ ¼ i1;1�

¼
Y

k

j¼2

P½X jð1Þ ¼ i1;j jX jÿ1ð1Þ ¼ i1;jÿ1; . . . ;X 1ð1Þ ¼ i1;1�P½X jð1Þ ¼ i1;1�

¼
Y

k

j¼2

P½X jð1Þ ¼ i1;j jX jÿ1ð1Þ ¼ i1;jÿ1�P½X jð1Þ ¼ i1;1�. ð2:4Þ

Further,

P½X ð2Þ ¼ i2;X ð1Þ ¼ i1�

¼ P½X kð2Þ ¼ i2k jX kÿ1ð2Þ ¼ i2;kÿ1; . . . ;X 1ð2Þ ¼ i2;1;X ð1Þ ¼ i1�

. . .P½X 2ð1Þ ¼ i21 jX kð1Þ ¼ i1k;X kÿ1ð1Þ ¼ i1;kÿ1; . . . ;X 1ð1Þ ¼ i1;1�

¼
Y

k

j¼2

P½X jð2Þ ¼ i2;j jX ðjÿ1Þð2Þ ¼ i2;jÿ1�P½X 1ð2Þ ¼ i21 jX kð1Þ ¼ i1k�

�
Y

k

j¼2

P½X jð1Þ ¼ i1;j jX jÿ1ð1Þ ¼ i1;jÿ1�P½X 1ð1Þ ¼ i1;1�. ð2:5Þ

In general, let ðaÿ 1Þko‘pak, aX1. Then ‘ ¼ ðaÿ 1Þk þ d for some d 2 f1; 2; . . . ; kg: Consider the joint

distribution of fX ð1Þ;X ð2Þ; . . . ;X ðbÿ 1Þ;X 1ðbÞ ¼ ib;1; . . . ;X dðbÞ ¼ ib;dg. Then, using A1 and A2, we get

P½X ð1Þ ¼ i1;X ð2Þ ¼ i2; . . . ;X ðbÿ 1Þ ¼ iðbÿ1Þ;X 1ðbÞ ¼ ib;1; . . . ;X dðbÞXib;d �

¼ P½X dðbÞXib;d ;X dÿ1ðbÞXib;dÿ1; . . . ;X 1ð1Þ ÿ i1;1�

¼ P½X dðbÞXib;d jX dðbÞXib;d �
Y

b

s¼1

Y

k

a¼2

P½X aðsÞ ¼ is;a jX aÿ1ðsÞ ¼ is;aÿ1�

�
Y

b

s¼2

P½X 1ðsÞ ¼ is;1 jX kðsÿ 1Þ ¼ isÿ1;k�P½X 1ð1Þ ¼ i1;1�. ð2:6Þ

This expression involves ðbÿ 1Þ linkage probabilities and ðbÿ 1Þðk ÿ 1Þ þ d one step conditional probabilities

and one initial probability. Hence

P½X dðbÞXib;d jX dÿ1ðbÞXib;dÿ1; . . . ;X 1ð1Þ ¼ i1;1�

¼
P½X 1ðbÞXib;1 jX kðbÿ 1Þ ¼ ibÿ1;k� if d ¼ ðbÿ 1Þk þ 1;

P½X dðbÞXib;d jX dÿ1ðbÞXib;dÿ1� if ðbÿ 1Þk þ 1odpbk:

(
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Thus, to write all finite dimensional distributions of such a vector valued process one would require

information about fpi;Pi;j ;Li;j ; i; j 2 Eg: Here
P

i pi ¼ 1,
P

j Pij ¼ 1 8i,
P

j Lij ¼ 1 8i:

For the given process X , let fZn; nX1g be a process, where

Zðiÿ1Þkþj ¼
st
X iðjÞ; jX1; 1pk. (2.7)

Hence all finite dimensional distributions of X and fZn; nX1g coincide. Now we consider a set of sufficient

conditions for association in time for the process fZn; nX1g.

Theorem 2.1. If fZn; nX1g is conditionally stochastically increasing then it is associated in time.

Proof follows from the fact that conditionally stochastically increasing random variables are associated (see

Barlow and Proschan, 1975).

Theorem 2.2. Suppose conditions A1 and A2 hold for the stochastic process X . Further suppose that

P½X aðbÞXib;a jX aÿ1ðbÞ ¼ ib;aÿ1� is increasing in ib;aÿ1 8bX1; aX2, (2.8)

P½X 1ðbÞXib;1 jX kðbÿ 1Þ ¼ ibÿ1;k� is increasing in ibÿ1;k 8bX1; aX2. (2.9)

Then it is associated in time.

Proof follows immediately from (2.6).

Thus sufficient conditions for X to be associated in time are that all one-step conditional and linkage

survival probabilities are stochastically increasing. Since right-tail increasing implies stochastically increasing,

it is sufficient that these conditional probabilities are right-tail increasing.

Lemma 2.3. Suppose X ;Y are discrete random variables on the same finite sample space E. Further suppose that

P½X ¼ x jY ¼ y� is increasing in y for each xXy;

is decreasing in y for each xoy:
(2.10)

Then

P½XXx jY ¼ y� is increasing in y for each x. (2.11)

Proof. First note that P½XXx jY ¼ y� ¼
Pm

z¼x P½X ¼ z jY ¼ y�.

The proof is trivial when ypxpm. When xoypm, we have

P½XXx jY ¼ y� ¼
X

yÿ1

z¼x

P½X ¼ z jY ¼ y� þ
X

m

z¼y

P½X ¼ z jY ¼ y�

¼ P½Xoy jY ¼ y� ÿ P½Xox jY ¼ y� þ P½XXy jY ¼ y�

¼ 1ÿ P½Xox jY ¼ y�.

The proof follows from the fact that P½X ¼ x jY ¼ y� is decreasing in y for each xoy: &

The lemma leads to the following theorem.

Theorem 2.4. Suppose conditions A1 and A2 hold for the stochastic process X . Further suppose that

P½X aðbÞ ¼ ib;a jX aÿ1ðbÞ ¼ ib;aÿ1� is increasing in ib;aÿ1 8ib;aXib;aÿ1 bX1; aX2;

is decreasing in ib;aÿ1 8ib;aoib;aÿ1 bX1; aX2;
(2.12)

P½X 1ðbÞ ¼ ib;1 jX kðbÿ 1Þ ¼ ibÿ1;k� is increasing in ibÿ1;k 8ib;1Xibÿ1;k 8bX1; aX2;

is decreasing in ibÿ1;k 8ib;1oibÿ1;k 8bX1; aX2:
(2.13)

Then it is associated in time.

Theorems 2.1, 2.2 and 2.4 give sufficient conditions for X to be associated in time. Theorem 2.1 does not

require the Markovian assumption (A1;A2). Theorem 2.2 requires one-step conditional and linkage survival
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probabilities to be stochastically increasing. Since right-tail increasing implies stochastically increasing, it is

sufficient that these conditional probabilities are right-tail increasing.

However, the conditions in Theorem 2.4 are in terms of conditional mass function, that is, in terms of the

kernel of X . Hence these are easily verifiable. Theorems 2.2 and 2.4 give weaker conditions for verifying

associated in time provided the underlying process is Markovian in the sense defined by ðA1;A2Þ.

2.1. The Bernoulli case

Marshall and Olkin (1985) considered a bivariate Bernoulli distribution whose marginals are Bernoulli

random variables. They have used this bivariate Bernoulli distribution to generate bivariate binomial, Poisson

and hypergeometric distributions.

Now we consider two models, a multiplicative and an additive, which arise from independent Bernoulli

random variables and can be considered as an extension of Bernoulli random variables to k dimensional

dependent variables. They will be used to study association in time for the processes like those discussed

above. However, they are of independent interest as well.

2.1.1. The multiplicative model

Let Y 1;Y 2; . . . ;Y kÿ1;Y k be independent Bð1; piÞ, i ¼ 1; 2; . . . ; k random variables. Define a new random

vector W as follows:

W i ¼ Y i � Y k; i ¼ 1; 2; . . . ; k ÿ 1; W k ¼ Y k. (2.14)

Note that each W i is increasing in its arguments. Since independent random variables are associated and

increasing functions of associated random variables are associated (Esary et al., 1967), we have W ¼

ðW 1;W 2; . . . ;W kÞ associated random variables. The joint distribution of ðW 1;W 2; . . . ;W kÞ is given by

P½W 1 ¼ W 2 ¼ � � � ;W k ¼ 0� ¼ 1ÿ pk,

P½W 1 ¼ W 2 ¼ � � � ;W k ¼ 1� ¼
Y

k

i¼1

pi,

P½W 1 ¼ w1;W 2 ¼ w2; . . . ;W kÿ1 ¼ wkÿ1;W k ¼ 0� ¼ 0; if wj ¼ 1 for any 1pjok,

P½W 1 ¼ w1;W 2 ¼ w2; . . . ;W kÿ1 ¼ wkÿ1;W k ¼ 1� ¼ pk

Y

kÿ1

j¼1

p
wj

j ð1ÿ pjÞ
1ÿwj

" #

otherwise. (2.15)

For completeness note that for i ¼ 1; 2; . . . ; k ÿ 1,

P½W i ¼ 1� ¼ pipk; P½W i ¼ 0� ¼ 1ÿ pipk,

CovðW i;W jÞ ¼ pipjpkð1ÿ pkÞ; iaj. (2.16)

CovðW i;W kÞ ¼ pipkð1ÿ pkÞ for iak. (2.17)

However, note that

P½W 3 ¼ 1 jW 2 ¼ 0;W 1 ¼ 0� ¼
ð1ÿ p1Þð1ÿ p2Þp3pk

1ÿ p1pk
,

P½W 3 ¼ 1 jW 2 ¼ 0� ¼
ð1ÿ p2Þp3pk
1ÿ p2pk

. (2.18)

Clearly, the Markovian property defined in ðA1Þ does not hold. The following result is true.

Theorem 2.5. Let fX aðbÞ; a ¼ 1; 2; . . . ; kg be independent Bð1; paÞ random variables for all bX1. Define

Z‘ ¼ X að1Þ � X kð1Þ; 1p‘pk ÿ 1,
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Zjk ¼
Y

j

a¼1

X kðaÞ; jX1,

Z‘ ¼ X aðbÞ � Zbk; ‘ ¼ ðbÿ 1Þk þ a; 1paok. (2.19)

Then fZn; nX1g are associated in time.

2.1.2. The additive model

We also consider another additive model which describes the dental data mentioned earlier. Now, let

Y 1;Y 2; . . . ;Y k be independent Bð1; piÞ; i ¼ 1; 2; . . . ; k random variables and U be Bð1; pÞ random variable

independent of Y i; i ¼ 1; 2; . . . ; k. Define a new random vector W � as follows:

W �
i ¼ Y i þU ; i ¼ 1; 2; . . . ; k. (2.20)

Note that ðW 1;W 2; . . . ;W kÞ are associated random variables. Further each W �
i takes values f0; 1; 2g. We have

P½W �
i ¼ 0� ¼ ð1ÿ piÞð1ÿ pÞ; P½W �

i ¼ 1� ¼ ð1ÿ piÞpþ ð1ÿ pÞpi; P½W �
i ¼ 2� ¼ pi � p. (2.21)

Note that

EðW �
i Þ ¼ pþ pi; VarðW �

i Þ ¼ pð1ÿ pÞ þ pið1ÿ piÞ 8i,

CovðW �
i ;W

�
j Þ ¼ pð1ÿ pÞ 8iaj. (2.22)

This idea can be extended such that W �
i is a sum of two or more independent Bernoulli random variables and

a common effect. In this case also

P½W �
3 ¼ 1 jW �

2 ¼ 1;W �
1 ¼ 0� ¼ p3,

P½W �
3 ¼ 1 jW �

2 ¼ 1� ¼
pð1ÿ p2Þð1ÿ p3Þ þ ð1ÿ pÞp2p3

pð1ÿ p2Þ þ p2ð1ÿ pÞ
. (2.23)

Hence the Markovian property does not hold. However, the process fZn; nX1g, defined below, is associated in

time.

Theorem 2.6. Let fX aðbÞ; a ¼ 1; 2; . . . ; k; bX1g be independent Bð1; paÞ random variables for all bX1. Let U j ; j ¼

1; 2; . . . be independent Bð1; p�j Þ random variables, independent of fX aðbÞg. Define

Z‘ ¼ X að1Þ þU1; 1p‘pk,

Z‘ ¼ X aðbÞ þ
Y

b

j¼1

U j ; ‘ ¼ ðbÿ 1Þk þ a; 1papk. (2.24)

Then fZn; nX1g are associated in time.

Hence for both the models considered above the stochastic processes of interest are not Markovian. Hence

Theorems 2.2 and 2.4 cannot be used. However, both the processes are associated in time.

3. The continuous case

In Section 2, the state space of the process X was considered to be discrete. When the records are on actual

measurements on an individual (device) at a given point, the random variables X aðbÞ take values in an interval.

For example, in case of dental data amount of stain may be measurable. In such cases one has to study the

vector valued process fX g, discrete in time and continuous in state space. In what follows we provide sufficient

conditions for association in time for such a process. To begin with, as in Section 2, we provide a result based

on conditionally stochastically increasing sequence and then following Pitt (1982) obtain the sufficient

condition for association when the finite dimensional distribution follows multivariate normal distribution.

As before X ¼ fX ðbÞ; b 2 Ng. fX ðbÞ; b ¼ 1; 2; . . . ;mg is a collection of km random variables. One would

know the behaviour of these km random variables completely if one knows the corresponding km dimensional

ARTICLE IN PRESS

A.D. Dharamadhikari, I. Dewan / Statistics & Probability Letters 76 (2006) 1147–11551152



multivariate distribution completely. We note that there are two co-ordinates of this family of random

variables. For a fixed b 2 N, there are finitely many, i.e., k random variables, say fX 1ðbÞ;X 2ðbÞ; . . . ;X kðbÞg,

each taking value in Rþ. This k dimensional multivariate distribution will be known completely if

we know one marginal and successive conditionals, say P½X 1ðbÞXx1�;P½X 2ðbÞXx2 jX 1ðbÞXx1�; . . . ;

P½X kðbÞXxk jX kÿ1ðbÞXxkÿ1; . . . ;X 1ðbÞXx1�. Assume that

B1 : P½X jðbÞXxj jX 1ðbÞXx1; . . . ;X jÿ1ðbÞXxjÿ1�

¼ P½X jðbÞXxj jX jÿ1ðbÞXxjÿ1� ¼ F̄ jÿ1;jðxj jxjÿ1Þ (say),

B2 : F̄ jÿ1;jðx j yÞ ¼ F̄ 1;2ðx j yÞ. (3.1)

Then, in order to know the k dimensional distributions one would require to know

fF̄1ðxÞ; F̄ jÿ1;jðxj jxjÿ1Þ 8xj 2 R; j ¼ 1; 2; . . . ; kg, where F̄1ðxÞ ¼ P½X 1ðbÞXx1�: Further, if the conditional

survival functions satisfy the stationarity property B2 and the marginals are identical, then the kernel of

this k dimensional vector would be fF̄ ðxÞ; F̄1;2ðx j yÞg: Above is the multivariate expect of the family of random

variables described.

Now to consider the ‘‘process’’ aspect of it, 80osot; s; t 2 N fX ðsÞ;X ðtÞg are jointly distributed. One can

say that fX ðtÞ; tX0g is a vector valued Markov process if

B3 : P½X ðtÞXxt j X ðsÞ ¼ xs; 8spt� ¼ P½X ðtÞXxt j X ðsÞ ¼ xs� ¼ F̄ s;tðxt jxsÞ. (3.2)

Further we assume stationarity, that is,

F̄ s;tðxt jxsÞ ¼ F̄ tÿsðxt jxsÞ; 8 xt;xs 2 Rþ
; 80osot. (3.3)

In light of (3.1) and (3.3), in order to write the joint distribution of fX ðsÞ;X ðtÞg, one needs the conditional

distribution function, say from one of the X iðsÞ to one of the X jðtÞ
0s. The linkage probabilities are given by

P½X 1ðtÞXx1t jX kðsÞ ¼ xks� ¼ Ḡk;1
s;t ðx1t jxksÞ ðsayÞ. (3.4)

Then, using B1;B2;B3, the joint distribution of fX ð1Þ;X ð2Þ; . . . ;X ðmÞg can be determined by

fF̄ ðsÞ; F̄1;2ðt j sÞ; Ḡ
ðk;1Þ
s;t ðt j sÞg. Further for 0osot,

P½X ðtÞXxt;X ðsÞXxs� ¼ F̄ ðxs1Þ
Y

t

s¼1

Y

k

j¼2

F̄ 1;2ðxsj jxsjÿ1
Þ
Y

t

s¼2

Ḡk;1
s;t ðx1t jxksÞ. (3.5)

In a similar way finite distribution of any order can be written.

As before, we consider the process fZn; nX1g given in (2.9) and study sufficient conditions for the process to

be associated in time. Theorem 2.1 holds even in this case when the state space is continuous.

Theorem 3.1. Suppose that for the stochastic process X conditions B1–B3 hold. Further suppose that

P½X jðsÞXxsj jX jÿ1ðsÞ ¼ xsjÿ1
� is increasing in xsjÿ1

8sX1; jX2, (3.6)

P½X 1ðsÞXxs1 jX kðsÿ 1Þ ¼ xsÿ1k � is increasing in xsÿ1k 8sX1; jX2. (3.7)

Then it is associated in time.

Pitt (1982) showed that positively correlated normal random variables are associated. Hence we have the

following two results.

Theorem 3.2. If fZn; 1pnpmg have Nmðm;SÞ, with si;jX0, then fZn; nX1g are associated in time.
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Theorem 3.3. If fX ðtiÞ1pipmg have Nkðmk;S
kÞ, with ski;jX0, and

P½X 1ðsÞXxs1 jX kðsÿ 1ÞXxðsÿ1Þ;k� is increasing in xðsÿ1Þ;k 8s, (3.8)

then the process fX g is associated in time.

Note that we do not need the process fX g to be Markovian for Theorems 3.2 and 3.3 to be true.

4. Applications to dental data

Tables 1 and 2 give a part of dental data analysed by Das and Chattopadhyay (2004). It gives stain on the

same tooth at all the four positions before and after brushing, respectively. Numbers under ðP1;P2;P3;P4Þ

indicate the amount of stain at each of the four positions on the selected tooth of an individual.

It is easy to verify that data in Table 1 are conditionally increasing in its co-ordinates. However, for

data in Table 2 all probability inequalities are in the desired direction except that

P½P4X3 jP1 ¼ 1;P2 ¼ 0;P3 ¼ 1� ¼ 1
2
, while P½P4X3 jP1 ¼ 0;P2 ¼ 0;P3 ¼ 0� ¼ 11

12
. Note that the first prob-

ability is based on only two observations and the departure can be attributed to sampling/measuring errors.

With such an understanding, both the data sets can be considered to be associated in time. Hence

measurement only at one of the four positions, say at P4, would suffice for statistical analysis. To the best of

our knowledge there are no statistical tests for testing if a sequence of random variables is conditionally

increasing.

In general, the philosophy in this paper is analogous to the philosophy behind generators, fractions, alias

structure and the resolution of a fraction in factorial experiments. These concepts in factorial experiments help

user to minimize the experimental work. On the same lines, if the user has some technical or statistical evidence

that the data are going to have a dependence structure of specific type, he/she can plan economic data

acquisition methods. We have provided various situations wherein collecting fraction of data may be sufficient

to take decisions.
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Table 1

Dental data: stain before brushing

Individual P1 P2 P3 P4

1 1 1 1 2

2 1 1 2 2

3 1 1 2 2

4 1 1 2 2

5 1 1 2 2

6 1 2 2 2

7 1 2 2 2

8 1 2 2 2

9 1 2 2 2

10 1 2 2 2

11 1 2 2 2

12 1 2 2 2

13 1 2 2 3

14 2 1 2 2

15 2 2 2 2

16 2 2 2 2

17 2 2 2 2

18 2 2 2 2

19 2 2 2 2

20 2 2 2 2

21 2 2 2 2

22 2 2 2 2

23 2 2 2 2

24 2 2 2 3

25 2 2 2 3
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Table 2

Dental data: stain after brushing

Individual P1 P2 P3 P4

1 0 0 0 0

2 0 0 0 1

3 0 0 0 1

4 0 0 0 1

5 0 0 0 1

6 0 0 0 1

7 0 0 0 1

8 0 0 0 1

9 0 0 0 1

10 0 0 0 1

11 0 0 0 1

12 0 0 0 2

13 0 0 0 2

14 0 0 1 1

15 0 0 1 1

16 0 0 1 1

17 0 0 1 1

18 0 0 1 1

19 0 0 1 1

20 0 0 1 1

21 0 1 1 1

22 0 1 1 1

23 0 1 1 1

24 0 1 1 1

25 1 1 1 2
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